Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Proteome Res ; 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38566450

RESUMO

Despite the recent and increasing knowledge surrounding COVID-19 infection, the underlying mechanisms of the persistence of symptoms for a long time after the acute infection are still not completely understood. Here, a multiplatform mass spectrometry-based approach was used for metabolomic and lipidomic profiling of human plasma samples from Long COVID patients (n = 40) to reveal mitochondrial dysfunction when compared with individuals fully recovered from acute mild COVID-19 (n = 40). Untargeted metabolomic analysis using CE-ESI(+/-)-TOF-MS and GC-Q-MS was performed. Additionally, a lipidomic analysis using LC-ESI(+/-)-QTOF-MS based on an in-house library revealed 447 lipid species identified with a high confidence annotation level. The integration of complementary analytical platforms has allowed a comprehensive metabolic and lipidomic characterization of plasma alterations in Long COVID disease that found 46 relevant metabolites which allowed to discriminate between Long COVID and fully recovered patients. We report specific metabolites altered in Long COVID, mainly related to a decrease in the amino acid metabolism and ceramide plasma levels and an increase in the tricarboxylic acid (TCA) cycle, reinforcing the evidence of an impaired mitochondrial function. The most relevant alterations shown in this study will help to better understand the insights of Long COVID syndrome by providing a deeper knowledge of the metabolomic basis of the pathology.

2.
PLoS Pathog ; 15(8): e1007958, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31465518

RESUMO

The causative mutation responsible for limb girdle muscular dystrophy 1F (LGMD1F) is one heterozygous single nucleotide deletion in the stop codon of the nuclear import factor Transportin 3 gene (TNPO3). This mutation causes a carboxy-terminal extension of 15 amino acids, producing a protein of unknown function (TNPO3_mut) that is co-expressed with wild-type TNPO3 (TNPO3_wt). TNPO3 has been involved in the nuclear transport of serine/arginine-rich proteins such as splicing factors and also in HIV-1 infection through interaction with the viral integrase and capsid. We analyzed the effect of TNPO3_mut on HIV-1 infection using PBMCs from patients with LGMD1F infected ex vivo. HIV-1 infection was drastically impaired in these cells and viral integration was reduced 16-fold. No significant effects on viral reverse transcription and episomal 2-LTR circles were observed suggesting that the integration of HIV-1 genome was restricted. This is the second genetic defect described after CCR5Δ32 that shows strong resistance against HIV-1 infection.


Assuntos
Infecções por HIV/prevenção & controle , HIV-1/fisiologia , Distrofia Muscular do Cíngulo dos Membros/patologia , Mutação , Replicação Viral/genética , beta Carioferinas/genética , Adolescente , Adulto , Estudos de Casos e Controles , Criança , Pré-Escolar , Feminino , Infecções por HIV/genética , Infecções por HIV/virologia , Humanos , Lactente , Masculino , Pessoa de Meia-Idade , Distrofia Muscular do Cíngulo dos Membros/genética , Linhagem , Adulto Jovem
3.
J Virol ; 92(9)2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29444937

RESUMO

Maraviroc is a CCR5 antagonist used in the treatment of HIV-1 infection. We and others have suggested that maraviroc could reactivate latent HIV-1. To test the latency-reversing potential of maraviroc and the mechanisms involved, we performed a phase II, single-center, open-label study in which maraviroc was administered for 10 days to 20 HIV-1-infected individuals on suppressive antiretroviral therapy (EudraCT registration no. 2012-003215-66). All patients completed full maraviroc dosing and follow-up. The primary endpoint was to study whether maraviroc may reactivate HIV-1 latency, eliciting signaling pathways involved in the viral reactivation. An increase in HIV-1 transcription in resting CD4+ T cells, estimated by levels of HIV-1 unspliced RNA, was observed. Moreover, activation of the NF-κB transcription factor was observed in these cells. To elucidate the mechanism of NF-κB activation by maraviroc, we have evaluated in HeLa P4 C5 cells, which stably express CCR5, whether maraviroc could be acting as a partial CCR5 agonist, with no other mechanisms or pathways involved. Our results show that maraviroc can induce NF-κB activity and that NF-κB targets gene expression by CCR5 binding, since the use of TAK779, a CCR5 inhibitor, blocked NF-κB activation and functionality. Taking the results together, we show that maraviroc may have a role in the activation of latent virus transcription through the activation of NF-κB as a result of binding CCR5. Our results strongly support a novel use of maraviroc as a potential latency reversal agent in HIV-1-infected patients.IMPORTANCE HIV-1 persistence in a small pool of long-lived latently infected resting CD4+ T cells is a major barrier to viral eradication in HIV-1-infected patients on antiretroviral therapy. A potential strategy to cure HIV-1-infection is the use of latency-reversing agents to eliminate the reservoirs established in resting CD4+ T cells. As no drug has been shown to be completely effective so far, the search for new drugs and combinations remains a priority for HIV cure. We examined the ability of maraviroc, a CCR5 antagonist used as an antiretroviral drug, to activate latent HIV-1 in infected individuals on antiretroviral therapy. The study showed that maraviroc can activate NF-κB and, subsequently, induce latent HIV-1-transcription in resting CD4+ T cells from HIV-1-infected individuals on suppressive antiretroviral therapy. Additional interventions will be needed to eliminate latent HIV-1 infection. Our results suggest that maraviroc may be a new latency-reversing agent to interfere with HIV-1 persistence during antiretroviral therapy.


Assuntos
Antirretrovirais/uso terapêutico , Linfócitos T CD4-Positivos/imunologia , Infecções por HIV/virologia , HIV-1/imunologia , Maraviroc/uso terapêutico , NF-kappa B/metabolismo , Ativação Viral/efeitos dos fármacos , Latência Viral/efeitos dos fármacos , Adulto , Idoso , Antagonistas dos Receptores CCR5/uso terapêutico , Linfócitos T CD4-Positivos/efeitos dos fármacos , Feminino , Infecções por HIV/tratamento farmacológico , Infecções por HIV/imunologia , HIV-1/efeitos dos fármacos , Humanos , Masculino , Pessoa de Meia-Idade , NF-kappa B/genética , Transdução de Sinais , Replicação Viral
4.
Curr HIV/AIDS Rep ; 16(5): 414-422, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31506864

RESUMO

PURPOSE OF REVIEW: HIV-1 infection is incurable due to the existence of latent reservoirs that persist in the face of cART. In this review, we describe the existence of multiple HIV-1 reservoirs, the mechanisms that support their persistence, and the potential use of tyrosine kinase inhibitors (TKIs) to block several pathogenic processes secondary to HIV-1 infection. RECENT FINDINGS: Dasatinib interferes in vitro with HIV-1 persistence by two independent mechanisms. First, dasatinib blocks infection and potential expansion of the latent reservoir by interfering with the inactivating phosphorylation of SAMHD1. Secondly, dasatinib inhibits the homeostatic proliferation induced by γc-cytokines. Since homeostatic proliferation is thought to be the main mechanism behind the maintenance of the latent reservoir, we propose that blocking this process will gradually reduce the size of the reservoir. TKIs together with cART will interfere with HIV-1 latent reservoir persistence, favoring the prospect for viral eradication.


Assuntos
Infecções por HIV/patologia , HIV-1/efeitos dos fármacos , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Tirosina Quinases/metabolismo , Latência Viral/efeitos dos fármacos , Linfócitos T CD4-Positivos , Citocinas/metabolismo , Dasatinibe/uso terapêutico , Infecções por HIV/tratamento farmacológico , Humanos , Proteína 1 com Domínio SAM e Domínio HD/metabolismo
5.
J Virol ; 89(16): 8162-81, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26018170

RESUMO

UNLABELLED: During HIV-1 assembly, the Gag viral proteins are targeted and assemble at the inner leaflet of the cell plasma membrane. This process could modulate the cortical actin cytoskeleton, located underneath the plasma membrane, since actin dynamics are able to promote localized membrane reorganization. In addition, activated small Rho GTPases are known for regulating actin dynamics and membrane remodeling. Therefore, the modulation of such Rho GTPase activity and of F-actin by the Gag protein during virus particle formation was considered. Here, we studied the implication of the main Rac1, Cdc42, and RhoA small GTPases, and some of their effectors, in this process. The effect of small interfering RNA (siRNA)-mediated Rho GTPases and silencing of their effectors on Gag localization, Gag membrane attachment, and virus-like particle production was analyzed by immunofluorescence coupled to confocal microscopy, membrane flotation assays, and immunoblot assays, respectively. In parallel, the effect of Gag expression on the Rac1 activation level was monitored by G-LISA, and the intracellular F-actin content in T cells was monitored by flow cytometry and fluorescence microscopy. Our results revealed the involvement of activated Rac1 and of the IRSp53-Wave2-Arp2/3 signaling pathway in HIV-1 Gag membrane localization and particle release in T cells as well as a role for actin branching and polymerization, and this was solely dependent on the Gag viral protein. In conclusion, our results highlight a new role for the Rac1-IRSp53-Wave2-Arp2/3 signaling pathway in the late steps of HIV-1 replication in CD4 T lymphocytes. IMPORTANCE: During HIV-1 assembly, the Gag proteins are targeted and assembled at the inner leaflet of the host cell plasma membrane. Gag interacts with specific membrane phospholipids that can also modulate the regulation of cortical actin cytoskeleton dynamics. Actin dynamics can promote localized membrane reorganization and thus can be involved in facilitating Gag assembly and particle formation. Activated small Rho GTPases and effectors are regulators of actin dynamics and membrane remodeling. We thus studied the effects of the Rac1, Cdc42, and RhoA GTPases and their specific effectors on HIV-1 Gag membrane localization and viral particle release in T cells. Our results show that activated Rac1 and the IRSp53-Wave2-Arp2/3 signaling pathway are involved in Gag plasma membrane localization and viral particle production. This work uncovers a role for cortical actin through the activation of Rac1 and the IRSp53/Wave2 signaling pathway in HIV-1 particle formation in CD4 T lymphocytes.


Assuntos
Linfócitos T CD4-Positivos/metabolismo , Produtos do Gene gag/metabolismo , HIV-1/metabolismo , Transdução de Sinais , Complexo 2-3 de Proteínas Relacionadas à Actina/metabolismo , Humanos , Células Jurkat , Proteínas do Tecido Nervoso/metabolismo , Família de Proteínas da Síndrome de Wiskott-Aldrich/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo
6.
Retrovirology ; 12: 78, 2015 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-26376973

RESUMO

BACKGROUND: HIV-1 replication results in mitochondrial damage that is enhanced during antiretroviral therapy (ART). The onset of HIV-1 replication is regulated by viral protein Tat, a 101-residue protein codified by two exons that elongates viral transcripts. Although the first exon of Tat (aa 1-72) forms itself an active protein, the presence of the second exon (aa 73-101) results in a more competent transcriptional protein with additional functions. RESULTS: Mitochondrial overall functions were analyzed in Jurkat cells stably expressing full-length Tat (Tat101) or one-exon Tat (Tat72). Representative results were confirmed in PBLs transiently expressing Tat101 and in HIV-infected Jurkat cells. The intracellular expression of Tat101 induced the deregulation of metabolism and cytoskeletal proteins which remodeled the function and distribution of mitochondria. Tat101 reduced the transcription of the mtDNA, resulting in low ATP production. The total amount of mitochondria increased likely to counteract their functional impairment. These effects were enhanced when Tat second exon was expressed. CONCLUSIONS: Intracellular Tat altered mtDNA transcription, mitochondrial content and distribution in CD4+ T cells. The importance of Tat second exon in non-transcriptional functions was confirmed. Tat101 may be responsible for mitochondrial dysfunctions found in HIV-1 infected patients.


Assuntos
Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD4-Positivos/virologia , DNA Mitocondrial/genética , HIV-1/fisiologia , Mitocôndrias/ultraestrutura , Produtos do Gene tat do Vírus da Imunodeficiência Humana/genética , Produtos do Gene tat do Vírus da Imunodeficiência Humana/metabolismo , Linfócitos T CD4-Positivos/citologia , Linfócitos T CD4-Positivos/ultraestrutura , Citoesqueleto/patologia , Citoesqueleto/virologia , DNA Mitocondrial/metabolismo , Éxons , Glicólise , Humanos , Células Jurkat , Leucócitos Mononucleares , Mitocôndrias/genética
7.
J Biol Chem ; 288(11): 7626-7644, 2013 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-23364796

RESUMO

HIV-1 replication is efficiently controlled by the regulator protein Tat (101 amino acids) and codified by two exons, although the first exon (1-72 amino acids) is sufficient for this process. Tat can be released to the extracellular medium, acting as a soluble pro-apoptotic factor in neighboring cells. However, HIV-1-infected CD4(+) T lymphocytes show a higher resistance to apoptosis. We observed that the intracellular expression of Tat delayed FasL-mediated apoptosis in both peripheral blood lymphocytes and Jurkat cells, as it is an essential pathway to control T cell homeostasis during immune activation. Jurkat-Tat cells showed impairment in the activation of caspase-8, deficient release of mitochondrial cytochrome c, and delayed activation of both caspase-9 and -3. This protection was due to a profound deregulation of proteins that stabilized the mitochondrial membrane integrity, such as heat shock proteins, prohibitin, or nucleophosmin, as well as to the up-regulation of NF-κB-dependent anti-apoptotic proteins, such as BCL2, c-FLIPS, XIAP, and C-IAP2. These effects were observed in Jurkat expressing full-length Tat (Jurkat-Tat101) but not in Jurkat expressing the first exon of Tat (Jurkat-Tat72), proving that the second exon, and particularly the NF-κB-related motif ESKKKVE, was necessary for Tat-mediated protection against FasL apoptosis. Accordingly, the protection exerted by Tat was independent of its function as a regulator of both viral transcription and elongation. Moreover, these data proved that HIV-1 could have developed strategies to delay FasL-mediated apoptosis in infected CD4(+) T lymphocytes through the expression of Tat, thus favoring the persistent replication of HIV-1 in infected T cells.


Assuntos
Apoptose , Linfócitos T CD4-Positivos/virologia , Regulação da Expressão Gênica , HIV-1/metabolismo , Receptor fas/metabolismo , Produtos do Gene tat do Vírus da Imunodeficiência Humana/metabolismo , Linfócitos T CD4-Positivos/metabolismo , Caspase 3/metabolismo , Caspase 8/metabolismo , Caspase 9/metabolismo , Citocromos c/metabolismo , Éxons , Humanos , Células Jurkat , Mitocôndrias/metabolismo , Mutagênese Sítio-Dirigida , NF-kappa B/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Proteoma , Proteômica/métodos , Transfecção
8.
Retrovirology ; 10: 124, 2013 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-24165037

RESUMO

BACKGROUND: Control of RNA polymerase II (RNAPII) release from pausing has been proposed as a checkpoint mechanism to ensure optimal RNAPII activity, especially in large, highly regulated genes. HIV-1 gene expression is highly regulated at the level of elongation, which includes transcriptional pausing that is mediated by both viral and cellular factors. Here, we present evidence for a specific role of the elongation-related factor TCERG1 in regulating the extent of HIV-1 elongation and viral replication in vivo. RESULTS: We show that TCERG1 depletion diminishes the basal and viral Tat-activated transcription from the HIV-1 LTR. In support of a role for an elongation mechanism in the transcriptional control of HIV-1, we found that TCERG1 modifies the levels of pre-mRNAs generated at distal regions of HIV-1. Most importantly, TCERG1 directly affects the elongation rate of RNAPII transcription in vivo. Furthermore, our data demonstrate that TCERG1 regulates HIV-1 transcription by increasing the rate of RNAPII elongation through the phosphorylation of serine 2 within the carboxyl-terminal domain (CTD) of RNAPII and suggest a mechanism for the involvement of TCERG1 in relieving pausing. Finally, we show that TCERG1 is required for HIV-1 replication. CONCLUSIONS: Our study reveals that TCERG1 regulates HIV-1 transcriptional elongation by increasing the elongation rate of RNAPII and phosphorylation of Ser 2 within the CTD. Based on our data, we propose a general mechanism for TCERG1 acting on genes that are regulated at the level of elongation by increasing the rate of RNAPII transcription through the phosphorylation of Ser2. In the case of HIV-1, our evidence provides the basis for further investigation of TCERG1 as a potential therapeutic target for the inhibition of HIV-1 replication.


Assuntos
HIV-1/fisiologia , RNA Polimerase II/metabolismo , Transcrição Gênica , Fatores de Elongação da Transcrição/metabolismo , Replicação Viral , Linhagem Celular , Humanos
9.
J Biol Chem ; 286(31): 27363-77, 2011 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-21669868

RESUMO

Integration of HIV-1 genome in CD4(+) T cells produces latent reservoirs with long half-life that impedes the eradication of the infection. Control of viral replication is essential to reduce the size of latent reservoirs, mainly during primary infection when HIV-1 infects CD4(+) T cells massively. The addition of immunosuppressive agents to highly active antiretroviral therapy during primary infection would suppress HIV-1 replication by limiting T cell activation, but these agents show potential risk for causing lymphoproliferative disorders. Selective inhibition of PKC, crucial for T cell function, would limit T cell activation and HIV-1 replication without causing general immunosuppression due to PKC being mostly expressed in T cells. Accordingly, the effect of rottlerin, a dose-dependent PKC inhibitor, on HIV-1 replication was analyzed in T cells. Rottlerin was able to reduce HIV-1 replication more than 20-fold in MT-2 (IC(50) = 5.2 µM) and Jurkat (IC(50) = 2.2 µM) cells and more than 4-fold in peripheral blood lymphocytes (IC(50) = 4.4 µM). Selective inhibition of PKC, but not PKCδ or -ζ, was observed at <6.0 µM, decreasing the phosphorylation at residue Thr(538) on the kinase catalytic domain activation loop and avoiding PKC translocation to the lipid rafts. Consequently, the main effector at the end of PKC pathway, NF-κB, was repressed. Rottlerin also caused a significant inhibition of HIV-1 integration. Recently, several specific PKC inhibitors have been designed for the treatment of autoimmune diseases. Using these inhibitors in combination with highly active antiretroviral therapy during primary infection could be helpful to avoid massive viral infection and replication from infected CD4(+) T cells, reducing the reservoir size at early stages of the infection.


Assuntos
Linfócitos T CD4-Positivos/virologia , HIV-1/fisiologia , Isoenzimas/metabolismo , Proteína Quinase C/metabolismo , Replicação Viral , Acetofenonas/farmacologia , Sequência de Bases , Benzopiranos/farmacologia , Domínio Catalítico , Linhagem Celular , Primers do DNA , Genoma Viral , HIV-1/genética , Humanos , Concentração Inibidora 50 , Isoenzimas/antagonistas & inibidores , Proteína Quinase C/antagonistas & inibidores , Proteína Quinase C-theta , Inibidores de Proteínas Quinases/farmacologia , Transporte Proteico , Reação em Cadeia da Polimerase Via Transcriptase Reversa
10.
Front Cell Dev Biol ; 10: 839813, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35646913

RESUMO

LGMDD2 is a rare form of muscular dystrophy characterized by one of the three heterozygous deletions described within the TNPO3 gene that result in the addition of a 15-amino acid tail in the C-terminus.TNPO3 is involved in the nuclear import of splicing factors and acts as a host cofactor for HIV-1 infection by mechanisms not yet deciphered. Further characterization of the crosstalk between HIV-1 infection and LGMDD2 disease may contribute to a better understanding of both the cellular alterations occurring in LGMDD2 patients and the role of TNPO3 in the HIV-1 cycle. To this regard, transcriptome profiling of PBMCs from LGMDD2 patients carrying the deletion c.2771delA in the TNPO3 gene was compared to healthy controls. A total of 545 differentially expressed genes were detected between LGMDD2 patients and healthy controls, with a high representation of G protein-coupled receptor binding chemokines and metallopeptidases among the most upregulated genes in LGMDD2 patients. Plasma levels of IFN-ß and IFN-γ were 4.7- and 2.7-fold higher in LGMDD2 patients, respectively. An increase of 2.3-fold in the expression of the interferon-stimulated gene MxA was observed in activated PBMCs from LGMDD2 patients after ex vivo HIV-1 pseudovirus infection. Thus, the analysis suggests a pro-inflammatory state in LGMDD2 patients also described for other muscular dystrophies, that is characterized by the alteration of IL-17 signaling pathway and the consequent increase of metallopeptidases activity and TNF response. In summary, the increase in interferons and inflammatory mediators suggests an antiviral environment and resistance to HIV-1 infection but that could also impair muscular function in LGMDD2 patients, worsening disease evolution. Biomarkers of disease progression and therapeutic strategies based on these genes and mechanisms should be further investigated for this type of muscular dystrophy.

11.
Biomed Pharmacother ; 150: 112965, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35468580

RESUMO

Main cause of severe illness and death in COVID-19 patients appears to be an excessive but ineffectual inflammatory immune response that may cause severe acute respiratory distress syndrome (ARDS). Vitamin D may favour an anti-inflammatory environment and improve cytotoxic response against some infectious diseases. A multicenter, single-blind, prospective, randomized clinical trial was approved in patients with COVID-19 pneumonia and levels of 25-hydroxyvitamin D (25(OH)D) of 14.8 ng/ml (SD: 6.18) to test antiviral efficacy, tolerance and safety of 10,000 IU/day of cholecalciferol (vitamin D3) for 14 days, in comparison with 2000 IU/day. After supplementation, mean serum 25(OH)D levels increased to 19 ng/ml on average in 2000 IU/day versus 29 ng/ml in 10,000 IU/day group (p < 0.0001). Although levels of inflammatory cytokines were not modified by treatment with 10,000 IU/day, there was an increase of anti-inflammatory cytokine IL-10 and higher levels of CD4+ T cells, with predominance of T central memory subpopulation. Cytotoxic response against pseudotyped SARS-CoV-2 infected cells was increased more than 4-fold in patients who received 10,000 IU/day. Moreover, levels of IFNγ were significantly higher in this group. Beneficial effect of supplementation with 10,000 IU/day was also observed in participants who developed ARDS and stayed at the hospital for 8.0 days, whereas those who received 2000 IU/day stayed for 29.2 days (p = 0.0381). Administration of high doses of vitamin D3 as adjuvant of the standard care treatment during hospitalization for COVID-19 may improve the inflammatory environment and cytotoxic response against pseudotyped SARS-CoV-2 infected cells, shortening the hospital stay and, possibly, improving the prognosis.


Assuntos
Tratamento Farmacológico da COVID-19 , Síndrome do Desconforto Respiratório , Colecalciferol/efeitos adversos , Suplementos Nutricionais , Humanos , Imunidade , Estudos Prospectivos , Síndrome do Desconforto Respiratório/tratamento farmacológico , SARS-CoV-2 , Método Simples-Cego , Vitamina D , Vitaminas/uso terapêutico
12.
Front Immunol ; 13: 848886, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35401523

RESUMO

Long-COVID is a new emerging syndrome worldwide that is characterized by the persistence of unresolved signs and symptoms of COVID-19 more than 4 weeks after the infection and even after more than 12 weeks. The underlying mechanisms for Long-COVID are still undefined, but a sustained inflammatory response caused by the persistence of SARS-CoV-2 in organ and tissue sanctuaries or resemblance with an autoimmune disease are within the most considered hypotheses. In this study, we analyzed the usefulness of several demographic, clinical, and immunological parameters as diagnostic biomarkers of Long-COVID in one cohort of Spanish individuals who presented signs and symptoms of this syndrome after 49 weeks post-infection, in comparison with individuals who recovered completely in the first 12 weeks after the infection. We determined that individuals with Long-COVID showed significantly increased levels of functional memory cells with high antiviral cytotoxic activity such as CD8+ TEMRA cells, CD8±TCRγδ+ cells, and NK cells with CD56+CD57+NKG2C+ phenotype. The persistence of these long-lasting cytotoxic populations was supported by enhanced levels of CD4+ Tregs and the expression of the exhaustion marker PD-1 on the surface of CD3+ T lymphocytes. With the use of these immune parameters and significant clinical features such as lethargy, pleuritic chest pain, and dermatological injuries, as well as demographic factors such as female gender and O+ blood type, a Random Forest algorithm predicted the assignment of the participants in the Long-COVID group with 100% accuracy. The definition of the most accurate diagnostic biomarkers could be helpful to detect the development of Long-COVID and to improve the clinical management of these patients.


Assuntos
COVID-19 , Biomarcadores , Linfócitos T CD8-Positivos , COVID-19/complicações , Feminino , Humanos , Imunidade , SARS-CoV-2 , Síndrome de COVID-19 Pós-Aguda
13.
Front Immunol ; 13: 998368, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36225912

RESUMO

miRNAs dictate relevant virus-host interactions, offering new avenues for interventions to achieve an HIV remission. We aimed to enhance HIV-specific cytotoxic responses-a hallmark of natural HIV control- by miRNA modulation in T cells. We recruited 12 participants six elite controllers and six patients with chronic HIV infection on long-term antiretroviral therapy ("progressors"). Elite controllers exhibited stronger HIV-specific cytotoxic responses than the progressors, and their CD8+T cells showed a miRNA (hsa-miR-10a-5p) significantly downregulated. When we transfected ex vivo CD8+ T cells from progressors with a synthetic miR-10a-5p inhibitor, miR-10a-5p levels decreased in 4 out of 6 progressors, correlating with an increase in HIV-specific cytotoxic responses. The effects of miR-10a-5p inhibition on HIV-specific CTL responses were modest, short-lived, and occurred before day seven after modulation. IL-4 and TNF-α levels strongly correlated with HIV-specific cytotoxic capacity. Thus, inhibition of miR-10a-5p enhanced HIV-specific CD8+ T cell capacity in progressors. Our pilot study proves the concept that miRNA modulation is a feasible strategy to combat HIV persistence by enhancing specific cytotoxic immune responses, which will inform new approaches for achieving an antiretroviral therapy-free HIV remission.


Assuntos
Infecções por HIV , Soropositividade para HIV , HIV-1 , MicroRNAs , Linfócitos T CD8-Positivos , Humanos , Interleucina-4/farmacologia , MicroRNAs/genética , MicroRNAs/farmacologia , Projetos Piloto , Linfócitos T Citotóxicos , Fator de Necrose Tumoral alfa/farmacologia
14.
J Clin Med ; 11(13)2022 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-35806864

RESUMO

Background: Although human immunodeficiency virus type 1 (HIV-1) reservoir size is very stable under antiretroviral therapy (ART), individuals exposed to the Hepatitis C virus (HCV) (chronically coinfected and spontaneous clarifiers) show an increase in HIV reservoir size and in spliced viral RNA, which could indicate that the viral protein regulator Tat is being more actively synthesized and, thus, could lead to a higher yield of new HIV. However, it is still unknown whether the effect of HCV elimination with direct-acting antivirals (DAAs) could modify the HIV reservoir and splicing. Methods: This longitudinal study (48 weeks' follow-up after sustained virological response) involves 22 HIV+-monoinfected individuals, 17 HIV+/HCV- spontaneous clarifiers, and 24 HIV+/HCV+ chronically infected subjects who eliminated HCV with DAAs (all of them aviremic, viral load < 50). Viral-spliced RNA transcripts and proviral DNA copies were quantified by qPCR. Paired samples were analyzed using a mixed generalized linear model. Results: A decrease in HIV proviral DNA was observed in HIV+/HCV- subjects, but no significant differences were found for the other study groups. An increased production of multiple spliced transcripts was found in HIV+ and HIV+/HCV+ individuals. Conclusions: We conclude that elimination of HCV by DAAs was unable to revert the consequences derived from chronic HCV infection for the reservoir size and viral splicing, which could indicate an increased risk of rapid HIV-reservoir reactivation. Moreover, spontaneous clarifiers showed a significant decrease in the HIV reservoir, likely due to an enhanced immune response in these individuals.

15.
Front Immunol ; 13: 848630, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35359950

RESUMO

Background: Because inflammation is associated with mortality and has been linked to HIV transcription in lymphoid tissues during ART, it is necessary to address the long-term effects of switching 3-drug (3DR) to 2-drug regimens (2DR) on inflammation. Methods: Nested study in the Spanish AIDS Research Network. We selected PWH ART-naive initiating 3DR who achieved viral suppression in the first 48 weeks and either remained on 3DR or switched to 2DR (3TC+bPI; 3TC+DTG; DTG+RPV). We assessed the trajectories on inflammatory markers during ART using multivariate piecewise mixed models. Results: We analyzed 619 plasma samples from 148 patients (3DR, N=90; 2DR, N=58), the median follow-up was 4.6 (IQR 3.2-6.2) years. There were no significant differences in baseline characteristics between groups. After adjusting for potential confounders, patients with 3DR experienced a slow decline of IL6, hs-CRP, sCD14, sCD163, and D-dimer over time. In contrast, compared to 3DR, switching to 2DR was associated with increases in IL-6 (p=0.001), hs-CRP (p=0.003), and D-dimer (p=0.001) after year 3 from virologic suppression. 2DR was associated with a higher risk of hs-CRP quartile increase (aOR 3.3, 95%CI 1.1-10) and D-dimer quartile increase (aOR 3.7, 95%CI 1.1-13). The adjusted biomarker trajectories did not reveal a distinct pattern according to the type of 2DR used (bPI vs DTG). Conclusions: In this study in virally suppressed individuals, maintaining 3DR was associated with a more favorable long-term inflammatory profile than switching to 2DR. The potential clinical implications of these findings on the development of non-AIDS events deserve further investigation.


Assuntos
Fármacos Anti-HIV , Infecções por HIV , Fármacos Anti-HIV/uso terapêutico , Antirretrovirais/uso terapêutico , Biomarcadores , Proteína C-Reativa/uso terapêutico , Infecções por HIV/tratamento farmacológico , Humanos , Inflamação/tratamento farmacológico , Lamivudina
16.
PLoS One ; 17(8): e0272867, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35960731

RESUMO

The clinical presentations of COVID-19 may range from an asymptomatic or mild infection to a critical or fatal disease. Several host factors such as elderly age, male gender, and previous comorbidities seem to be involved in the most severe outcomes, but also an impaired immune response that causes a hyperinflammatory state but is unable to clear the infection. In order to get further understanding about this impaired immune response, we aimed to determine the association of specific HLA alleles with different clinical presentations of COVID-19. Therefore, we analyzed HLA Class I and II, as well as KIR gene sequences, in 72 individuals with Spanish Mediterranean Caucasian ethnicity who presented mild, severe, or critical COVID-19, according to their clinical characteristics and management. This cohort was recruited in Madrid (Spain) during the first and second pandemic waves between April and October 2020. There were no significant differences in HLA-A or HLA-B alleles among groups. However, despite the small sample size, we found that HLA-C alleles from group C1 HLA-C*08:02, -C*12:03, or -C*16:01 were more frequently associated in individuals with mild COVID-19 (43.8%) than in individuals with severe (8.3%; p = 0.0030; pc = 0.033) and critical (16.1%; p = 0.0014; pc = 0.0154) disease. C1 alleles are supposed to be highly efficient to present peptides to T cells, and HLA-C*12:03 may present a high number of verified epitopes from abundant SARS-CoV-2 proteins M, N, and S, thereby being allegedly able to trigger an efficient antiviral response. On the contrary, C2 alleles are usually poorly expressed on the cell surface due to low association with ß2-microglobulin (ß2M) and peptides, which may impede the adequate formation of stable HLA-C/ß2M/peptide heterotrimers. Consequently, this pilot study described significant differences in the presence of specific HLA-C1 alleles in individuals with different clinical presentations of COVID-19, thereby suggesting that HLA haplotyping could be valuable to get further understanding in the underlying mechanisms of the impaired immune response during critical COVID-19.


Assuntos
COVID-19 , Idoso , Alelos , COVID-19/genética , Antígenos HLA-C/genética , Humanos , Masculino , Peptídeos/genética , Projetos Piloto , SARS-CoV-2
17.
Emerg Microbes Infect ; 10(1): 493-496, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33704002

RESUMO

We aim to evaluate the role of single-nucleotide polymorphisms of the angiotensin-converting enzyme 2 in susceptibility to SARS-CoV-2 infection. We included 28 uninfected but highly exposed healthcare workers and 39 hospitalized patients with COVID-19. Thirty-five SNPs were rationally selected. Two variants were associated with increased risk of being susceptible to SARS-CoV-2: the minor A allele in the rs2106806 variant (OR 3.75 [95% CI 1.23-11.43]) and the minor T allele in the rs6629110 variant (OR 3.39 [95% CI 1.09-10.56]). Evaluating the role of genetic variants in susceptibility to SARS-CoV-2 infection could help identify more vulnerable individuals and suggest potential drug targets for COVID-19 patients.


Assuntos
Enzima de Conversão de Angiotensina 2/genética , COVID-19/genética , Predisposição Genética para Doença , Pessoal de Saúde , Polimorfismo de Nucleotídeo Único , SARS-CoV-2 , Adulto , Idoso , Idoso de 80 Anos ou mais , COVID-19/etiologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
18.
Front Immunol ; 12: 665329, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34122423

RESUMO

Infection by novel coronavirus SARS-CoV-2 causes different presentations of COVID-19 and some patients may progress to a critical, fatal form of the disease that requires their admission to ICU and invasive mechanical ventilation. In order to predict in advance which patients could be more susceptible to develop a critical form of COVID-19, it is essential to define the most adequate biomarkers. In this study, we analyzed several parameters related to the cellular immune response in blood samples from 109 patients with different presentations of COVID-19 who were recruited in Hospitals and Primary Healthcare Centers in Madrid, Spain, during the first pandemic peak between April and June 2020. Hospitalized patients with the most severe forms of COVID-19 showed a potent inflammatory response that was not translated into an efficient immune response. Despite the high levels of effector cytotoxic cell populations such as NK, NKT and CD8+ T cells, they displayed immune exhaustion markers and poor cytotoxic functionality against target cells infected with pseudotyped SARS-CoV-2 or cells lacking MHC class I molecules. Moreover, patients with critical COVID-19 showed low levels of the highly cytotoxic TCRγδ+ CD8+ T cell subpopulation. Conversely, CD4 count was greatly reduced in association to high levels of Tregs, low plasma IL-2 and impaired Th1 differentiation. The relative importance of these immunological parameters to predict COVID-19 severity was analyzed by Random Forest algorithm and we concluded that the most important features were related to an efficient cytotoxic response. Therefore, efforts to fight against SARS-CoV-2 infection should be focused not only to decrease the disproportionate inflammatory response, but also to elicit an efficient cytotoxic response against the infected cells and to reduce viral replication.


Assuntos
COVID-19/epidemiologia , COVID-19/imunologia , Citotoxicidade Imunológica , Unidades de Terapia Intensiva , Leucócitos Mononucleares/imunologia , Admissão do Paciente/estatística & dados numéricos , SARS-CoV-2/imunologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Biomarcadores , COVID-19/diagnóstico , COVID-19/virologia , Comorbidade , Citocinas/metabolismo , Feminino , Humanos , Imunofenotipagem , Leucócitos Mononucleares/metabolismo , Masculino , Pessoa de Meia-Idade , Índice de Gravidade de Doença , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo
19.
Front Immunol ; 12: 742631, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34616404

RESUMO

SARS-CoV-2 infection causes COVID-19, ranging from mild to critical disease in symptomatic subjects. It is essential to better understand the immunologic responses occurring in patients with the most severe outcomes. In this study, parameters related to the humoral immune response elicited against SARS-CoV-2 were analysed in 61 patients with different presentations of COVID-19 who were recruited in Hospitals and Primary Healthcare Centres in Madrid, Spain, during the first pandemic peak between April and June 2020. Subjects were allocated as mild patients without hospitalization, severe patients hospitalized or critical patients requiring ICU assistance. Critical patients showed significantly enhanced levels of B cells with memory and plasmablast phenotypes, as well as higher levels of antibodies against SARS-CoV-2 with neutralization ability, which were particularly increased in male gender. Despite all this, antibody-dependent cell-mediated cytotoxicity was defective in these individuals. Besides, patients with critical COVID-19 also showed increased IgG levels against herpesvirus such as CMV, EBV, HSV-1 and VZV, as well as detectable CMV and EBV viremia in plasma. Altogether, these results suggest an enhanced but ineffectual immune response in patients with critical COVID-19 that allowed latent herpesvirus reactivation. These findings should be considered during the clinical management of these patients due to the potential contribution to the most severe disease during SARS-CoV-2 infection.


Assuntos
Citotoxicidade Celular Dependente de Anticorpos , COVID-19/imunologia , SARS-CoV-2/fisiologia , Idoso , Idoso de 80 Anos ou mais , Anticorpos Antivirais/sangue , COVID-19/virologia , Estudos de Coortes , Estudos Transversais , Feminino , Hospitalização , Humanos , Unidades de Terapia Intensiva/estatística & dados numéricos , Masculino , Pessoa de Meia-Idade , SARS-CoV-2/genética , SARS-CoV-2/imunologia , Espanha
20.
Biochem Pharmacol ; 182: 114231, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32979351

RESUMO

Human immunodeficiency virus (HIV) remains incurable due to latent reservoirs established in non-activated CD4 T cells. Current efforts to achieve a functional cure rely on immunomodulatory strategies focused on enhancing the functions of cytotoxic cells. Implementation of these actions requires a coordinated activation of the viral transcription in latently infected cells so that the reservoir became visible and accessible to cytotoxic cells. As no latency reversing agent (LRA) has been shown to be completely effective, new combinations are of increasing importance. Recent data have shown that maraviroc is a new LRA. In this work, we have explored how the combination of maraviroc with other LRAs influences on HIV reactivation using in vitro latency models as well as on the cell viability of CD8 T cells from ART-treated patients. Maraviroc reactivated HIV with a potency similar to other LRAs. Triple combinations resulted toxic and were rejected. No dual combination was synergistic. The combination with panobinostat or disulfiram maintained the effect of both drugs without inducing cell proliferation or toxicity. Maraviroc does not alter the viability of CD8 T cells isolated from patients under antiretroviral treatment. This finding enhances the properties of maraviroc as a LRA.


Assuntos
Fármacos Anti-HIV/farmacologia , Linfócitos T CD8-Positivos/efeitos dos fármacos , Inibidores da Fusão de HIV/farmacologia , HIV-1/efeitos dos fármacos , Maraviroc/farmacologia , Ativação Viral/efeitos dos fármacos , Latência Viral/efeitos dos fármacos , Adulto , Fármacos Anti-HIV/uso terapêutico , Linfócitos T CD8-Positivos/fisiologia , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Inibidores da Fusão de HIV/uso terapêutico , Infecções por HIV/tratamento farmacológico , Infecções por HIV/fisiopatologia , HIV-1/fisiologia , Humanos , Masculino , Maraviroc/uso terapêutico , Pessoa de Meia-Idade , Ativação Viral/fisiologia , Latência Viral/fisiologia , Replicação Viral/efeitos dos fármacos , Replicação Viral/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA