Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Plant Physiol ; 176(2): 1299-1310, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29114081

RESUMO

Emerging seedlings respond to environmental conditions such as light and temperature to optimize their establishment. Seedlings grow initially through elongation of the hypocotyl, which is regulated by signaling pathways that integrate environmental information to regulate seedling development. The hypocotyls of Arabidopsis (Arabidopsis thaliana) also elongate in response to sucrose. Here, we investigated the role of cellular sugar-sensing mechanisms in the elongation of hypocotyls in response to Suc. We focused upon the role of SnRK1, which is a sugar-signaling hub that regulates metabolism and transcription in response to cellular energy status. We also investigated the role of TPS1, which synthesizes the signaling sugar trehalose-6-P that is proposed to regulate SnRK1 activity. Under light/dark cycles, we found that Suc-induced hypocotyl elongation did not occur in tps1 mutants and overexpressors of KIN10 (AKIN10/SnRK1.1), a catalytic subunit of SnRK1. We demonstrate that the magnitude of Suc-induced hypocotyl elongation depends on the day length and light intensity. We identified roles for auxin and gibberellin signaling in Suc-induced hypocotyl elongation under short photoperiods. We found that Suc-induced hypocotyl elongation under light/dark cycles does not involve another proposed sugar sensor, HEXOKINASE1, or the circadian oscillator. Our study identifies novel roles for KIN10 and TPS1 in mediating a signal that underlies Suc-induced hypocotyl elongation in light/dark cycles.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Hipocótilo/crescimento & desenvolvimento , Proteínas Serina-Treonina Quinases/metabolismo , Sacarose/metabolismo , Fatores de Transcrição/metabolismo , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Giberelinas/metabolismo , Glucosiltransferases/genética , Glucosiltransferases/metabolismo , Hipocótilo/metabolismo , Luz , Fotoperíodo , Reguladores de Crescimento de Plantas/metabolismo , Plantas Geneticamente Modificadas , Transdução de Sinais , Fosfatos Açúcares/metabolismo , Fatores de Transcrição/genética , Trealose/análogos & derivados , Trealose/metabolismo
2.
Photosynth Res ; 119(1-2): 181-90, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23529849

RESUMO

Correct circadian regulation increases plant productivity, and photosynthesis is circadian-regulated. Here, we discuss the regulatory basis for the circadian control of photosynthesis. We discuss candidate mechanisms underpinning circadian oscillations of light harvesting and consider how the circadian clock modulates CO2 fixation by Rubisco. We show that new techniques may provide a platform to better understand the signalling pathways that couple the circadian clock with the photosynthetic apparatus. Finally, we discuss how understanding circadian regulation in model systems is underpinning research into the impact of circadian regulation in crop species.


Assuntos
Ritmo Circadiano/fisiologia , Produtos Agrícolas/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Fotossíntese/fisiologia , Dióxido de Carbono/metabolismo , Cloroplastos/genética , Produtos Agrícolas/metabolismo , Luz , Ribulose-Bifosfato Carboxilase/metabolismo
3.
Plant Cell Environ ; 37(2): 327-40, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23777196

RESUMO

The circadian clock is an endogenous 24 h oscillator regulating many critical biological processes in plants. One of the key characteristics of the circadian clock is that it is buffered against temperature, maintaining an approximately 24 h rhythm over a broad physiological temperature range. Here, we tested temperature-buffering capacity of the circadian clock across a number of Arabidopsis accessions using several circadian clock reporters: leaf movement, CCA1:LUC and LHY:LUC. We found that leaf movement was the best temperature buffered circadian output. On the other hand, when temperature increases, circadian rhythms of CCA1 and LHY transcription shorten considerably across all accessions, indicating that the clock driving expression of CCA1 and LHY is not perfectly buffered. This feature might be crucial to plants growing in a constantly changing environment, and here, we provide insight into the importance of period shortening to plant growth performance and the benefits of a flexible clock.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Relógios Circadianos , Proteínas de Ligação a DNA/metabolismo , Temperatura , Fatores de Transcrição/metabolismo , Análise de Variância , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Ligação a DNA/genética , Regulação da Expressão Gênica de Plantas , Dados de Sequência Molecular , Fatores de Transcrição/genética
4.
Elife ; 112022 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-36409063

RESUMO

Alternative splicing of messenger RNAs is associated with the evolution of developmentally complex eukaryotes. Splicing is mediated by the spliceosome, and docking of the pre-mRNA 5' splice site into the spliceosome active site depends upon pairing with the conserved ACAGA sequence of U6 snRNA. In some species, including humans, the central adenosine of the ACAGA box is modified by N6 methylation, but the role of this m6A modification is poorly understood. Here, we show that m6A modified U6 snRNA determines the accuracy and efficiency of splicing. We reveal that the conserved methyltransferase, FIONA1, is required for Arabidopsis U6 snRNA m6A modification. Arabidopsis fio1 mutants show disrupted patterns of splicing that can be explained by the sequence composition of 5' splice sites and cooperative roles for U5 and U6 snRNA in splice site selection. U6 snRNA m6A influences 3' splice site usage. We generalise these findings to reveal two major classes of 5' splice site in diverse eukaryotes, which display anti-correlated interaction potential with U5 snRNA loop 1 and the U6 snRNA ACAGA box. We conclude that U6 snRNA m6A modification contributes to the selection of degenerate 5' splice sites crucial to alternative splicing.


All the information necessary to build the proteins that perform the biological processes required for life is encoded in the DNA of an organism. Making these proteins requires the DNA sequence of a gene to be transcribed into a 'messenger RNA' (mRNA), which is then processed into a final, mature form. This blueprint is then translated to assemble the corresponding protein. When an mRNA is processed, segments of the sequence that do not code for protein are removed and the remaining coding sequences are joined together in the right order. An intricate molecular machine known as the spliceosome controls this mechanism by recognising the 'splice sites' where coding and non-coding sequences meet. Depending on external conditions, the spliceosome can 'pick-and-mix' the coding sequences to create different processed mRNAs (and therefore proteins) from a single gene. This alternative splicing mechanism is often used to regulate when certain biological processes take place based on environmental cues; for example, the splicing of genes which control the timing of plant flowering is sensitive to ambient temperatures. To investigate this mechanism, Parker et al. focused on Arabidopsis thaliana, a plant that blooms later when temperatures are low. This precise timing partly relies on a gene whose mRNA is efficiently spliced in the cold, resulting in an active form of its protein that blocks blooming. Parker et al. grew and screened many A. thaliana plants to find individuals that could flower early in the cold, in which splicing of this gene was disrupted. A mutant fitting these criteria was identified and subjected to further investigation, which revealed that it could not produce FIONA1. In non-mutant plants, this enzyme chemically modifies one of the components of the spliceosome, a small nuclear RNA known as U6. Parker et al found that there are two types of splice site ­ one more likely to interact with U6 and another that preferentially interacts with another small nuclear RNA, U5. When FIONA1 is inactive (such as in the mutant identified by Parker et al.), splice sites that tend to strongly interact with U5 are selected. However, when the enzyme is active, splice sites that tend to bind with the chemically modified U6 are used instead. Further work by Parker et al. showed that these two types of splice sites ('preferring' either U5 or U6) are found in equal proportions in the genomes of many species, including humans. This suggests that Parker et al. have uncovered an essential feature of how genomes are organised and splicing is controlled.


Assuntos
Arabidopsis , Precursores de RNA , Humanos , Precursores de RNA/metabolismo , Sítios de Splice de RNA , Arabidopsis/genética , Arabidopsis/metabolismo , Splicing de RNA , RNA Nuclear Pequeno/genética , Spliceossomos/metabolismo
5.
Plant J ; 58(5): 893-901, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19638147

RESUMO

The plant circadian clock plays an important role in enhancing performance and increasing vegetative yield. Much of our current understanding of the mechanism and function of the plant clock has come from the development of Arabidopsis thaliana as a model circadian organism. Key to this rapid progress has been the development of robust circadian markers, specifically circadian-regulated luciferase reporter genes. Studies of the clock in crop species and non-model organisms are currently hindered by the absence of a simple high-throughput universal assay for clock function, accuracy and robustness. Delayed fluorescence (DF) is a fundamental process occurring in all photosynthetic organisms. It is luminescence-produced post-illumination due to charge recombination in photosystem II (PSII) leading to excitation of P680 and the subsequent emission of a photon. Here we report that the amount of DF oscillates with an approximately 24-h period and is under the control of the circadian clock in a diverse selection of plants. Thus, DF provides a simple clock output that may allow the clock to be assayed in vivo in any photosynthetic organism. Furthermore, our data provide direct evidence that the nucleus-encoded, three-loop circadian oscillator underlies rhythms of PSII activity in the chloroplast. This simple, high-throughput and non-transgenic assay could be integrated into crop breeding programmes, the assay allows the selection of plants that have robust and accurate clocks, and possibly enhanced performance and vegetative yield. This assay could also be used to characterize rapidly the role and function of any novel Arabidopsis circadian mutant.


Assuntos
Relógios Biológicos , Ritmo Circadiano , Fluorescência , Magnoliopsida/fisiologia , Arabidopsis/genética , Arabidopsis/fisiologia , Cloroplastos/fisiologia , Fotoperíodo , Complexo de Proteína do Fotossistema II/fisiologia , Regiões Promotoras Genéticas
6.
Curr Biol ; 28(16): 2597-2606.e6, 2018 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-30078562

RESUMO

Synchronization of circadian clocks to the day-night cycle ensures the correct timing of biological events. This entrainment process is essential to ensure that the phase of the circadian oscillator is synchronized with daily events within the environment [1], to permit accurate anticipation of environmental changes [2, 3]. Entrainment in plants requires phase changes in the circadian oscillator, through unidentified pathways, which alter circadian oscillator gene expression in response to light, temperature, and sugars [4-6]. To determine how circadian clocks respond to metabolic rhythms, we investigated the mechanisms by which sugars adjust the circadian phase in Arabidopsis [5]. We focused upon metabolic regulation because interactions occur between circadian oscillators and metabolism in several experimental systems [5, 7-9], but the molecular mechanisms are unidentified. Here, we demonstrate that the transcription factor BASIC LEUCINE ZIPPER63 (bZIP63) regulates the circadian oscillator gene PSEUDO RESPONSE REGULATOR7 (PRR7) to change the circadian phase in response to sugars. We find that SnRK1, a sugar-sensing kinase that regulates bZIP63 activity and circadian period [10-14] is required for sucrose-induced changes in circadian phase. Furthermore, TREHALOSE-6-PHOSPHATE SYNTHASE1 (TPS1), which synthesizes the signaling sugar trehalose-6-phosphate, is required for circadian phase adjustment in response to sucrose. We demonstrate that daily rhythms of energy availability can entrain the circadian oscillator through the function of bZIP63, TPS1, and the KIN10 subunit of the SnRK1 energy sensor. This identifies a molecular mechanism that adjusts the circadian phase in response to sugars.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/fisiologia , Fatores de Transcrição de Zíper de Leucina Básica/genética , Relógios Circadianos/genética , Proteínas Repressoras/genética , Açúcares/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Glucosiltransferases/genética , Glucosiltransferases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Repressoras/metabolismo , Sacarose/metabolismo , Fosfatos Açúcares/metabolismo , Trealose/análogos & derivados , Trealose/metabolismo
7.
PLoS One ; 10(6): e0127449, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26076005

RESUMO

Circadian clocks regulate many aspects of plant physiology and development that contribute to essential agronomic traits. Circadian clocks contain transcriptional feedback loops that are thought to generate circadian timing. There is considerable similarity in the genes that comprise the transcriptional and translational feedback loops of the circadian clock in the plant Kingdom. Functional characterisation of circadian clock genes has been restricted to a few model species. Here we provide a functional characterisation of the Hordeum vulgare (barley) circadian clock genes Hv circadian clock associated 1 (HvCCA1) and Hv photoperiodh1, which are respectively most similar to Arabidopsis thaliana circadian clock associated 1 (AtCCA1) and pseudo response regulator 7 (AtPRR7). This provides insight into the circadian regulation of one of the major crop species of Northern Europe. Through a combination of physiological assays of circadian rhythms in barley and heterologous expression in wild type and mutant strains of A. thaliana we demonstrate that HvCCA1 has a conserved function to AtCCA1. We find that Hv photoperiod H1 has AtPRR7-like functionality in A. thaliana and that the effects of the Hv photoperiod h1 mutation on photoperiodism and circadian rhythms are genetically separable.


Assuntos
Arabidopsis/fisiologia , Relógios Circadianos/genética , Ritmo Circadiano/genética , Hordeum/fisiologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Clonagem Molecular , Expressão Gênica , Teste de Complementação Genética , Mutação , Fotoperíodo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transcrição Gênica
8.
Science ; 339(6125): 1316-9, 2013 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-23493713

RESUMO

Circadian timekeeping in plants increases photosynthesis and productivity. There are circadian oscillations in the abundance of many chloroplast-encoded transcripts, but it is not known how the circadian clock regulates chloroplast transcription or the photosynthetic apparatus. We show that, in Arabidopsis, nuclear-encoded SIGMA FACTOR5 (SIG5) controls circadian rhythms of transcription of several chloroplast genes, revealing one pathway by which the nuclear-encoded circadian oscillator controls rhythms of chloroplast gene expression. We also show that SIG5 mediates the circadian gating of light input to a chloroplast-encoded gene. We have identified an evolutionarily conserved mechanism that communicates circadian timing information between organelles with distinct genetic systems and have established a new level of integration between eukaryotic circadian clocks and organelles of endosymbiotic origin.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/fisiologia , Cloroplastos/genética , Ritmo Circadiano , Regulação da Expressão Gênica de Plantas , Fator sigma/metabolismo , Transporte Ativo do Núcleo Celular , Proteínas de Arabidopsis/genética , Núcleo Celular/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Fator sigma/genética , Transcrição Gênica
9.
Trends Plant Sci ; 17(10): 575-83, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22784827

RESUMO

Circadian regulation is essential for optimum plant performance. In addition to loops and cascades of transcription and translation, the plant circadian clock and its associated signal transduction networks incorporate many post-translational mechanisms. Phosphorylation is a common feature of signal transduction and gene regulation. In this opinion article, we illustrate how phosphorylation events are positioned within the entrainment, functioning, and regulation of the circadian timing system. Phosphorylation regulates protein stability, protein-protein interactions and protein-DNA interactions within the core oscillator. We suggest that phosphorylation provides a potential mechanism for the distribution of circadian timing information within the cell and for the integration of circadian timing information with other signaling pathways.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Relógios Circadianos , Fatores de Transcrição/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Membrana Celular/metabolismo , Ritmo Circadiano , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Fosforilação , Fotossíntese , Mapeamento de Interação de Proteínas , Processamento de Proteína Pós-Traducional , Estabilidade Proteica , Transdução de Sinais , Fatores de Transcrição/genética , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA