Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
J Am Chem Soc ; 146(1): 181-186, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38153046

RESUMO

High-entropy oxide nanoparticles (HEO NPs) have been intensively studied because of their attractive properties, such as high stability and enhanced catalytic activity. In this work, for the first time, denary HEO NPs were successfully synthesized using a continuous supercritical hydrothermal flow process without calcination. Interestingly, this process allows the formation of HEO NPs on the order of seconds at a relatively lower temperature. The synthesized HEO NPs contained 10 metal elements, La, Ca, Sr, Ba, Fe, Mn, Co, Ru, Pd, and Ir, and had a perovskite-type structure. Atomic-resolution high-angle annular dark-field scanning transmission electron microscopy and energy-dispersive X-ray spectroscopy measurements revealed homogeneous dispersion of the 10 metal elements. The obtained HEO NPs also exhibited a higher catalytic activity for the CO oxidation reaction than that of the LaFeO3 NPs.

2.
J Am Chem Soc ; 145(31): 17136-17142, 2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37471524

RESUMO

Multielement alloy nanoparticles have attracted much attention due to their attractive catalytic properties derived from the multiple interactions of adjacent multielement atoms. However, mixing multiple elements in ultrasmall nanoparticles from a wide range of elements on the periodic table is still challenging because the elements have different properties and miscibility. Herein, we developed a benchtop 4-way flow reactor for chemical synthesis of ultra-multielement alloy (UMEA) nanoparticles composed of d-block and p-block elements. BiCoCuFeGaInIrNiPdPtRhRuSbSnTi 15-element alloy nanoparticles composed of group IV to XV elements were synthesized by sequential injection of metal precursors using the reactor. This methodology realized the formation of UMEA nanoparticles at low temperature (66 °C), resulting in a 1.9 nm ultrasmall average particle size. The UMEA nanoparticles have high durability and activity for electrochemical alcohol oxidation reactions and high tolerance to CO poisoning. These results suggest that the multiple interactions of UMEA efficiently promote the multistep alcohol oxidation reaction.

3.
J Am Chem Soc ; 145(44): 24005-24011, 2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-37883673

RESUMO

Technetium (Tc), atomic number 43, is an element that humans cannot freely use even in the 21st century because Tc is radioactive and has no stable isotope. In this report, we present molybdenum-ruthenium-carbon solid-solution alloy (MoxRu1-xCy) nanoparticles (NPs) that are expected to have an electronic structure similar to that of technetium carbide (TcCy). MoxRu1-xCy NPs were synthesized by annealing under a helium/hydrogen atmosphere following thermal decomposition of metal precursors. The obtained NPs had a solid-solution structure in the whole composition range. MoxRu1-xCy with a cubic structure (down to 30 atom % Mo in the metal ratio) showed a superconducting state, and the transition temperature (Tc) increased with increasing Mo composition. The continuous change in Tc across that of TcCy indicates the continuous control of the electronic structure by solid-solution alloying, leading to pseudo-TcCy. Density functional theory calculations indicated that the synthesized Mo0.53Ru0.47C0.41 has a similar electronic structure to TcC0.41.

4.
J Am Chem Soc ; 144(9): 4224-4232, 2022 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-35196005

RESUMO

The crystal structure significantly affects the physical and chemical properties of solids. However, the crystal structure-dependent properties of alloys are rarely studied because controlling the crystal structure of an alloy at the same composition is extremely difficult. Here, for the first time, we successfully demonstrate the synthesis of binary Ru-Pt (Ru/Pt = 7:3) and Ru-Ir (Ru/Ir = 7:3) and ternary Ru-Ir-Pt (Ru/Ir/Pt = 7:1.5:1.5) solid-solution alloy nanoparticles (NPs) with well-controlled hexagonal close-packed (hcp) and face-centered cubic (fcc) phases, through the chemical reduction method. The crystal structure control is realized by precisely tunning the reduction speeds of the metal precursors. The effect of the crystal structure on the catalytic performance of solid-solution alloy NPs is systematically investigated. Impressively, all the hcp alloy NPs show superior electrocatalytic activities for the hydrogen evolution reaction in alkaline solution compared with the fcc alloy NPs. In particular, hcp-RuIrPt exhibits extremely high intrinsic (mass) activity, which is 3.1 (3.2) and 6.7 (6.9) times enhanced compared to that of fcc-RuIrPt and commercial Pt/C.

5.
J Am Chem Soc ; 144(26): 11525-11529, 2022 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-35749353

RESUMO

High-entropy alloy nanoparticles (HEA NPs) emerged as catalysts with superior performances that are not shown in monometallic catalysts. Although many kinds of synthesis techniques of HEA NPs have been developed recently, synthesizing HEA NPs with ultrasmall particle size and narrow size distribution remains challenging because most of the reported synthesis methods require high temperatures that accelerate particle growth. This work provides a new methodology for the fabrication of ultrasmall and homogeneous HEA NPs using a continuous-flow reactor with a liquid-phase reduction method. We successfully synthesized ultrasmall IrPdPtRhRu HEA NPs (1.32 ± 0.41 nm), theoretically each consisting of approximately 50 atoms. This average size is the smallest ever reported for HEA NPs. All five elements are homogeneously mixed at the atomic level in each particle. The obtained HEA NPs marked a significantly high hydrogen evolution reaction (HER) activity with a very small 6 mV overpotential at 10 mA/cm-2 in acid, which is one-third of the overpotential of commercial Pt/C. In addition, although mass production of HEA NPs is still difficult, this flow synthesis can provide high productivity with high reproducibility, which is more energy efficient and suitable for mass production. Therefore, this study reports the 1 nm-sized HEA NPs with remarkably high HER activity and establishes a platform for the production of ultrasmall and homogeneous HEA NPs.


Assuntos
Ligas , Nanopartículas , Catálise , Entropia , Reprodutibilidade dos Testes
6.
J Am Chem Soc ; 144(8): 3365-3369, 2022 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-35166532

RESUMO

The compositional space of high-entropy-alloy nanoparticles (HEA NPs) significantly expands the diversity of the materials library. Every atom in HEA NPs has a different elemental coordination environment, which requires knowledge of the local electronic structure at an atomic level. However, such structure has not been disclosed experimentally or theoretically. We synthesized HEA NPs composed of all eight noble-metal-group elements (NM-HEA) for the first time. Their electronic structure was revealed by hard X-ray photoelectron spectroscopy and density function theory calculations with NP models. The NM-HEA NPs have a lower degeneracy in energy level compared with the monometallic NPs, which is a common feature of HEA NPs. The local density of states (LDOS) of every surface atom was first revealed. Some atoms of the same constituent element in HEA NPs have different LDOS profiles, whereas atoms of other elements have similar LDOS profiles. In other words, one atom in HEA loses its elemental identity and it may be possible to create an ideal LDOS by adjusting the neighboring atoms. The tendency of the electronic structure change was shown by supervised learning. The NM-HEA NPs showed 10.8-times higher intrinsic activity for hydrogen evolution reaction than commercial Pt/C, which is one of the best catalysts.

7.
Angew Chem Int Ed Engl ; 61(48): e202209616, 2022 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-36100576

RESUMO

Multi-element nanoparticles (NPs) consisting of five or more elements have been increasingly studied in the past five years. Their emergence is taking materials science one step further because they exhibit superior properties to those of conventional NPs in a range of respects, including catalysis. This Review focuses on the recent progress in multi-element NPs regarding synthesis, especially with regard to chemical synthesis, characterization, and properties. We begin with a brief introduction of multi-element NPs and an overview of their synthesis methods. Then, we present representative examples of multi-element alloy NPs and ceramic NPs, including oxide NPs prepared by chemical syntheses. This Review intends to provide useful insights into the chemical methods that are used to synthesize multi-element NPs, and includes a discussion on the possibilities arising from their use in new functional materials.

8.
J Am Chem Soc ; 142(32): 13833-13838, 2020 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-32786816

RESUMO

The platinum-group metals (PGMs) are six neighboring elements in the periodic table of the elements. Each PGM can efficiently promote unique reactions, and therefore, alloying PGMs would create ideal catalysts for complex or multistep reactions that involve several reactants and intermediates. Thus, high-entropy-alloy (HEA) nanoparticles (NPs) of all six PGMs (denoted as PGM-HEA) having a great variety of adsorption sites on their surfaces could be ideal candidates to catalyze complex reactions. Here, we report for the first time PGM-HEA and demonstrate that PGM-HEA efficiently promotes the ethanol oxidation reaction (EOR) with complex 12-electron/12-proton transfer processes. PGM-HEA shows 2.5 (3.2), 6.1 (9.7), and 12.8 (3.4) times higher activity than the commercial Pd/C, Pd black and Pt/C catalysts in terms of intrinsic (mass) activity, respectively. Remarkably, it records more than 1.5 times higher mass activity than the most active catalyst to date. Our findings pave the way for promoting complex or multistep reactions that are seldom realized by mono- or bimetallic catalysts.

9.
J Am Chem Soc ; 142(41): 17250-17254, 2020 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-32997498

RESUMO

We report novel PtW solid-solution nanoparticles (NPs) produced through electrochemical cleaning of core/shell PtW@WO3 NPs. The resulting PtW NPs achieved a record hydrogen evolution reaction (HER) performance as a class of Pt-based solid-solution alloys. A current density of 10 mA cm-2 was reached with an overpotential of 19.4 mV, which is significantly lower than that of a commercial Pt catalyst (26.3 mV). The PtW NPs also exhibited long-term stability. Theoretical calculations revealed that negatively charged Pt atoms adjacent to a W atom provide favorable hydrogen adsorption energies for the HER, realizing significantly enhanced HER activity.

10.
J Am Chem Soc ; 142(3): 1247-1253, 2020 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-31750648

RESUMO

Transition metal carbides have attractive physical and chemical properties that are much different from their parent metals. Particularly, noble metal carbides are expected to be promising materials for a variety of applications, particularly as efficient catalysts. However, noble metal carbides have rarely been obtained because carbide phases do not appear in noble metal-carbon phase diagrams and a reasonable synthesis method to make noble metal carbides has not yet been established. Here, we propose a new synthesis method for noble metal carbides and describe the first synthesis of rhodium carbide using tetracyanoethylene (TCNE). The rhodium carbide was synthesized without extreme conditions, such as the very high temperature and/or pressure typically required in conventional carbide syntheses. Moreover, we investigated the electronic structure and catalytic activity for the hydrogen evolution reaction (HER). We found that rhodium carbide has much higher catalytic activity for HER than pure Rh. Our study provides a feasible strategy to create new metal carbides to help advance the field of materials science.

11.
Chemistry ; 26(23): 5105-5130, 2020 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-31863514

RESUMO

Platinum group metal (PGM) nanoparticles (NPs) have been investigated in a variety of research fields such as catalysis and electronics. Alloying has been recognized as one of the most efficient ways of improving or creating properties in metals. Among the types of alloys, solid-solution alloy NPs have the advantage of being capable of continuously changing their properties by tuning their composition. However, synthesizing PGM solid-solution alloy NPs with any combination and composition is not an easy task owing to the metallurgical aspects. In this minireview, the focus is on recent advances in PGM-based solid-solution alloy NPs, and in particular those with immiscible alloy systems. Concepts, synthesis, and properties of the alloy NPs are introduced, and the existing challenges and future perspectives are discussed.

12.
Chemphyschem ; 20(10): 1158-1176, 2019 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-30887646

RESUMO

One of the key issues for an upcoming hydrogen energy-based society is to develop highly efficient hydrogen-storage materials. Among the many hydrogen-storage materials reported, transition-metal hydrides can reversibly absorb and desorb hydrogen, and have thus attracted much interest from fundamental science to applications. In particular, the Pd-H system is a simple and classical metal-hydrogen system, providing a platform suitable for a thorough understanding of ways of controlling the hydrogen-storage properties of materials. By contrast, metal nanoparticles have been recently studied for hydrogen storage because of their unique properties and the degrees of freedom which cannot be observed in bulk, i. e., the size, shape, alloying, and surface coating. In this review, we overview the effects of such degrees of freedom on the hydrogen-storage properties of Pd-related nanomaterials, based on the fundamental science of bulk Pd-H. We shall show that sufficiently understanding the nature of the interaction between hydrogen and host materials enables us to control the hydrogen-storage properties though the electronic-structure control of materials.

13.
Phys Chem Chem Phys ; 20(22): 15183-15191, 2018 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-29789837

RESUMO

To unveil the origin of the hydrogen-storage properties of rhodium nanoparticles (Rh NPs), we investigated the electronic and crystal structures of the Rh NPs using various synchrotron based X-ray techniques. Electronic structure studies revealed that the hydrogen-storage capability of Rh NPs could be attributed to their more unoccupied d-DOSs than that of the bulk near the Fermi level. Crystal structure studies indicated that lattice distortion and mean-square displacement increase while coordination number decreases with decreasing particle size and the hydrogen-absorption capability of Rh NPs improves to a greater extent with increased structural disorder in the local structure than with that in the mean structure. The smallest Rh NPs, having the largest structural disorder/increased vacancy spaces and the smallest coordination number, exhibited excellent hydrogen-storage capacity. Finally, from the bond-orientational order analysis, we confirmed that the localized disordering is distributed more over the surface part than the core part and hydrogen can be trapped on the surface part of Rh NPs which increases with a decrease in NP diameter.

14.
Angew Chem Int Ed Engl ; 57(17): 4505-4509, 2018 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-29436095

RESUMO

For the first time, we synthesize solid-solution alloy nanoparticles of Ir and Cu with a size of ca. 2 nm, despite Ir and Cu being immiscible in the bulk up to their melting over the whole composition range. We performed a systematic characterization on the nature of the Irx Cu1-x solid-solution alloys using powder X-ray diffraction, scanning transmission electron microscopy coupled with energy-dispersive X-ray spectroscopy and X-ray photoelectron spectroscopy. The results showed that the Irx Cu1-x alloys had a face-centered-cubic structure; charge transfer from Cu to Ir occurred in the alloy nanoparticles, as the core-level Ir 4f peaks shifted to lower energy region with the increase in Cu content. Furthermore, we observed that the alloying of Ir with Cu enhanced both the electrocatalytic oxygen evolution and oxygen reduction reactions. The enhanced activities could be attributed to the electronic interaction between Ir and Cu arising from the alloying effect at atomic-level.

15.
Chemistry ; 23(1): 57-60, 2017 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-27787925

RESUMO

The first synthesis of pure Rh1-x Cux solid-solution nanoparticles is reported. In contrast to the bulk state, the solid-solution phase was stable up to 750 °C. Based on facile density-functional calculations, we made a prediction that the catalytic activity of Rh1-x Cux can be maintained even with 50 at % replacement of Rh with Cu. The prediction was confirmed for the catalytic activities on CO and NOx conversions.

16.
Acc Chem Res ; 48(6): 1551-9, 2015 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-25993560

RESUMO

Currently 118 known elements are represented in the periodic table. Of these 118 elements, only about 80 elements are stable, nonradioactive, and widely available for our society. From the viewpoint of the "elements strategy", we need to make full use of the 80 elements to bring out their latent ability and create innovative materials. Furthermore, there is a strong demand that the use of rare or toxic elements be reduced or replaced while their important properties are retained. Advanced science and technology could create higher-performance materials even while replacing or reducing minor or harmful elements through the combination of more abundant elements. The properties of elements are correlated directly with their electronic states. In a solid, the magnitude of the density of states (DOS) at the Fermi level affects the physical and chemical properties. In the present age, more attention has been paid to improving the properties of materials by means of alloying elements. In particular, the solid-solution-type alloy is advantageous because the properties can be continuously controlled by tuning the compositions and/or combinations of the constituent elements. However, the majority of bulk alloys are of the phase-separated type under ambient conditions, where constituent elements are immiscible with each other. To overcome the challenge of the bulk-phase metallurgical aspects, we have focused on the nanosize effect and developed methods involving "nonequilibrium synthesis" or "a process of hydrogen absorption/desorption". We propose a new concept of "density-of-states engineering" for the design of materials having the most desirable and suitable properties by means of "interelement fusion". In this Account, we describe novel solid-solution alloys of Pd-Pt, Ag-Rh, and Pd-Ru systems in which the constituent elements are immiscible in the bulk state. The homogeneous solid-solution alloys of Pd and Pt were created from Pd core/Pt shell nanoparticles using a hydrogen absorption/desorption process as a trigger. Several atom percent replacements of Pd with Pt atoms resulted in a significantly enhanced hydrogen absorption capacity compared with Pd nanoparticles. AgxRh1-x and PdxRu1-x solid-solution alloy nanoparticles were also developed by nonequilibrium synthesis based on a polyol method. The AgxRh1-x nanoparticles demonstrated hydrogen storage properties, although pure metal nanoparticles of each constituent element do not adsorb hydrogen. AgxRh1-x is therefore considered to possess a similar electronic structure to Pd as a synthetic pseudo-palladium. The PdxRu1-x nanoparticles showed enhanced catalytic activity for CO oxidation, with the highest catalytic activity found using the equimolar Pd0.5Ru0.5 nanoparticles. The catalytic activity of the Pd0.5Ru0.5 nanoparticles exceeds that of the widely used and best-performing Ru catalysts for CO oxidation and is also higher than that of neighboring Rh on the periodic table. Our present work provides a guiding principle for the design of a suitable DOS shape according to the intended physical and/or chemical properties and a method for the development of novel solid-solution alloys.

17.
Phys Chem Chem Phys ; 18(44): 30622-30629, 2016 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-27787531

RESUMO

The 3-dimensional (3D) atomic-scale structure of newly discovered face-centered cubic (fcc) and conventional hexagonal close packed (hcp) type ruthenium (Ru) nanoparticles (NPs) of 2.2 to 5.4 nm diameter were studied using X-ray pair distribution function (PDF) analysis and reverse Monte Carlo (RMC) modeling. Atomic PDF based high-energy X-ray diffraction measurements show highly diffuse X-ray diffraction patterns for fcc- and hcp-type Ru NPs. We here report the atomic-scale structure of Ru NPs in terms of the total structure factor and Fourier-transformed PDF. It is found that the respective NPs have substantial structural disorder over short- to medium-range order atomic distances from the PDF analysis. The first-nearest-neighbor peak analyses show a significant size dependence for the fcc-type Ru NPs demonstrating the increase in the peak height due to an increase in the number density as a function of particle size. The bond angle and coordination number (CN) distribution for the RMC-simulated fcc- and hcp-type Ru NP models indicated inherited structural features from their bulk counterparts. The CN analysis of the whole NP and surface of each RMC model of Ru NPs show the low activation energy packing sites on the fcc-type Ru NP surface atoms. Finally, our newly defined order parameters for RMC simulated Ru NP models suggested that the enhancement of the CO oxidation activity of fcc-type NPs was due to a decrease in the close packing ordering that resulted from the increased NP size. These structural findings could be positively supported for synthesized low-cost and high performance nano-sized catalysts and have potential application in fuel-cell systems and organic synthesis.

18.
Sci Technol Adv Mater ; 17(1): 583-596, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27877905

RESUMO

Pd and Ru are two key elements of the platinum-group metals that are invaluable to areas such as catalysis and energy storage/transfer. To maximize the potential of the Pd and Ru elements, significant effort has been devoted to synthesizing Pd-Ru bimetallic materials. However, most of the reports dealing with this subject describe phase-separated structures such as near-surface alloys and physical mixtures of monometallic nanoparticles (NPs). Pd-Ru alloys with homogenous structure and arbitrary metallic ratio are highly desired for basic scientific research and commercial material design. In the past several years, with the development of nanoscience, Pd-Ru bimetallic alloys with different architectures including heterostructure, core-shell structure and solid-solution alloy were successfully synthesized. In particular, we have now reached the stage of being able to obtain Pd-Ru solid-solution alloy NPs over the whole composition range. These Pd-Ru bimetallic alloys are better catalysts than their parent metal NPs in many catalytic reactions, because the electronic structures of Pd and Ru are modified by alloying. In this review, we describe the recent development in the structure control of Pd-Ru bimetallic nanomaterials. Aiming for a better understanding of the synthesis strategies, some fundamental details including fabrication methods and formation mechanisms are discussed. We stress that the modification of electronic structure, originating from different nanoscale geometry and chemical composition, profoundly affects material properties. Finally, we discuss open issues in this field.

19.
J Am Chem Soc ; 136(5): 1864-71, 2014 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-24455969

RESUMO

Pd(x)Ru(1-x) solid solution alloy nanoparticles were successfully synthesized over the whole composition range through a chemical reduction method, although Ru and Pd are immiscible at the atomic level in the bulk state. From the XRD measurement, it was found that the dominant structure of Pd(x)Ru(1-x) changes from fcc to hcp with increasing Ru content. The structures of Pd(x)Ru(1-x) nanoparticles in the Pd composition range of 30-70% consisted of both solid solution fcc and hcp structures, and both phases coexist in a single particle. In addition, the reaction of hydrogen with the Pd(x)Ru(1-x) nanoparticles changed from exothermic to endothermic as the Ru content increased. Furthermore, the prepared Pd(x)Ru(1-x) nanoparticles demonstrated enhanced CO-oxidizing catalytic activity; Pd0.5Ru0.5 nanoparticles exhibit the highest catalytic activity. This activity is much higher than that of the practically used CO-oxidizing catalyst Ru and that of the neighboring Rh, between Ru and Pd.


Assuntos
Ligas/química , Monóxido de Carbono/química , Hidrogênio/química , Nanopartículas/química , Paládio/química , Ródio/química , Rutênio/química , Catálise , Microscopia Eletrônica de Transmissão , Oxirredução , Propriedades de Superfície , Termodinâmica
20.
Nanoscale ; 16(19): 9311-9316, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38655766

RESUMO

The properties of solids could be largely affected by their crystal structures. We achieved, for the first time, the phase control of solid-solution RuIn nanoparticles (NPs) from face-centred cubic (fcc) to hexagonal close-packed (hcp) crystal structures by hydrogen heat treatment. The effect of the crystal structure of RuIn alloy NPs on the catalytic performance in the hydrogen evolution reaction (HER) was also investigated. In the hcp RuIn NPs, enhanced HER catalytic performance was observed compared to the fcc RuIn NPs and monometallic Ru NPs. The intrinsic electronic structures of the NPs were investigated by valence-band X-ray photoelectron spectroscopy (VB-XPS). The d-band centre of hcp RuIn NPs obtained from VB-XPS was deeper than that of fcc RuIn NPs and monometallic Ru NPs, which is considered to enable the hcp RuIn NPs to exhibit enhanced HER catalytic performance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA