Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(22): e2303480120, 2023 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-37216519

RESUMO

Metacaspases are part of an evolutionarily broad family of multifunctional cysteine proteases, involved in disease and normal development. As the structure-function relationship of metacaspases remains poorly understood, we solved the X-ray crystal structure of an Arabidopsis thaliana type II metacaspase (AtMCA-IIf) belonging to a particular subgroup not requiring calcium ions for activation. To study metacaspase activity in plants, we developed an in vitro chemical screen to identify small molecule metacaspase inhibitors and found several hits with a minimal thioxodihydropyrimidine-dione structure, of which some are specific AtMCA-IIf inhibitors. We provide mechanistic insight into the basis of inhibition by the TDP-containing compounds through molecular docking onto the AtMCA-IIf crystal structure. Finally, a TDP-containing compound (TDP6) effectively hampered lateral root emergence in vivo, probably through inhibition of metacaspases specifically expressed in the endodermal cells overlying developing lateral root primordia. In the future, the small compound inhibitors and crystal structure of AtMCA-IIf can be used to study metacaspases in other species, such as important human pathogens, including those causing neglected diseases.


Assuntos
Arabidopsis , Caspases , Humanos , Caspases/química , Simulação de Acoplamento Molecular , Apoptose , Proteínas de Ligação a DNA
2.
Plant Cell ; 30(10): 2330-2351, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30115738

RESUMO

Somatic polyploidy caused by endoreplication is observed in arthropods, molluscs, and vertebrates but is especially prominent in higher plants, where it has been postulated to be essential for cell growth and fate maintenance. However, a comprehensive understanding of the physiological significance of plant endopolyploidy has remained elusive. Here, we modeled and experimentally verified a high-resolution DNA endoploidy map of the developing Arabidopsis thaliana root, revealing a remarkable spatiotemporal control of DNA endoploidy levels across tissues. Fitting of a simplified model to publicly available data sets profiling root gene expression under various environmental stress conditions suggested that this root endoploidy patterning may be stress-responsive. Furthermore, cellular and transcriptomic analyses revealed that inhibition of endoreplication onset alters the nuclear-to-cellular volume ratio and the expression of cell wall-modifying genes, in correlation with the appearance of cell structural changes. Our data indicate that endopolyploidy might serve to coordinate cell expansion with structural stability and that spatiotemporal endoreplication pattern changes may buffer for stress conditions, which may explain the widespread occurrence of the endocycle in plant species growing in extreme or variable environments.


Assuntos
Adaptação Fisiológica/genética , Arabidopsis/fisiologia , Raízes de Plantas/genética , Poliploidia , Arabidopsis/citologia , Arabidopsis/genética , Tamanho Celular , DNA de Plantas , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Células Vegetais/fisiologia , Raízes de Plantas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas , Reprodutibilidade dos Testes , Análise Espaço-Temporal , Estresse Fisiológico/genética
3.
Plant Cell ; 28(8): 1844-59, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27432873

RESUMO

Hydrogen peroxide (H2O2) can act as a signaling molecule that influences various aspects of plant growth and development, including stress signaling and cell death. To analyze molecular mechanisms that regulate the response to increased H2O2 levels in plant cells, we focused on the photorespiration-dependent peroxisomal H2O2 production in Arabidopsis thaliana mutants lacking CATALASE2 (CAT2) activity (cat2-2). By screening for second-site mutations that attenuate the PSII maximum efficiency (Fv'/Fm') decrease and lesion formation linked to the cat2-2 phenotype, we discovered that a mutation in SHORT-ROOT (SHR) rescued the cell death phenotype of cat2-2 plants under photorespiration-promoting conditions. SHR deficiency attenuated H2O2-dependent gene expression, oxidation of the glutathione pool, and ascorbate depletion in a cat2-2 genetic background upon exposure to photorespiratory stress. Decreased glycolate oxidase and catalase activities together with accumulation of glycolate further implied that SHR deficiency impacts the cellular redox homeostasis by limiting peroxisomal H2O2 production. The photorespiratory phenotype of cat2-2 mutants did not depend on the SHR functional interactor SCARECROW and the sugar signaling component ABSCISIC ACID INSENSITIVE4, despite the requirement for exogenous sucrose for cell death attenuation in cat2-2 shr-6 double mutants. Our findings reveal a link between SHR and photorespiratory H2O2 production that has implications for the integration of developmental and stress responses.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Catalase/metabolismo , Fatores de Transcrição/deficiência , Fatores de Transcrição/metabolismo , Arabidopsis/citologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Catalase/genética , Morte Celular/genética , Morte Celular/fisiologia , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Peróxido de Hidrogênio/metabolismo , Oxirredução , Plantas Geneticamente Modificadas/citologia , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Fatores de Transcrição/genética
4.
Proc Natl Acad Sci U S A ; 113(5): 1447-52, 2016 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-26792519

RESUMO

In plants, the generation of new cell types and tissues depends on coordinated and oriented formative cell divisions. The plasma membrane-localized receptor kinase ARABIDOPSIS CRINKLY 4 (ACR4) is part of a mechanism controlling formative cell divisions in the Arabidopsis root. Despite its important role in plant development, very little is known about the molecular mechanism with which ACR4 is affiliated and its network of interactions. Here, we used various complementary proteomic approaches to identify ACR4-interacting protein candidates that are likely regulators of formative cell divisions and that could pave the way to unraveling the molecular basis behind ACR4-mediated signaling. We identified PROTEIN PHOSPHATASE 2A-3 (PP2A-3), a catalytic subunit of PP2A holoenzymes, as a previously unidentified regulator of formative cell divisions and as one of the first described substrates of ACR4. Our in vitro data argue for the existence of a tight posttranslational regulation in the associated biochemical network through reciprocal regulation between ACR4 and PP2A-3 at the phosphorylation level.


Assuntos
Proteínas de Arabidopsis/fisiologia , Arabidopsis/citologia , Divisão Celular/fisiologia , Fosfoproteínas Fosfatases/fisiologia , Raízes de Plantas/citologia , Proteínas Serina-Treonina Quinases/fisiologia , Receptores de Superfície Celular/fisiologia , Diferenciação Celular , Fosforilação
5.
Plant Physiol ; 173(1): 552-565, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27837086

RESUMO

Auxin steers numerous physiological processes in plants, making the tight control of its endogenous levels and spatiotemporal distribution a necessity. This regulation is achieved by different mechanisms, including auxin biosynthesis, metabolic conversions, degradation, and transport. Here, we introduce cis-cinnamic acid (c-CA) as a novel and unique addition to a small group of endogenous molecules affecting in planta auxin concentrations. c-CA is the photo-isomerization product of the phenylpropanoid pathway intermediate trans-CA (t-CA). When grown on c-CA-containing medium, an evolutionary diverse set of plant species were shown to exhibit phenotypes characteristic for high auxin levels, including inhibition of primary root growth, induction of root hairs, and promotion of adventitious and lateral rooting. By molecular docking and receptor binding assays, we showed that c-CA itself is neither an auxin nor an anti-auxin, and auxin profiling data revealed that c-CA does not significantly interfere with auxin biosynthesis. Single cell-based auxin accumulation assays showed that c-CA, and not t-CA, is a potent inhibitor of auxin efflux. Auxin signaling reporters detected changes in spatiotemporal distribution of the auxin response along the root of c-CA-treated plants, and long-distance auxin transport assays showed no inhibition of rootward auxin transport. Overall, these results suggest that the phenotypes of c-CA-treated plants are the consequence of a local change in auxin accumulation, induced by the inhibition of auxin efflux. This work reveals a novel mechanism how plants may regulate auxin levels and adds a novel, naturally occurring molecule to the chemical toolbox for the studies of auxin homeostasis.


Assuntos
Cinamatos/metabolismo , Ácidos Indolacéticos/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Arabidopsis/efeitos dos fármacos , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Bryopsida/efeitos dos fármacos , Bryopsida/crescimento & desenvolvimento , Cinamatos/química , Cinamatos/farmacologia , Ciclina B/genética , Ciclina B/metabolismo , Regulação da Expressão Gênica de Plantas , Isomerismo , Raízes de Plantas/metabolismo , Plantas Geneticamente Modificadas , Proteínas Qa-SNARE/genética , Proteínas Qa-SNARE/metabolismo , Selaginellaceae/efeitos dos fármacos , Selaginellaceae/crescimento & desenvolvimento , Transdução de Sinais
6.
Plant Physiol ; 172(2): 874-888, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27506238

RESUMO

The phenylpropanoid 3,4-(methylenedioxy)cinnamic acid (MDCA) is a plant-derived compound first extracted from roots of Asparagus officinalis and further characterized as an allelochemical. Later on, MDCA was identified as an efficient inhibitor of 4-COUMARATE-CoA LIGASE (4CL), a key enzyme of the general phenylpropanoid pathway. By blocking 4CL, MDCA affects the biosynthesis of many important metabolites, which might explain its phytotoxicity. To decipher the molecular basis of the allelochemical activity of MDCA, we evaluated the effect of this compound on Arabidopsis thaliana seedlings. Metabolic profiling revealed that MDCA is converted in planta into piperonylic acid (PA), an inhibitor of CINNAMATE-4-HYDROXYLASE (C4H), the enzyme directly upstream of 4CL. The inhibition of C4H was also reflected in the phenolic profile of MDCA-treated plants. Treatment of in vitro grown plants resulted in an inhibition of primary root growth and a proliferation of lateral and adventitious roots. These observed growth defects were not the consequence of lignin perturbation, but rather the result of disturbing auxin homeostasis. Based on DII-VENUS quantification and direct measurement of cellular auxin transport, we concluded that MDCA disturbs auxin gradients by interfering with auxin efflux. In addition, mass spectrometry was used to show that MDCA triggers auxin biosynthesis, conjugation, and catabolism. A similar shift in auxin homeostasis was found in the c4h mutant ref3-2, indicating that MDCA triggers a cross talk between the phenylpropanoid and auxin biosynthetic pathways independent from the observed auxin efflux inhibition. Altogether, our data provide, to our knowledge, a novel molecular explanation for the phytotoxic properties of MDCA.


Assuntos
Cinamatos/farmacologia , Homeostase/efeitos dos fármacos , Ácidos Indolacéticos/metabolismo , Lignina/biossíntese , Fenilpropionatos/farmacologia , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Arabidopsis/metabolismo , Benzoatos/metabolismo , Benzoatos/farmacologia , Vias Biossintéticas/efeitos dos fármacos , Cinamatos/química , Cinamatos/metabolismo , Coenzima A Ligases/antagonistas & inibidores , Coenzima A Ligases/metabolismo , Relação Dose-Resposta a Droga , Espectrometria de Massas , Microscopia Confocal , Fenilpropionatos/química , Fenilpropionatos/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Plantas Geneticamente Modificadas , Plântula/efeitos dos fármacos , Plântula/genética , Plântula/crescimento & desenvolvimento , Plântula/metabolismo , Transcinamato 4-Mono-Oxigenase/antagonistas & inibidores , Transcinamato 4-Mono-Oxigenase/metabolismo
7.
BMC Biol ; 14(1): 90, 2016 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-27751175

RESUMO

BACKGROUND: The red flour beetle Tribolium castaneum is an emerging insect model organism representing the largest insect order, Coleoptera, which encompasses several serious agricultural and forest pests. Despite the ecological and economic importance of beetles, most insect olfaction studies have so far focused on dipteran, lepidopteran, or hymenopteran systems. RESULTS: Here, we present the first detailed morphological description of a coleopteran olfactory pathway in combination with genome-wide expression analysis of the relevant gene families involved in chemoreception. Our study revealed that besides the antennae, also the mouthparts are highly involved in olfaction and that their respective contribution is processed separately. In this beetle, olfactory sensory neurons from the mouthparts project to the lobus glomerulatus, a structure so far only characterized in hemimetabolous insects, as well as to a so far non-described unpaired glomerularly organized olfactory neuropil in the gnathal ganglion, which we term the gnathal olfactory center. The high number of functional odorant receptor genes expressed in the mouthparts also supports the importance of the maxillary and labial palps in olfaction of this beetle. Moreover, gustatory perception seems equally distributed between antenna and mouthparts, since the number of expressed gustatory receptors is similar for both organs. CONCLUSIONS: Our analysis of the T. castaneum chemosensory system confirms that olfactory and gustatory perception are not organotopically separated to the antennae and mouthparts, respectively. The identification of additional olfactory processing centers, the lobus glomerulatus and the gnathal olfactory center, is in contrast to the current picture that in holometabolous insects all olfactory inputs allegedly converge in the antennal lobe. These findings indicate that Holometabola have evolved a wider variety of solutions to chemoreception than previously assumed.


Assuntos
Besouros/genética , Perfilação da Expressão Gênica/métodos , Animais , Células Quimiorreceptoras/metabolismo , Besouros/metabolismo , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Neurônios Receptores Olfatórios/metabolismo , Receptores Odorantes/genética , Receptores Odorantes/metabolismo
8.
Proc Natl Acad Sci U S A ; 110(13): 5235-40, 2013 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-23479623

RESUMO

Throughout their life cycle, plants produce new organs, such as leaves, flowers, and lateral roots. Organs that have served their purpose may be shed after breakdown of primary cell walls between adjacent cell files at the site of detachment. In Arabidopsis, floral organs abscise after pollination, and this cell separation event is controlled by the peptide INFLORESCENCE DEFICIENT IN ABSCISSION (IDA), which signals through the leucine-rich repeat receptor-like kinases HAESA (HAE) and HAESA-LIKE2 (HSL2). Emergence of new lateral root primordia, initiated deep inside the root under the influence of auxin, is similarly dependent on cell wall dissolution between cells in the overlaying endodermal, cortical, and epidermal tissues. Here we show that this process requires IDA, HAE, and HSL2. Mutation in these genes constrains the passage of the growing lateral root primordia through the overlaying layers, resulting in altered shapes of the lateral root primordia and of the overlaying cells. The HAE and HSL2 receptors are redundant in function during floral organ abscission, but during lateral root emergence they are differentially involved in regulating cell wall remodeling genes. In the root, IDA is strongly auxin-inducible and dependent on key regulators of lateral root emergence--the auxin influx carrier LIKE AUX1-3 and AUXIN RESPONSE FACTOR7. The expression levels of the receptor genes are only transiently induced by auxin, suggesting they are limiting factors for cell separation. We conclude that elements of the same cell separation signaling module have been adapted to function in different developmental programs.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas/fisiologia , Desenvolvimento Vegetal/fisiologia , Raízes de Plantas/crescimento & desenvolvimento , Proteínas Serina-Treonina Quinases/metabolismo , Arabidopsis/citologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Mutação , Raízes de Plantas/citologia , Raízes de Plantas/genética , Proteínas Serina-Treonina Quinases/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
9.
Plant Physiol ; 166(2): 632-43, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25034019

RESUMO

The stem cell niche of the Arabidopsis (Arabidopsis thaliana) primary root apical meristem is composed of the quiescent (or organizing) center surrounded by stem (initial) cells for the different tissues. Initial cells generate a population of transit-amplifying cells that undergo a limited number of cell divisions before elongating and differentiating. It is unclear whether these divisions occur stochastically or in an orderly manner. Using the thymidine analog 5-ethynyl-2'-deoxyuridine to monitor DNA replication of cells of Arabidopsis root meristems, we identified a pattern of two, four, and eight neighboring cells with synchronized replication along the cortical, epidermal, and endodermal cell files, suggested to be daughters, granddaughters, and great-granddaughters of the direct progeny of each stem cell. Markers of mitosis and cytokinesis were not present in the region closest to the transition zone where the cells start to elongate, suggesting that great-granddaughter cells switch synchronously from the mitotic cell cycle to endoreduplication. Mutations in the stem cell niche-expressed ASH1-RELATED3 (ASHR3) gene, encoding a SET-domain protein conferring histone H3 lysine-36 methylation, disrupted this pattern of coordinated DNA replication and cell division and increased the cell division rate in the quiescent center. E2Fa/E2Fb transcription factors controlling the G1-to-S-phase transition regulate ASHR3 expression and bind to the ASHR3 promoter, substantiating a role for ASHR3 in cell division control. The reduced length of the root apical meristem and primary root of the mutant ashr3-1 indicate that synchronization of replication and cell divisions is required for normal root growth and development.


Assuntos
Proteínas de Arabidopsis/fisiologia , Arabidopsis/fisiologia , Divisão Celular/fisiologia , Meristema/citologia , Raízes de Plantas/citologia , Arabidopsis/citologia , Proteínas de Arabidopsis/genética , Replicação do DNA , DNA de Plantas/biossíntese , Mutação , Fase S
10.
J Exp Bot ; 66(19): 5651-62, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26068468

RESUMO

Over 130 years ago, Charles Darwin recognized that sensory functions in the root tip influence directional root growth. Modern plant biology has unravelled that many of the functions that Darwin attributed to the root tip are actually accomplished by a particular organ-the root cap. The root cap surrounds and protects the meristematic stem cells at the growing root tip. Due to this vanguard position, the root cap is predisposed to receive and transmit environmental information to the root proper. In contrast to other plant organs, the root cap shows a rapid turnover of short-lived cells regulated by an intricate balance of cell generation, differentiation, and degeneration. Thanks to these particular features, the root cap is an excellent developmental model system, in which generation, differentiation, and degeneration of cells can be investigated in a conveniently compact spatial and temporal frame. In this review, we give an overview of the current knowledge and concepts of root cap biology, focusing on the model plant Arabidopsis thaliana.


Assuntos
Arabidopsis/fisiologia , Diferenciação Celular , Coifa/fisiologia , Arabidopsis/crescimento & desenvolvimento , Coifa/crescimento & desenvolvimento
11.
J Exp Bot ; 66(17): 5351-65, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26062745

RESUMO

Peptide ligands play crucial roles in the life cycle of plants by modulating the innate immunity against pathogens and regulating growth and developmental processes. One well-studied example is INFLORESCENCE DEFICIENT IN ABSCISSION (IDA), which controls floral organ abscission and lateral root emergence in Arabidopsis thaliana. IDA belongs to a family of five additional IDA-LIKE (IDL) members that have all been suggested to be involved in regulation of Arabidopsis development. Here we present three novel members of the IDL subfamily and show that two of them are strongly and rapidly induced by different biotic and abiotic stresses. Furthermore, we provide data that the recently identified PAMP-INDUCED SECRETED PEPTIDE (PIP) and PIP-LIKE (PIPL) peptides, which show similarity to the IDL and C-TERMINALLY ENCODED PEPTIDE (CEP) peptides, are not only involved in innate immune response in Arabidopsis but are also induced by abiotic stress. Expression patterns of the IDA/IDL and PIP/PIPL genes were analysed using in silico data, qRT-PCR and GUS promoter lines. Transcriptomic responses to PIPL3 peptide treatment suggested a role in regulation of biotic stress responses and cell wall modification.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/fisiologia , Regulação da Expressão Gênica de Plantas , Peptídeos/genética , Sequência de Aminoácidos , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Peptídeos/metabolismo , Filogenia , Alinhamento de Sequência , Estresse Fisiológico
12.
J Chem Theory Comput ; 20(2): 799-818, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38157475

RESUMO

Biomolecular simulations have become an essential tool in contemporary drug discovery, and molecular mechanics force fields (FFs) constitute its cornerstone. Developing a high quality and broad coverage general FF is a significant undertaking that requires substantial expert knowledge and computing resources, which is beyond the scope of general practitioners. Existing FFs originate from only a limited number of groups and organizations, and they either suffer from limited numbers of training sets, lower than desired quality because of oversimplified representations, or are costly for the molecular modeling community to access. To address these issues, in this work, we developed an AMBER-consistent small molecule FF with extensive chemical space coverage, and we provide Open Access parameters for the entire modeling community. To validate our FF, we carried out benchmarks of quantum mechanics (QM)/molecular mechanics conformer comparison and free energy perturbation calculations on several benchmark data sets. Our FF achieves a higher level of performance at reproducing QM energies and geometries than two popular open-source FFs, OpenFF2 and GAFF2. In relative binding free energy calculations for 31 protein-ligand data sets, comprising 1079 pairs of ligands, the new FF achieves an overall root-mean-square error of 1.19 kcal/mol for ΔΔG and 0.92 kcal/mol for ΔG on a subset of 463 ligands without bespoke fitting to the data sets. The results are on par with those of the leading commercial series of OPLS FFs.


Assuntos
Benchmarking , Simulação de Dinâmica Molecular , Termodinâmica , Entropia , Proteínas/química , Ligantes
13.
Mol Cancer Ther ; 21(1): 3-15, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34737197

RESUMO

Protein arginine methyltransferase 5 (PRMT5) overexpression in hematologic and solid tumors methylates arginine residues on cellular proteins involved in important cancer functions including cell-cycle regulation, mRNA splicing, cell differentiation, cell signaling, and apoptosis. PRMT5 methyltransferase function has been linked with high rates of tumor cell proliferation and decreased overall survival, and PRMT5 inhibitors are currently being explored as an approach for targeting cancer-specific dependencies due to PRMT5 catalytic function. Here, we describe the discovery of potent and selective S-adenosylmethionine (SAM) competitive PRMT5 inhibitors, with in vitro and in vivo characterization of clinical candidate PF-06939999. Acquired resistance mechanisms were explored through the development of drug resistant cell lines. Our data highlight compound-specific resistance mutations in the PRMT5 enzyme that demonstrate structural constraints in the cofactor binding site that prevent emergence of complete resistance to SAM site inhibitors. PRMT5 inhibition by PF-06939999 treatment reduced proliferation of non-small cell lung cancer (NSCLC) cells, with dose-dependent decreases in symmetric dimethyl arginine (SDMA) levels and changes in alternative splicing of numerous pre-mRNAs. Drug sensitivity to PF-06939999 in NSCLC cells associates with cancer pathways including MYC, cell cycle and spliceosome, and with mutations in splicing factors such as RBM10. Translation of efficacy in mouse tumor xenograft models with splicing mutations provides rationale for therapeutic use of PF-06939999 in the treatment of splicing dysregulated NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Proteína-Arginina N-Metiltransferases/antagonistas & inibidores , S-Adenosilmetionina/metabolismo , Animais , Apoptose , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Proliferação de Células , Resistência a Medicamentos , Feminino , Humanos , Neoplasias Pulmonares/patologia , Camundongos
14.
Science ; 363(6433)2019 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-30898901

RESUMO

Physical damage to cells leads to the release of immunomodulatory peptides to elicit a wound defense response in the surrounding tissue. In Arabidopsis thaliana, the plant elicitor peptide 1 (Pep1) is processed from its protein precursor, PRECURSOR OF PEP1 (PROPEP1). We demonstrate that upon damage, both at the tissue and single-cell levels, the cysteine protease METACASPASE4 (MC4) is instantly and spatiotemporally activated by binding high levels of Ca2+ and is necessary and sufficient for Pep1 maturation. Cytosol-localized PROPEP1 and MC4 react only after loss of plasma membrane integrity and prolonged extracellular Ca2+ entry. Our results reveal that a robust mechanism consisting of conserved molecular components links the intracellular and Ca2+-dependent activation of a specific cysteine protease with the maturation of damage-induced wound defense signals.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Arabidopsis/imunologia , Cálcio/metabolismo , Cisteína Endopeptidases/metabolismo , Imunomodulação , Imunidade Vegetal , Precursores de Proteínas/metabolismo , Sequência de Aminoácidos , Citosol/enzimologia , Oligopeptídeos/metabolismo
15.
J Med Chem ; 62(17): 7669-7683, 2019 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-31415173

RESUMO

The first chemical probe to primarily occupy the co-factor binding site of a Su(var)3-9, enhancer of a zeste, trithorax (SET) domain containing protein lysine methyltransferase (PKMT) is reported. Protein methyltransferases require S-adenosylmethionine (SAM) as a co-factor (methyl donor) for enzymatic activity. However, SAM itself represents a poor medicinal chemistry starting point for a selective, cell-active inhibitor given its extreme physicochemical properties and its role in multiple cellular processes. A previously untested medicinal chemistry strategy of deliberate file enrichment around molecules bearing the hallmarks of SAM, but with improved lead-like properties from the outset, yielded viable hits against SET and MYND domain-containing protein 2 (SMYD2) that were shown to bind in the co-factor site. These leads were optimized to identify a highly biochemically potent, PKMT-selective, and cell-active chemical probe. While substrate-based inhibitors of PKMTs are known, this represents a novel, co-factor-derived strategy for the inhibition of SMYD2 which may also prove applicable to lysine methyltransferase family members previously thought of as intractable.


Assuntos
Inibidores Enzimáticos/farmacologia , Histona-Lisina N-Metiltransferase/antagonistas & inibidores , S-Adenosilmetionina/farmacologia , Bibliotecas de Moléculas Pequenas/farmacologia , Sítios de Ligação/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Histona-Lisina N-Metiltransferase/isolamento & purificação , Histona-Lisina N-Metiltransferase/metabolismo , Humanos , Modelos Moleculares , Estrutura Molecular , S-Adenosilmetionina/química , Bibliotecas de Moléculas Pequenas/síntese química , Bibliotecas de Moléculas Pequenas/química , Relação Estrutura-Atividade
16.
Antimicrob Agents Chemother ; 52(10): 3523-31, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18694956

RESUMO

To address the need for broad-spectrum antiviral activity characterization of hepatitis C virus (HCV) polymerase inhibitors, we created a panel of intergenotypic chimeric replicons containing nonstructural (NS) protein NS5B sequences from genotype 2b (GT2b), GT3a, GT4a, GT5a, and GT6a HCV isolates. Viral RNA extracted from non-GT1 HCV patient plasma was subjected to reverse transcription. The NS5B region was amplified by nested PCR and introduced into the corresponding region of the GT1b (Con-1) subgenomic reporter replicon by Splicing by Overlap Extension (SOEing) PCR. Stable cell lines were generated with replication-competent chimeras for in vitro antiviral activity determination of HCV nonnucleoside polymerase inhibitors (NNIs) that target different regions of the protein. Compounds that bind to the NNI2 (thiophene carboxylic acid) or NNI3 (benzothiadiazine) allosteric sites showed 8- to >1,280-fold reductions in antiviral activity against non-GT1 NS5B chimeric replicons compared to that against the GT1b subgenomic replicon. Smaller reductions in susceptibility, ranging from 0.2- to 33-fold, were observed for the inhibitor binding to the NNI1 (benzimidazole) site. The inhibitor binding to the NNI4 (benzofuran) site showed broad-spectrum antiviral activity against all chimeric replicons evaluated in this study. In conclusion, evaluation of HCV NNIs against intergenotypic chimeric replicons showed differences in activity spectrum for inhibitors that target different regions of the enzyme, some of which could be associated with specific residues that differ between GT1 and non-GT1 polymerases. Our study demonstrates the utility of chimeric replicons for broad-spectrum activity determination of HCV inhibitors.


Assuntos
Antivirais/farmacologia , Hepacivirus/efeitos dos fármacos , Hepacivirus/genética , Proteínas não Estruturais Virais/genética , Sequência de Aminoácidos , Substituição de Aminoácidos , Antivirais/química , Linhagem Celular , Quimera/genética , Variação Genética , Genótipo , Hepacivirus/classificação , Hepacivirus/enzimologia , Hepatite C/virologia , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Estrutura Molecular , Inibidores de Proteases/química , Inibidores de Proteases/farmacologia , RNA Polimerase Dependente de RNA/antagonistas & inibidores , RNA Polimerase Dependente de RNA/química , RNA Polimerase Dependente de RNA/genética , Proteínas Recombinantes/antagonistas & inibidores , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Replicon , Homologia de Sequência de Aminoácidos , Proteínas não Estruturais Virais/antagonistas & inibidores , Proteínas não Estruturais Virais/química
17.
J Med Chem ; 61(3): 650-665, 2018 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-29211475

RESUMO

A new series of lactam-derived EZH2 inhibitors was designed via ligand-based and physicochemical-property-based strategies to address metabolic stability and thermodynamic solubility issues associated with previous lead compound 1. The new inhibitors incorporated an sp3 hybridized carbon atom at the 7-position of the lactam moiety present in lead compound 1 as a replacement for a dimethylisoxazole group. This transformation enabled optimization of the physicochemical properties and potency compared to compound 1. Analysis of relationships between calculated log D (clogD) values and in vitro metabolic stability and permeability parameters identified a clogD range that afforded an increased probability of achieving favorable ADME data in a single molecule. Compound 23a exhibited the best overlap of potency and pharmaceutical properties as well as robust tumor growth inhibition in vivo and was therefore advanced as a development candidate (PF-06821497). A crystal structure of 23a in complex with the three-protein PRC2 complex enabled understanding of the key structural features required for optimal binding.


Assuntos
Desenho de Fármacos , Proteína Potenciadora do Homólogo 2 de Zeste/antagonistas & inibidores , Isoquinolinas/farmacologia , Isoquinolinas/farmacocinética , Administração Oral , Disponibilidade Biológica , Linhagem Celular Tumoral , Humanos , Isoquinolinas/administração & dosagem , Isoquinolinas/química , Modelos Moleculares , Conformação Molecular
18.
Science ; 351(6271): 384-7, 2016 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-26798015

RESUMO

The plant root cap, surrounding the very tip of the growing root, perceives and transmits environmental signals to the inner root tissues. In Arabidopsis thaliana, auxin released by the root cap contributes to the regular spacing of lateral organs along the primary root axis. Here, we show that the periodicity of lateral organ induction is driven by recurrent programmed cell death at the most distal edge of the root cap. We suggest that synchronous bursts of cell death in lateral root cap cells release pulses of auxin to surrounding root tissues, establishing the pattern for lateral root formation. The dynamics of root cap turnover may therefore coordinate primary root growth with root branching in order to optimize the uptake of water and nutrients from the soil.


Assuntos
Apoptose , Arabidopsis/crescimento & desenvolvimento , Ácidos Indolacéticos/metabolismo , Coifa/crescimento & desenvolvimento , Arabidopsis/citologia , Arabidopsis/metabolismo , Epiderme Vegetal/citologia , Epiderme Vegetal/crescimento & desenvolvimento , Epiderme Vegetal/metabolismo , Coifa/citologia , Coifa/metabolismo , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/genética , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Transdução de Sinais , Solo , Água/metabolismo
19.
J Med Chem ; 59(18): 8306-25, 2016 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-27512831

RESUMO

A new enhancer of zeste homolog 2 (EZH2) inhibitor series comprising a substituted phenyl ring joined to a dimethylpyridone moiety via an amide linkage has been designed. A preferential amide torsion that improved the binding properties of the compounds was identified for this series via computational analysis. Cyclization of the amide linker resulted in a six-membered lactam analogue, compound 18. This transformation significantly improved the ligand efficiency/potency of the cyclized compound relative to its acyclic analogue. Additional optimization of the lactam-containing EZH2 inhibitors focused on lipophilic efficiency (LipE) improvement, which provided compound 31. Compound 31 displayed improved LipE and on-target potency in both biochemical and cellular readouts relative to compound 18. Inhibitor 31 also displayed robust in vivo antitumor growth activity and dose-dependent de-repression of EZH2 target genes.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Desenho de Fármacos , Proteína Potenciadora do Homólogo 2 de Zeste/antagonistas & inibidores , Piridonas/química , Piridonas/farmacologia , Animais , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Ciclização , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Feminino , Humanos , Isoquinolinas/química , Isoquinolinas/farmacologia , Isoquinolinas/uso terapêutico , Lactamas/química , Lactamas/farmacologia , Camundongos , Camundongos SCID , Modelos Moleculares , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Piridonas/uso terapêutico
20.
J Med Chem ; 47(22): 5467-81, 2004 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-15481984

RESUMO

The design, synthesis, and biological evaluation of potent inhibitors of poly(ADP-ribose) polymerase-1 (PARP-1) are reported. A novel series of 3,4-dihydro-2H-[1,4]diazepino[6,7,1-hi]indol-1-ones were designed using a combination of protein structure-based drug design, molecular modeling, and structure-activity relationships (SAR). These novel submicromolar inhibitors possess a tricyclic ring system conformationally restricting the benzamide in the preferred cis orientation. The compounds were designed to optimize space-filling and atomic interactions within the NAD+ binding site of PARP-1. Previously described and newly adapted methods were applied to syntheses of these tricyclic inhibitors. Various modifications were made to the diazepinoindolones at the 6- and 7-positions in order to study this region of the active site and optimize noncovalent interactions. The electron density of derivative 28 bound to chicken PARP-1 revealed that the oxime makes a tight hydrogen bond with the catalytic gamma-carboxylate of glutamic acid (Glu) 988 in accordance with our original designs and models. Most of the compounds have been evaluated for inhibition of human PARP-1. Selected inhibitors were also tested for the ability to potentiate the cytotoxic effect of the DNA-damaging agent Topotecan.


Assuntos
Antineoplásicos/síntese química , Azepinas/síntese química , Indóis/síntese química , Inibidores de Poli(ADP-Ribose) Polimerases , Antineoplásicos/química , Antineoplásicos/farmacologia , Azepinas/química , Azepinas/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Cristalografia por Raios X , Desenho de Fármacos , Resistencia a Medicamentos Antineoplásicos , Sinergismo Farmacológico , Humanos , Indóis/química , Indóis/farmacologia , Modelos Moleculares , Relação Estrutura-Atividade , Inibidores da Topoisomerase I
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA