Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
1.
Reprod Fertil Dev ; 33(5): 319-327, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33632378

RESUMO

Although di-n-butyl phthalate (DBP) induces germ cell apoptosis, the underlying mechanism is not yet clear in quail. In this study, prepubertal quails were given a single dose of 500mg kg-1 DBP by gavage and were then killed 3, 6 and 24h after treatment. There was a significant reduction in intratesticular testosterone (ITT) concentrations and testicular steroidogenic enzyme mRNA expression and a significant increase in germ cell apoptosis in DBP-treated compared with control quails at all time points. Maximum apoptosis was detected 6h after treatment and the maximum reduction in testosterone concentrations was at 3h. To investigate whether DBP suppressed testicular steroidogenesis by affecting the hypothalamic-pituitary-testicular axis, we analysed pituitary LH subunit ß (Lhb) mRNA expression and serum LH concentrations. At all time points, pituitary Lhb expression and serum LH concentrations were significantly decreased following DBP treatment. The present observations suggest the possibility that DBP blocked LH secretion from the hypothalamus and/or pituitary, thereby decreasing LH stimulation of Leydig cells and reducing ITT concentrations. DBP-induced decreases in ITT concentrations may cause changes to the physical structure of Sertoli cells, which, in turn, may induce germ cell apoptosis.


Assuntos
Apoptose/efeitos dos fármacos , Coturnix/fisiologia , Dibutilftalato/farmacologia , Sistema Hipotálamo-Hipofisário/efeitos dos fármacos , Testículo/efeitos dos fármacos , Testosterona/biossíntese , Animais , Sistema Hipotálamo-Hipofisário/fisiologia , Células Intersticiais do Testículo/efeitos dos fármacos , Células Intersticiais do Testículo/fisiologia , Hormônio Luteinizante/sangue , Hormônio Luteinizante Subunidade beta/genética , Masculino , Hipófise/química , Plastificantes/farmacologia , RNA Mensageiro/análise , Células de Sertoli/fisiologia , Espermatozoides/fisiologia , Testículo/química , Testículo/fisiologia , Testosterona/análise
2.
Development ; 144(10): 1906-1917, 2017 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-28432216

RESUMO

The gallbladder excretes cytotoxic bile acids into the duodenum through the cystic duct and common bile duct system. Sox17 haploinsufficiency causes biliary atresia-like phenotypes and hepatitis in late organogenesis mouse embryos, but the molecular and cellular mechanisms underlying this remain unclear. In this study, transcriptomic analyses revealed the early onset of cholecystitis in Sox17+/- embryos, together with the appearance of ectopic cystic duct-like epithelia in their gallbladders. The embryonic hepatitis showed positive correlations with the severity of cholecystitis in individual Sox17+/- embryos. Embryonic hepatitis could be induced by conditional deletion of Sox17 in the primordial gallbladder epithelia but not in fetal liver hepatoblasts. The Sox17+/- gallbladder also showed a drastic reduction in sonic hedgehog expression, leading to aberrant smooth muscle formation and defective contraction of the fetal gallbladder. The defective gallbladder contraction positively correlated with the severity of embryonic hepatitis in Sox17+/- embryos, suggesting a potential contribution of embryonic cholecystitis and fetal gallbladder contraction in the early pathogenesis of congenital biliary atresia.


Assuntos
Atresia Biliar , Colecistite/embriologia , Vesícula Biliar/embriologia , Proteínas HMGB/genética , Contração Muscular/genética , Músculo Liso/embriologia , Fatores de Transcrição SOXF/genética , Animais , Atresia Biliar/embriologia , Atresia Biliar/genética , Atresia Biliar/patologia , Células Cultivadas , Colecistite/genética , Modelos Animais de Doenças , Embrião de Mamíferos , Feminino , Vesícula Biliar/metabolismo , Vesícula Biliar/fisiologia , Haploinsuficiência , Proteínas Hedgehog/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Músculo Liso/fisiologia , Gravidez
3.
Biol Reprod ; 99(3): 578-589, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-29635272

RESUMO

In mouse conceptus, two yolk-sac membranes, the parietal endoderm (PE) and visceral endoderm (VE), are involved in protecting and nourishing early-somite-stage embryos prior to the establishment of placental circulation. Both PE and VE membranes are tightly anchored to the marginal edge of the developing placental disk, in which the extraembryonic endoderm (marginal zone endoderm: ME) shows the typical flat epithelial morphology intermediate between those of PE and VE in vivo. However, the molecular characteristics and functions of the ME in mouse placentation remain unclear. Here, we show that SOX17, not SOX7, is continuously expressed in the ME cells, whereas both SOX17 and SOX7 are coexpressed in PE cells, by at least 10.5 days postconception. The Sox17-null conceptus, but not the Sox7-null one, showed the ectopic appearance of squamous VE-like epithelial cells in the presumptive ME region, together with reduced cell density and aberrant morphology of PE cells. Such aberrant ME formation in the Sox17-null extraembryonic endoderm was not rescued by the chimeric embryo replaced with the wild-type gut endoderm by the injection of wild-type ES cells into the Sox17-null blastocyst, suggesting the cell autonomous defects in the extraembryonic endoderm of Sox17-null concepti. These findings provide direct evidence of the crucial roles of SOX17 in proper formation and maintenance of the ME region, highlighting a novel entry point to understand the in vivo VE-to-PE transition in the marginal edge of developing placenta.


Assuntos
Desenvolvimento Embrionário/fisiologia , Endoderma/fisiologia , Proteínas HMGB/fisiologia , Placentação/fisiologia , Fatores de Transcrição SOXF/fisiologia , Saco Vitelino/fisiologia , Animais , Proliferação de Células , Feminino , Expressão Gênica , Genótipo , Proteínas HMGB/deficiência , Proteínas HMGB/genética , Masculino , Camundongos , Camundongos Knockout , Gravidez , Fatores de Transcrição SOXF/deficiência , Fatores de Transcrição SOXF/genética
4.
J Anat ; 232(1): 134-145, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29023691

RESUMO

The gallbladder is the hepatobiliary organ for storing and secreting bile fluid, and is a synapomorphy of extant vertebrates. However, this organ has been frequently lost in several lineages of birds and mammals, including rodents. Although it is known as the traditional problem, the differences in development between animals with and without gallbladders are not well understood. To address this research gap, we compared the anatomy and development of the hepatobiliary systems in mice (gallbladder is present) and rats (gallbladder is absent). Anatomically, almost all parts of the hepatobiliary system of rats are topographically the same as those of mice, but rats have lost the gallbladder and cystic duct completely. During morphogenesis, the gallbladder-cystic duct domain (Gb-Cd domain) and its primordium, the biliary bud, do not develop in the rat. In the early stages, SOX17, a master regulator of gallbladder formation, is positive in the murine biliary bud epithelium, as seen in other vertebrates with a gallbladder, but there is no SOX17-positive domain in the rat hepatobiliary primordia. These findings suggest that the evolutionary loss of the Gb-Cd domain should be translated simply as the absence of a biliary bud at an early stage, which may correlate with alterations in regulatory genes, such as Sox17, in the rat. A SOX17-positive biliary bud is clearly definable as a developmental module that may be involved in the frequent loss of gallbladder in mammals.


Assuntos
Ductos Biliares Extra-Hepáticos/anatomia & histologia , Vesícula Biliar/anatomia & histologia , Camundongos/anatomia & histologia , Ratos/anatomia & histologia , Animais , Camundongos Endogâmicos C57BL , Morfogênese , Ratos Sprague-Dawley
5.
Mol Reprod Dev ; 85(3): 262-270, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29393534

RESUMO

In mouse testes, Sertoli cells support the continuous process of spermatogenesis, which is dependent on seminiferous epithelial cycles along the longitudinal axis of the seminiferous tubule. Sertoli cell function is modulated partly by local cytokines and/or growth factors derived from adjacent tissues such as blood vessels, macrophages, rete testis, etc. However, the spatial activation patterns by local signals in vivo remain unclear. In this study, we focused on Signal Transducers and Activators of Transcription (STAT) signaling in Sertoli cells, because STAT is a major crucial cytokine transducer for somatic cyst cell regulation in Drosophila testis niches. In mouse testes, STAT3 was ubiquitously expressed in Sertoli cells throughout the seminiferous tubules. Phosphorylated STAT3 (p-STAT3) was predominantly observed in the Sertoli cells within the valve-like structure adjacent to the rete testis (i.e., the Sertoli valve [SV]) in the terminal segment of the proximal seminiferous tubules. In the distal seminiferous tubules with active spermatogenesis, most Sertoli cells were negative for anti-p-STAT3 staining. Albeit rarely, a small patch of several p-STAT3-positive Sertoli cells was detected frequently in seminiferous epithelial cycle stages I-VI. Such p-STAT3-positive ratios in the convoluted seminiferous epithelia were significantly increased in germ cell-less testes than in the wild-type testes, but with considerably lower ratios than in the SV region. These findings imply that regionally distinct patterns of STAT3 phosphorylation in the Sertoli cells depend on either location or spermatogenic activity in normal healthy testes in vivo, highlighting a novel entry point to understanding STAT signaling in mammalian spermatogenesis.


Assuntos
Fator de Transcrição STAT3/metabolismo , Epitélio Seminífero/metabolismo , Células de Sertoli/metabolismo , Espermatogênese/fisiologia , Testículo/metabolismo , Animais , Masculino , Camundongos , Especificidade de Órgãos , Fosforilação
6.
J Reprod Dev ; 64(3): 283-287, 2018 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-29657232

RESUMO

Mammalian zygote-mediated genome editing via the clustered regularly interspaced short palindromic repeats/CRISPR-associated endonuclease 9 (CRISPR/Cas9) system is widely used to generate genome-modified animals. This system allows for the production of loss-of-function mutations in various Y chromosome genes, including Sry, in mice. Here, we report the establishment of a CRISPR-Cas9-mediated knock-in line of Flag-tag sequences into the Sry locus at the C-terminal coding end of the Y chromosome (YSry-flag). In the F1 and successive generations, all male pups carrying the YSry-flag chromosome had normal testis differentiation and proper spermatogenesis at maturity, enabling complete fertility and the production of viable offspring. To our knowledge, this study is the first to produce a stable Sry knock-in line at the C-terminal region, highlighting a novel approach for examining the significance of amino acid changes at the naive Sry locus in mammals.


Assuntos
Sistemas CRISPR-Cas , Genes sry , Proteína da Região Y Determinante do Sexo/genética , Animais , Edição de Genes , Masculino , Camundongos , Testículo/metabolismo
7.
Reproduction ; 154(2): 135-143, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28559472

RESUMO

USP9X (ubiquitin-specific peptidase 9, X chromosome) is the mammalian orthologue of Drosophila deubiquitinase fat facets that was previously shown to regulate the maintenance of the germ cell lineage partially through stabilizing Vasa, one of the widely conserved factors crucial for gametogenesis. Here, we demonstrate that USP9X is expressed in the gonocytes and spermatogonia in mouse testes from newborn to adult stages. By using Vasa-Cre mice, germ cell-specific conditional deletion of Usp9x from the embryonic stage showed no abnormality in the developing testes by 1 week and no appreciable defects in the undifferentiated and differentiating spermatogonia at postnatal and adult stages. Interestingly, after 2 weeks, Usp9x-null spermatogenic cells underwent apoptotic cell death at the early spermatocyte stage, and then, caused subsequent aberrant spermiogenesis, which resulted in a complete infertility of Usp9x conditional knockout male mice. These data provide the first evidence of the crucial role of the spermatogonial USP9X during transition from the mitotic to meiotic phases and/or maintenance of early meiotic phase in Usp9x conditional knockout testes.


Assuntos
Endopeptidases/metabolismo , Fertilidade , Infertilidade Masculina/enzimologia , Espermatogênese , Espermatogônias/enzimologia , Testículo/enzimologia , Fatores Etários , Animais , Apoptose , Endopeptidases/deficiência , Endopeptidases/genética , Genótipo , Infertilidade Masculina/genética , Infertilidade Masculina/fisiopatologia , Masculino , Meiose , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fenótipo , Transdução de Sinais , Espermatogônias/patologia , Testículo/patologia , Testículo/fisiopatologia , Ubiquitina Tiolesterase
8.
J Reprod Dev ; 63(3): 333-338, 2017 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-28392504

RESUMO

In mouse ovaries, the first wave of folliculogenesis perinatally starts near the medullary region, which directs the initial round of follicular growth soon after birth. At the same time, cortical primordial follicles start forming in the ovarian surface region, and then some are cyclically recruited for the second and subsequent rounds of follicular growth. Recent studies suggest different dynamics between the first and subsequent waves of follicular growth in postnatal ovaries. However, the phenotypic differences between these phases remain unclear. Here, we show direct evidence that XO female mice, a murine model for Turner Syndrome, lack the first wave of folliculogenesis. Our histopathological analyses of XX and XO littermates revealed a lack of anti-Müllerian hormone (AMH)-positive primary follicles in the XO ovaries by 4 days post partum (dpp). This loss of first follicles was also confirmed by histological bioassay for SRY-dependent SOX9 inducibility, a specific marker for the first follicular granulosa cells. In contrast, cortical primordial follicles formed properly in XO ovaries, and some of them formed primary and secondary follicles in the subcortical region by 7 dpp. They rapidly developed into late antral follicles, showing similarities to XX littermate ovaries by 21 dpp. These results suggest distinct X-monosomy effects between the first and subsequent waves of follicular growth, highlighting the high susceptibility to elimination of XO oocytes in the first wave of mammalian folliculogenesis.


Assuntos
Ovário/fisiopatologia , Síndrome de Turner/fisiopatologia , Animais , Modelos Animais de Doenças , Feminino , Proteína Forkhead Box L2/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos ICR , Camundongos Transgênicos , Ovário/metabolismo , Ovário/patologia , Fatores de Transcrição SOX9/metabolismo , Síndrome de Turner/patologia
9.
Biochem Biophys Res Commun ; 476(4): 546-552, 2016 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-27255992

RESUMO

In mouse testes, spermatogonial stem cells (SSCs), a subpopulation of GFRα1 (GDNF family receptor-α1)-positive spermatogonia, are widely distributed along the convoluted seminiferous tubules. The proliferation and differentiation of the SSCs are regulated in part by local expression of GDNF (glial cell-derived neurotorphic factor), one of major niche factors for SSCs. However, the in vivo dynamics of the GDNF-stimulated GFRα1-positive spermatogonia remains unclear. Here, we developed a simple method for transplanting DiI-labeled and GDNF-soaked beads into the mouse testicular interstitium. By using this method, we examined the dynamics of GFRα1-positive spermatogonia in the tubular walls close to the transplanted GDNF-soaked beads. The bead-derived GDNF signals were able to induce the stratified aggregate formation of GFRα1-positive undifferentiated spermatogonia by day 3 post-transplantation. Each aggregate consisted of tightly compacted Asingle and marginal Apaired-Aaligned GFRα1-positive spermatogonia and was surrounded by Aaligned GFRα1-negative spermatogonia at more advanced stages. These data not only provide in vivo evidence for the inductive roles of GDNF in forming a rapid aggregation of GFRα1-positive spermatogonia but also indicate the usefulness of this in vivo assay system of various growth factors for the stem/progenitor spermatogonia in mammalian spermatogenesis.


Assuntos
Receptores de Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Espermatogônias/metabolismo , Animais , Agregação Celular/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Implantes de Medicamento/administração & dosagem , Fator Neurotrófico Derivado de Linhagem de Célula Glial/administração & dosagem , Receptores de Fator Neurotrófico Derivado de Linhagem de Célula Glial/genética , Masculino , Camundongos , Camundongos Endogâmicos ICR , Camundongos Transgênicos , Transdução de Sinais , Espermatogênese/efeitos dos fármacos , Espermatogênese/fisiologia , Espermatogônias/efeitos dos fármacos , Nicho de Células-Tronco/efeitos dos fármacos , Testículo/citologia , Testículo/efeitos dos fármacos , Testículo/metabolismo
10.
Development ; 140(3): 639-48, 2013 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-23293295

RESUMO

Congenital biliary atresia is an incurable disease of newborn infants, of unknown genetic causes, that results in congenital deformation of the gallbladder and biliary duct system. Here, we show that during mouse organogenesis, insufficient SOX17 expression in the gallbladder and bile duct epithelia results in congenital biliary atresia and subsequent acute 'embryonic hepatitis', leading to perinatal death in ~95% of the Sox17 heterozygote neonates in C57BL/6 (B6) background mice. During gallbladder and bile duct development, Sox17 was expressed at the distal edge of the gallbladder primordium. In the Sox17(+/-) B6 embryos, gallbladder epithelia were hypoplastic, and some were detached from the luminal wall, leading to bile duct stenosis or atresia. The shredding of the gallbladder epithelia is probably caused by cell-autonomous defects in proliferation and maintenance of the Sox17(+/-) gallbladder/bile duct epithelia. Our results suggest that Sox17 plays a dosage-dependent function in the morphogenesis and maturation of gallbladder and bile duct epithelia during the late-organogenic stages, highlighting a novel entry point to the understanding of the etiology and pathogenesis of human congenital biliary atresia.


Assuntos
Atresia Biliar/genética , Regulação da Expressão Gênica no Desenvolvimento , Proteínas HMGB/metabolismo , Haploinsuficiência , Fatores de Transcrição SOXF/metabolismo , Animais , Animais Recém-Nascidos , Ductos Biliares/metabolismo , Ductos Biliares/patologia , Atresia Biliar/patologia , Proliferação de Células , Colestase/genética , Colestase/patologia , Embrião de Mamíferos/metabolismo , Embrião de Mamíferos/patologia , Estresse do Retículo Endoplasmático , Epitélio/metabolismo , Epitélio/patologia , Feminino , Vesícula Biliar/metabolismo , Vesícula Biliar/ultraestrutura , Proteínas HMGB/genética , Hepatite Animal/genética , Hepatite Animal/metabolismo , Hepatite Animal/patologia , Hepatócitos/metabolismo , Heterozigoto , Imuno-Histoquímica , Fígado/metabolismo , Fígado/ultraestrutura , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos ICR , Gravidez , Fatores de Transcrição SOXF/genética , Fatores de Tempo
11.
Stem Cells ; 33(9): 2811-24, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26013732

RESUMO

In invertebrate species such as flies and nematodes, germline stem cells are maintained in a niche environment, which is restricted to the terminal end of the tubular structure in the gonads. In mice, spermatogonial stem cells (SSCs), a subpopulation of Asingle GFRα1 (glial cell line-derived neurotrophic factor [GDNF] family receptor-α1)-positive spermatogonia, are widely distributed along the longitudinal axis in the convoluted seminiferous tubules, preferentially juxtaposed to the interstitial vasculature. However, whether this area is the only SSC niche is not known. In this study, we identified a valve-like terminal segment of the seminiferous tubules, the Sertoli valve (SV), adjacent to the rete testis as another niche for GFRα1-positive spermatogonia in hamsters. Here, we show that the SV epithelium is composed of the modified Sertoli cells that are still capable of proliferation and missing most spermatogenic activities in the adult stage. The SV epithelium constitutively expresses GDNF, a major niche factor for SSCs, and supports the stable proliferation and selective maintenance of an Asingle subpopulation of GFRα1-positive spermatogonia in hamsters. The SV region of hamster seminiferous tubules has features that are similar to the stem cell niche in invertebrate gonads. Therefore, we propose that the SV may be a novel niche for Asingle GFRá1-positive spermatogonia potentially including a SSC population, at the terminal segments of the seminiferous tubules in hamsters.


Assuntos
Receptores de Fator Neurotrófico Derivado de Linhagem de Célula Glial/análise , Túbulos Seminíferos/química , Túbulos Seminíferos/citologia , Espermatogônias/química , Nicho de Células-Tronco , Animais , Cricetinae , Masculino , Mesocricetus , Camundongos Endogâmicos ICR , Túbulos Seminíferos/fisiologia , Espermatogônias/fisiologia , Nicho de Células-Tronco/fisiologia , Testículo/química , Testículo/citologia , Testículo/fisiologia
12.
J Cell Sci ; 126(Pt 13): 2834-44, 2013 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-23613466

RESUMO

In mammalian sex determination, SRY directly upregulates the expression of SOX9, the master regulatory transcription factor in Sertoli cell differentiation, leading to testis formation. Without SRY action, the bipotential gonadal cells become pre-granulosa cells, which results in ovarian follicle development. When, where and how pre-granulosa cells are determined to differentiate into developing ovaries, however, remains unclear. By monitoring SRY-dependent SOX9 inducibility (SDSI) in an Sry-inducible mouse system, we were able to identify spatiotemporal changes in the sexual bipotentiality/plasticity of ovarian somatic cells throughout life. The early pre-granulosa cells maintain the SDSI until 11.5 d.p.c., after which most pre-granulosa cells rapidly lose this ability by 12.0 d.p.c. Unexpectedly, we found a subpopulation of the pre-granulosa cells near the mesonephric tissue that continuously retains SDSI throughout fetal and early postnatal stages. After birth, these SDSI-positive pre-granulosa cells contribute to the initial round of folliculogenesis by the secondary follicle stage. In experimental sex reversal of 13.5-d.p.c. ovaries grafted into adult male nude mice, the differentiated granulosa cells re-acquire the SDSI before other signs of masculinization. Our data provide direct evidence of an unexpectedly high sexual heterogeneity of granulosa cells in developing mouse ovaries in a stage- and region-specific manner. Discovery of such sexually bipotential granulosa cells provides a novel entry point to the understanding of masculinization in various cases of XX disorders of sexual development in mammalian ovaries.


Assuntos
Células da Granulosa/metabolismo , Ovário/metabolismo , Fatores de Transcrição SOX9/genética , Diferenciação Sexual/genética , Proteína da Região Y Determinante do Sexo/genética , Fatores Etários , Animais , Feminino , Feto , Regulação da Expressão Gênica no Desenvolvimento , Células da Granulosa/citologia , Masculino , Camundongos , Camundongos Nus , Ovário/citologia , Ovário/crescimento & desenvolvimento , Ovário/transplante , Fatores de Transcrição SOX9/metabolismo , Processos de Determinação Sexual/genética , Proteína da Região Y Determinante do Sexo/metabolismo
13.
Reproduction ; 148(6): H1-9, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25212783

RESUMO

Cell ablation technology is useful for studying specific cell lineages in a developing organ in vivo. Herein, we established a novel anti-Müllerian hormone (AMH)-toxin receptor-mediated cell knockout (Treck) mouse line, in which the diphtheria toxin (DT) receptor was specifically activated in Sertoli and granulosa cells in postnatal testes and ovaries respectively. In the postnatal testes of Amh-Treck transgenic (Tg) male mice, DT injection induced a specific loss of the Sertoli cells in a dose-dependent manner, as well as the specific degeneration of granulosa cells in the primary and secondary follicles caused by DT injection in Tg females. In the testes with depletion of Sertoli cell, germ cells appeared to survive for only several days after DT treatment and rapidly underwent cell degeneration, which led to the accumulation of a large amount of cell debris within the seminiferous tubules by day 10 after DT treatment. Transplantation of exogenous healthy Sertoli cells following DT treatment rescued the germ cell loss in the transplantation sites of the seminiferous epithelia, leading to a partial recovery of the spermatogenesis. These results provide not only in vivo evidence of the crucial role of Sertoli cells in the maintenance of germ cells, but also show that the Amh-Treck Tg line is a useful in vivo model of the function of the supporting cell lineage in developing mammalian gonads.


Assuntos
Hormônio Antimülleriano/genética , Toxina Diftérica/farmacologia , Células da Granulosa/efeitos dos fármacos , Fator de Crescimento Semelhante a EGF de Ligação à Heparina/genética , Ovário/citologia , Células de Sertoli/efeitos dos fármacos , Testículo/citologia , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular , Linhagem da Célula , Sobrevivência Celular/efeitos dos fármacos , Transplante de Células , Relação Dose-Resposta a Droga , Feminino , Células da Granulosa/citologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos ICR , Camundongos Knockout , Camundongos Transgênicos , Modelos Animais , Células de Sertoli/citologia , Espermatogênese/fisiologia
14.
Development ; 137(2): 303-12, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20040496

RESUMO

In mouse embryogenesis, Sry is transiently activated in a center-to-pole wavelike manner along the anteroposterior (AP) axis of developing XY gonads. However, the mechanism and significance of the center-to-pole expansion of testis initiation pathways downstream of Sry expression remain unclear. Here we demonstrate that FGF9 can act as a diffusible conductor for a poleward expansion of tubulogenic programs at early phases of testis differentiation. In XY genital ridge cultures of anterior, middle and posterior segments at 11.0-11.25 days post-coitum, male-specific activation of Sry and its target gene, Sox9, was still observed in both anterior and posterior pole segments despite their isolation from the central domain. However, high-level Sox9 expression was not maintained, resulting in the failure of testis cord organization in most pole segments. A reconstruction experiment using ROSA:lacZ middle segments showed rescue of the tubulogenic defect in the poles without any appreciable contribution of lacZ-positive gonadal parenchyma cells. A partition culture assay also showed a possible contribution of soluble/diffusible factors secreted from the gonadal center domain to proper tubulogenesis in the poles. Among various signaling factors, Fgf9 expression was significantly lower in both anterior and posterior pole segments than in the central domain. The supportive role of the central domain could be substituted by exogenous FGF9 supply, whereas reduction of Wnt4 activity did not rescue the tubulogenesis defect in the pole segments. These observations imply that center-to-pole FGF9 diffusion directs a poleward expansion of testiculogenic programs along the AP axis of developing XY gonads.


Assuntos
Diferenciação Celular/fisiologia , Fator 9 de Crescimento de Fibroblastos/metabolismo , Transdução de Sinais/fisiologia , Testículo/embriologia , Animais , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Desenvolvimento Embrionário/efeitos dos fármacos , Desenvolvimento Embrionário/genética , Feminino , Fator 9 de Crescimento de Fibroblastos/genética , Fator 9 de Crescimento de Fibroblastos/farmacologia , Fatores de Crescimento de Fibroblastos/genética , Fatores de Crescimento de Fibroblastos/metabolismo , Fatores de Crescimento de Fibroblastos/farmacologia , Imuno-Histoquímica , Hibridização In Situ , Masculino , Camundongos , Técnicas de Cultura de Órgãos , Gravidez , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Transcrição SOX9/genética , Fatores de Transcrição SOX9/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Testículo/citologia , Proteínas Wnt/genética , Proteínas Wnt/metabolismo , Proteína Wnt4
15.
Dev Dyn ; 241(8): 1374-84, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22745058

RESUMO

BACKGROUND: The spermatogonial transplantation experiment can be used as an unequivocal detection assay of spermatogenic stem cells (SSCs) in both a qualitative and quantitative manner, based on their regenerative capacity. In this study, the proliferative patterns and kinetics of donor-derived GFRα1-positive spermatogonia containing potential SSCs were examined during early colonization following spermatogonial transplantation. RESULTS: Donor-derived GFRα1-positive cells frequently formed several aggregates of A(al(aligned)) /morula-like structures in a single spermatogenic cell patch before and on day 14 post-transplant, indicating a possible involvement in the formation of a stable spermatogenic colony at 21 days post-transplant. The appearance of these A(al) /morula-like aggregates is positively correlated with regional, high-level expression of immunoreactive GDNF signals, a ligand for GFRα1, associated with colony expansion. CONCLUSIONS: These data raise the hypothesis that regional GDNF signals regulate the balance between donor-derived A(al) -like cell aggregates and their differentiation in each small patch, which subsequently leads to further selection of survival colonies at later stages.


Assuntos
Receptores de Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Espermatogônias/metabolismo , Testículo/metabolismo , Animais , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Receptores de Fator Neurotrófico Derivado de Linhagem de Célula Glial/genética , Imuno-Histoquímica , Masculino , Camundongos , Espermatogônias/transplante
16.
J Reprod Dev ; 58(6): 654-60, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22813600

RESUMO

During mammalian sex determination of XY fetuses, SRY induces SOX9 in Sertoli cells, resulting in formation of testes with seminiferous tubules, interstitial Leydig cells and peritubular myoid cells. Meanwhile XX fetuses without SRY develop ovaries. In cattle, most XX heifers born with a male twin, so-called freemartins, develop nonfunctioning ovaries and genitalia with an intersex phenotype. Interestingly, freemartins sometimes develop highly masculinized gonads with seminiferous tubule-like structures despite the absence of SRY. However, in these cases, the degree of masculinization in each gonadal somatic cell type is unclear. Here, we report a rare case of a freemartin Japanese black calf with almost complete XX sexreversal. Gross anatomical analysis of this calf revealed the presence of a pair of small testis-like gonads with rudimentary epididymides, in addition to highly masculinized genitalia including a pampiniform plexus, scrotum and vesicular gland. Histological and immunohistochemical analyses of these masculinized gonads revealed well-defined seminiferous tubule-like structures throughout the whole gonadal parenchyma. In epithelia of these tubules, SOX9-positive supporting cells (i.e., Sertoli cells) were found to be arranged regularly along the bases of tubules, and they were also positive for GDNF, one of the major factors for spermatogenesis. 3ß-HSD-positive cells (i.e., Leydig cells) and SMA-positive peritubular myoid cells were also identified around tubules. Therefore, for the first time, we found the transdifferentiation of ovarian somatic cells into all testicular somatic cell types in the XX freemartin gonads. These data strongly support the idea of a high sexual plasticity in the ovarian somatic cells of mammalian gonads.


Assuntos
Transdiferenciação Celular , Freemartinismo/patologia , Gônadas/patologia , 3-Hidroxiesteroide Desidrogenases/metabolismo , Animais , Bovinos , Células Epiteliais/metabolismo , Feminino , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Gônadas/metabolismo , Masculino , Fatores de Transcrição SOX9/metabolismo , Fator Esteroidogênico 1/metabolismo
17.
Anat Histol Embryol ; 50(2): 417-421, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33105047

RESUMO

The postnatal testicular development and actin distribution in the seminiferous epithelium were examined by light microscopy, using the testes of the Habu (Trimeresurus flavoviridis; snake) from 0-year-old to 3-year-old. At 0-year-old (about 1 month after birth), the testis was quite small in size, and the seminiferous epithelium was composed of only Sertoli cells and large spermatogonia. Actin immunoreactivity was observed in the peritubular myoid cells, but could not be detected in the seminiferous epithelium. At 1-year-old (about 10 months after birth), the testicular size increased to a great degree. In the seminiferous epithelium, spermatocytes newly appeared. Actin could still not be detected in the seminiferous epithelium. At 2-year-old (about 1 year and 10 months after birth), the testes continued to develop in size. In the seminiferous epithelium, elongate spermatids and round spermatids were frequently seen, in addition to Sertoli cells, spermatogonia and spermatocytes. Thus, active spermatogenesis was clearly recognized at this age. Moreover, the actin distribution in the seminiferous epithelium was observed at the site between Sertoli cells and spermatids, as well as that at adult stage. The immunoreactivity of actin in the peritubular myoid cells gradually increased from 0-year-old to 2-year-old. Conclusively, it seems likely that spermatogenesis in the Habu initiates at 2-year-old, accompanying with the appearance of actin in the seminiferous epithelium.


Assuntos
Epitélio Seminífero , Trimeresurus , Actinas , Animais , Masculino , Células de Sertoli , Espermátides , Espermatogênese , Testículo
18.
Sci Rep ; 11(1): 1110, 2021 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-33441739

RESUMO

In mammalian testes, undifferentiated spermatogonia (Aundiff) undergo differentiation in response to retinoic acid (RA), while their progenitor states are partially maintained by fibroblast growth factors (FGFs). Sertoli valve (SV) is a region located at the terminal end of seminiferous tubule (ST) adjacent to the rete testis (RT), where the high density of Aundiff is constitutively maintained with the absence of active spermatogenesis. However, the molecular and cellular characteristics of SV epithelia still remain unclear. In this study, we first identified the region-specific AKT phosphorylation in the SV Sertoli cells and demonstrated non-cell autonomous specialization of Sertoli cells in the SV region by performing a Sertoli cell ablation/replacement experiment. The expression of Fgf9 was detected in the RT epithelia, while the exogenous administration of FGF9 caused ectopic AKT phosphorylation in the Sertoli cells of convoluted ST. Furthermore, we revealed the SV region-specific expression of Cyp26a1, which encodes an RA-degrading enzyme, and demonstrated that the increased RA levels in the SV region disrupt its pool of Aundiff by inducing their differentiation. Taken together, RT-derived FGFs and low levels of RA signaling contribute to the non-cell-autonomous regionalization of the SV epithelia and its local maintenance of Aundiff in the SV region.


Assuntos
Túbulos Seminíferos/metabolismo , Células de Sertoli/metabolismo , Tretinoína/metabolismo , Animais , Diferenciação Celular , Epitélio/fisiologia , Fatores de Crescimento de Fibroblastos/genética , Fatores de Crescimento de Fibroblastos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-kit/análise , Regeneração , Ácido Retinoico 4 Hidroxilase/genética , Ácido Retinoico 4 Hidroxilase/metabolismo , Túbulos Seminíferos/efeitos dos fármacos , Túbulos Seminíferos/crescimento & desenvolvimento , Células de Sertoli/fisiologia , Células de Sertoli/transplante , Transdução de Sinais , Espermatogênese , Tretinoína/farmacologia , Regulação para Cima
19.
Dev Biol ; 330(2): 427-39, 2009 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-19371732

RESUMO

During mouse gastrulation, primordial germ cells (PGCs) become clustered at the base of the allantois and move caudally into the hindgut endoderm before entering the genital ridges. The precise roles of endoderm tissues in PGC migration, however, remain unclear. By using Sox17 mutants with a specific endoderm deficiency, we provide direct evidence for the crucial role of hindgut expansion in directing proper PGC migration. In Sox17-null embryos, PGCs normally colonize in the allantois and then a small front-row population of PGCs moves properly into the most posterior gut endoderm. Defective hindgut expansion, however, causes the failure of further lateral PGC movement, resulting in the immobilization of PGCs in the hindgut entrance at the later stages. In contrast, the majority of the remaining PGCs moves into the visceral endoderm layer, but relocate outside of the embryonic gut domain. This leads to a scattering of PGCs in the extraembryonic yolk sac endoderm. This aberrant migration of Sox17-null PGCs can be rescued by the supply of wildtype hindgut cells in chimeric embryos. Therefore, these data indicate that hindgut morphogenic movement is crucial for directing PGC movement toward the embryonic gut side, but not for their relocation from the mesoderm into the endoderm.


Assuntos
Movimento Celular , Embrião de Mamíferos/citologia , Desenvolvimento Embrionário , Células Germinativas/citologia , Animais , Metilação de DNA , Epigênese Genética , Proteínas HMGB/genética , Imuno-Histoquímica , Hibridização In Situ , Camundongos , Camundongos Endogâmicos ICR , Microscopia Eletrônica de Transmissão , Fatores de Transcrição SOXF/genética
20.
Biochem Biophys Res Commun ; 391(1): 357-63, 2010 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-19913509

RESUMO

In early-organogenesis-stage mouse embryos, the posteroventral foregut endoderm adjacent to the heart tube gives rise to liver, ventral pancreas and gallbladder. Hepatic and pancreatic primordia become specified in the posterior segment of the ventral foregut endoderm at early somite stages. The mechanisms for demarcating gallbladder and bile duct primordium, however, are poorly understood. Here, we demonstrate that the gallbladder and bile duct progenitors are specified in the paired lateral endoderm domains outside the heart field at almost the same timing as hepatic and pancreatic induction. In the anterior definitive endoderm, Sox17 reactivation occurs in a certain population within the most lateral domains posterolateral to the anterior intestinal portal (AIP) lip on both the left and right sides. During foregut formation, the paired Sox17-positive domains expand ventromedially to merge in the midline of the AIP lip and become localized between the liver and pancreatic primordia. In Sox17-null embryos, these lateral domains are missing, resulting in a complete loss of the gallbladder/bile-duct structure. Chimera analyses revealed that Sox17-null endoderm cells in the posteroventral foregut do not display any gallbladder/bile-duct molecular characters. Our findings show that Sox17 functions cell-autonomously to specify gallbladder/bile-duct in the mouse embryo.


Assuntos
Ductos Biliares/embriologia , Vesícula Biliar/embriologia , Proteínas HMGB/fisiologia , Intestinos/embriologia , Morfogênese , Fatores de Transcrição SOXF/fisiologia , Animais , Ductos Biliares/anormalidades , Ductos Biliares/metabolismo , Padronização Corporal , Embrião de Mamíferos/metabolismo , Endoderma/metabolismo , Feminino , Vesícula Biliar/anormalidades , Vesícula Biliar/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Proteínas HMGB/genética , Mucosa Intestinal/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Fatores de Transcrição SOXF/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA