Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 502(7471): 359-63, 2013 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-24097350

RESUMO

Nucleation of aerosol particles from trace atmospheric vapours is thought to provide up to half of global cloud condensation nuclei. Aerosols can cause a net cooling of climate by scattering sunlight and by leading to smaller but more numerous cloud droplets, which makes clouds brighter and extends their lifetimes. Atmospheric aerosols derived from human activities are thought to have compensated for a large fraction of the warming caused by greenhouse gases. However, despite its importance for climate, atmospheric nucleation is poorly understood. Recently, it has been shown that sulphuric acid and ammonia cannot explain particle formation rates observed in the lower atmosphere. It is thought that amines may enhance nucleation, but until now there has been no direct evidence for amine ternary nucleation under atmospheric conditions. Here we use the CLOUD (Cosmics Leaving OUtdoor Droplets) chamber at CERN and find that dimethylamine above three parts per trillion by volume can enhance particle formation rates more than 1,000-fold compared with ammonia, sufficient to account for the particle formation rates observed in the atmosphere. Molecular analysis of the clusters reveals that the faster nucleation is explained by a base-stabilization mechanism involving acid-amine pairs, which strongly decrease evaporation. The ion-induced contribution is generally small, reflecting the high stability of sulphuric acid-dimethylamine clusters and indicating that galactic cosmic rays exert only a small influence on their formation, except at low overall formation rates. Our experimental measurements are well reproduced by a dynamical model based on quantum chemical calculations of binding energies of molecular clusters, without any fitted parameters. These results show that, in regions of the atmosphere near amine sources, both amines and sulphur dioxide should be considered when assessing the impact of anthropogenic activities on particle formation.


Assuntos
Aminas/química , Atmosfera/química , Material Particulado/química , Ácidos Sulfúricos/química , Radiação Cósmica , Dimetilaminas/química , Efeito Estufa , Atividades Humanas , Modelos Químicos , Teoria Quântica , Dióxido de Enxofre/química
2.
J Chem Phys ; 148(21): 214303, 2018 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-29884029

RESUMO

The formation of atmospheric aerosol particles from condensable gases is a dominant source of particulate matter in the boundary layer, but the mechanism is still ambiguous. During the clustering process, precursors with different reactivities can induce various chemical reactions in addition to the formation of hydrogen bonds. However, the clustering mechanism involving chemical reactions is rarely considered in most of the nucleation process models. Oxocarboxylic acids are common compositions of secondary organic aerosol, but the role of oxocarboxylic acids in secondary organic aerosol formation is still not fully understood. In this paper, glyoxylic acid, the simplest and the most abundant atmospheric oxocarboxylic acid, has been selected as a representative example of oxocarboxylic acids in order to study the clustering mechanism involving hydration reactions using density functional theory combined with the Atmospheric Clusters Dynamic Code. The hydration reaction of glyoxylic acid can occur either in the gas phase or during the clustering process. Under atmospheric conditions, the total conversion ratio of glyoxylic acid to its hydration reaction product (2,2-dihydroxyacetic acid) in both gas phase and clusters can be up to 85%, and the product can further participate in the clustering process. The differences in cluster structures and properties induced by the hydration reaction lead to significant differences in cluster formation rates and pathways at relatively low temperatures.

3.
J Phys Chem A ; 119(24): 6339-45, 2015 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-26023711

RESUMO

Several extremely low volatility organic compounds (ELVOCs) formed in the ozonolysis of endocyclic alkenes have recently been detected in laboratory and field studies. These experiments have been carried out with chemical ionization atmospheric pressure interface time-of-flight mass spectrometers (CI-APi-TOF) with nitrate ions as reagent ions. The nitrate ion binds to the detected species through hydrogen bonds, but it also binds very strongly to one or two neutral nitric acid molecules. This makes the measurement highly selective when there is an excess amount of neutral nitric acid in the instrument. In this work, we used quantum-chemical methods to calculate the binding energies between a nitrate ion and several highly oxidized ozonolysis products of cyclohexene. These were then compared with the binding energies of nitrate ion-nitric acid clusters. Systematic configurational sampling of the molecules and clusters was carried out at the B3LYP/6-31+G* and ωB97xD/aug-cc-pVTZ levels, and the final single-point energies were calculated with DLPNO-CCSD(T)/def2-QZVPP. The binding energies were used in a kinetic simulation of the measurement system to determine the relative ratios of the detected signals. Our results indicate that at least two hydrogen bond donor functional groups (in this case, hydroperoxide, OOH) are needed for an ELVOC molecule to be detected in a nitrate ion CI-APi-TOF. Also, a double bond in the carbon backbone makes the nitrate cluster formation less favorable.


Assuntos
Cicloexenos/química , Modelos Químicos , Ozônio/química , Pressão Atmosférica , Ligação de Hidrogênio , Nitratos/química , Ácido Nítrico
4.
J Phys Chem A ; 118(14): 2599-611, 2014 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-24678924

RESUMO

Formation of new particles through clustering of molecules from condensable vapors is a significant source for atmospheric aerosols. The smallest clusters formed in the very first steps of the condensation process are, however, not directly observable by experimental means. We present here a comprehensive series of electronic structure calculations on the hydrates of clusters formed by up to four molecules of sulfuric acid, and up to two molecules of ammonia or dimethylamine. Though clusters containing ammonia, and certainly dimethylamine, generally exhibit lower average hydration than the pure acid clusters, populations of individual hydrates vary widely. Furthermore, we explore the predictions obtained using a thermodynamic model for the description of these hydrates. The similar magnitude and trends of hydrate formation predicted by both methods illustrate the potential of combining them to obtain more comprehensive models. The stabilization of some clusters relative to others due to their hydration is highly likely to have significant effects on the overall processes that lead to formation of new particles in the atmosphere.


Assuntos
Atmosfera/química , Simulação de Dinâmica Molecular , Termodinâmica , Aerossóis/química , Amônia/química , Dimetilaminas/química , Elétrons , Ácidos Sulfúricos/química , Água/química
5.
J Phys Chem A ; 117(51): 14109-19, 2013 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-24295489

RESUMO

Quantum chemical calculations have been performed on negatively charged nitric acid-sulfuric acid-dimethylamine clusters. The cluster energies were combined with a kinetic model to study the chemical ionization of sulfuric acid molecules and sulfuric acid-dimethylamine clusters with nitrate ions. Both the sulfuric acid monomer and the H2SO4·(CH3)2NH cluster get ionized, but the cluster has a much higher dipole moment, and thus a higher collision rate with charger ions. Clustering of sulfuric acid with bases will therefore increase its detection probability in the CIMS, instead of decreasing it as has been suggested previously. However, our comparison of different quantum chemical methods shows some uncertainty on the extent of sulfuric acid-dimethylamine cluster formation in typical ambient conditions, and no experimental data is available for comparison. Apart from affecting CIMS measurements, the degree of clustering is directly linked to the formation rate of larger clusters, and needs to be quantified in order to understand atmospheric new-particle formation. On the basis of the different charging efficiencies of the monomer and the cluster, a method is proposed for determining experimentally the binding energies of H2SO4·base clusters by measuring the extent of cluster formation as a function of base concentration.

6.
Nat Commun ; 7: 11594, 2016 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-27197574

RESUMO

The growth of freshly formed aerosol particles can be the bottleneck in their survival to cloud condensation nuclei. It is therefore crucial to understand how particles grow in the atmosphere. Insufficient experimental data has impeded a profound understanding of nano-particle growth under atmospheric conditions. Here we study nano-particle growth in the CLOUD (Cosmics Leaving OUtdoors Droplets) chamber, starting from the formation of molecular clusters. We present measured growth rates at sub-3 nm sizes with different atmospherically relevant concentrations of sulphuric acid, water, ammonia and dimethylamine. We find that atmospheric ions and small acid-base clusters, which are not generally accounted for in the measurement of sulphuric acid vapour, can participate in the growth process, leading to enhanced growth rates. The availability of compounds capable of stabilizing sulphuric acid clusters governs the magnitude of these effects and thus the exact growth mechanism. We bring these observations into a coherent framework and discuss their significance in the atmosphere.

7.
Faraday Discuss ; 165: 75-89, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24600997

RESUMO

Formation of secondary atmospheric aerosol particles starts with gas phase molecules forming small molecular clusters. High-resolution mass spectrometry enables the detection and chemical characterization of electrically charged clusters from the molecular scale upward, whereas the experimental detection of electrically neutral clusters, especially as a chemical composition measurement, down to 1 nm in diameter and beyond still remains challenging. In this work we simulated a set of both electrically neutral and charged small molecular clusters, consisting of sulfuric acid and ammonia molecules, with a dynamic collision and evaporation model. Collision frequencies between the clusters were calculated according to classical kinetics, and evaporation rates were derived from first principles quantum chemical calculations with no fitting parameters. We found a good agreement between the modeled steady-state concentrations of negative cluster ions and experimental results measured with the state-of-the-art Atmospheric Pressure interface Time-Of-Flight mass spectrometer (APi-TOF) in the CLOUD chamber experiments at CERN. The model can be used to interpret experimental results and give information on neutral clusters that cannot be directly measured.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA