Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Adv Funct Mater ; 33(34)2023 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-38046826

RESUMO

Efficient encapsulation and sustained release of small hydrophilic molecules from traditional hydrogel systems have been challenging due to the large mesh size of 3D networks and high water content. Furthermore, the encapsulated molecules are prone to early release from the hydrogel prior to use, resulting in a short shelf life of the formulation. Here, we present a hydration-induced void-containing hydrogel (HVH) based on hyperbranched polyglycerol-poly(propylene oxide)-hyperbranched polyglycerol (HPG-PPG-HPG) as a robust and efficient delivery system for small hydrophilic molecules. Specifically, after the HPG-PPG-HPG is incubated overnight at 4 °C in the drug solution, it is hydrated into a hydrogel containing micron-sized voids, which could encapsulate hydrophilic drugs and achieve 100% drug encapsulation efficiency. In addition, the voids are surrounded by a densely packed polymer matrix, which restricts drug transport to achieve sustained drug release. The hydrogel/drug formulation can be stored for several months without changing the drug encapsulation and release properties. HVH hydrogels are injectable due to shear thinning properties. In rats, a single injection of the HPG-PPG-HPG hydrogel containing 8 µg of tetrodotoxin (TTX) produced sciatic nerve block lasting up to 10 hours without any TTX-related systemic toxicity nor local toxicity to nerves and muscles.

2.
Am J Hum Biol ; 35(11): e23943, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37358306

RESUMO

OBJECTIVES: Breastfeeding is an energetically costly and intense form of human parental investment, providing sole-source nutrition in early infancy and bioactive components, including immune factors. Given the energetic cost of lactation, milk factors may be subject to tradeoffs, and variation in concentrations have been explored utilizing the Trivers-Willard hypothesis. As human milk immune factors are critical to developing immune system and protect infants against pathogens, we tested whether concentrations of milk immune factors (IgA, IgM, IgG, EGF, TGFß2, and IL-10) vary in response to infant sex and maternal condition (proxied by maternal diet diversity [DD] and body mass index [BMI]) as posited in the Trivers-Willard hypothesis and consider the application of the hypothesis to milk composition. METHODS: We analyzed concentrations of immune factors in 358 milk samples collected from women residing in 10 international sites using linear mixed-effects models to test for an interaction between maternal condition, including population as a random effect and infant age and maternal age as fixed effects. RESULTS: IgG concentrations were significantly lower in milk produced by women consuming diets with low diversity with male infants than those with female infants. No other significant associations were identified. CONCLUSIONS: IgG concentrations were related to infant sex and maternal diet diversity, providing minimal support for the hypothesis. Given the lack of associations across other select immune factors, results suggest that the Trivers-Willard hypothesis may not be broadly applied to human milk immune factors as a measure of maternal investment, which are likely buffered against perturbations in maternal condition.


Assuntos
Leite Humano , Estado Nutricional , Feminino , Lactente , Masculino , Humanos , Lactação/fisiologia , Aleitamento Materno , Fatores Imunológicos , Imunoglobulina G
3.
Annu Rev Nutr ; 41: 283-308, 2021 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-34115518

RESUMO

Because breastfeeding provides optimal nutrition and other benefits for infants (e.g., lower risk of infectious disease) and benefits for mothers (e.g., less postpartum bleeding), many organizations recommend that healthy infants be exclusively breastfed for 4 to 6 months in the United States and 6 months internationally. Recommendations related to how long breastfeeding should continue, however, are inconsistent. The objective of this article is to review the literature related to evidence for benefits of breastfeeding beyond 1 year for mothers and infants. In summary, human milk represents a good source of nutrients and immune components beyond 1 year. Some studies point toward lower infant mortality in undernourished children breastfed for >1 year, and prolonged breastfeeding increases interbirth intervals. Data on other outcomes (e.g., growth, diarrhea, obesity, and maternal weight loss) are inconsistent, often lacking sufficient control for confounding variables. There is a substantial need for rigorous, prospective, mixed-methods, cross-cultural research on this topic.


Assuntos
Aleitamento Materno , Estado Nutricional , Criança , Feminino , Humanos , Lactente , Obesidade , Estudos Prospectivos , Estados Unidos
4.
Matern Child Nutr ; 16(4): e13032, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32472745

RESUMO

The novel coronavirus SARS-CoV-2 has emerged as one of the most compelling and concerning public health challenges of our time. To address the myriad issues generated by this pandemic, an interdisciplinary breadth of research, clinical and public health communities has rapidly engaged to collectively find answers and solutions. One area of active inquiry is understanding the mode(s) of SARS-CoV-2 transmission. Although respiratory droplets are a known mechanism of transmission, other mechanisms are likely. Of particular importance to global health is the possibility of vertical transmission from infected mothers to infants through breastfeeding or consumption of human milk. However, there is limited published literature related to vertical transmission of any human coronaviruses (including SARS-CoV-2) via human milk and/or breastfeeding. Results of the literature search reported here (finalized on 17 April 2020) revealed a single study providing some evidence of vertical transmission of human coronavirus 229E; a single study evaluating presence of SARS-CoV in human milk (it was negative); and no published data on MERS-CoV and human milk. We identified 13 studies reporting human milk tested for SARS-CoV-2; one study (a non-peer-reviewed preprint) detected the virus in one milk sample, and another study detected SARS-CoV-2 specific IgG in milk. Importantly, none of the studies on coronaviruses and human milk report validation of their collection and analytical methods for use in human milk. These reports are evaluated here, and their implications related to the possibility of vertical transmission of coronaviruses (in particular, SARS-CoV-2) during breastfeeding are discussed.


Assuntos
COVID-19/transmissão , COVID-19/virologia , Transmissão Vertical de Doenças Infecciosas/estatística & dados numéricos , Leite Humano/virologia , SARS-CoV-2/isolamento & purificação , Adulto , Anticorpos Antivirais/análise , Aleitamento Materno , COVID-19/diagnóstico , Teste para COVID-19 , Feminino , Idade Gestacional , Humanos , Imunoglobulina G/análise , Lactente , Recém-Nascido , Masculino , Gravidez , Complicações Infecciosas na Gravidez/virologia , SARS-CoV-2/imunologia
5.
J Nutr ; 149(6): 902-914, 2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-31063198

RESUMO

BACKGROUND: Neonatal gastrointestinal (GI) bacterial community structure may be related to bacterial communities of the mother, including those of her milk. However, very little is known about the diversity in and relationships among complex bacterial communities in mother-infant dyads. OBJECTIVE: Our primary objective was to assess whether microbiomes of milk are associated with those of oral and fecal samples of healthy lactating women and their infants. METHODS: Samples were collected 9 times from day 2 to 6 mo postpartum from 21 healthy lactating women and their infants. Milk was collected via complete breast expression, oral samples via swabs, and fecal samples from tissue (mothers) and diapers (infants). Microbiomes were characterized using high-throughput sequencing of the 16S ribosomal RNA (rRNA) gene. Alpha and beta diversity indices were used to compare microbiomes across time and sample types. Membership and composition of microbiomes were analyzed using nonmetric multidimensional scaling and canonical correlation analysis (CCA). The contribution of various bacterial communities of the mother-infant dyad to both milk and infant fecal bacterial communities were estimated using SourceTracker2. RESULTS: Bacterial community structures were relatively unique to each sample type. The most abundant genus in milk and maternal and infant oral samples was Streptococcus (47.1% ± 2.3%, 53.9% ± 1.3%, and 69.1% ± 1.8%, respectively), whereas Bacteroides were predominant in maternal and infant fecal microbiomes (22.9% ± 1.3% and 21.4% ± 2.4%, respectively). The milk microbiome was more similar to the infant oral microbiome than the infant fecal microbiome. However, CCA suggested strong associations between the complex microbial communities of milk and those of all other sample types collected. CONCLUSIONS: These findings suggest complex microbial interactions between breastfeeding mothers and their infants and support the hypothesis that variation in the milk microbiome may influence the infant GI microbiome.


Assuntos
Microbiota/genética , Leite Humano/microbiologia , Adulto , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Biodiversidade , Fezes/microbiologia , Feminino , Microbioma Gastrointestinal/genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Lactente , Recém-Nascido , Lactação , Estudos Longitudinais , Masculino , Relações Mãe-Filho , Mães , Boca/microbiologia , Análise Multivariada , Período Pós-Parto , Gravidez , Estudos Prospectivos , RNA Ribossômico 16S/genética , Streptococcus/genética , Streptococcus/isolamento & purificação
6.
Am J Phys Anthropol ; 169(3): 526-539, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31012086

RESUMO

OBJECTIVES: Establishment and development of the infant gastrointestinal microbiome (GIM) varies cross-culturally and is thought to be influenced by factors such as gestational age, birth mode, diet, and antibiotic exposure. However, there is little data as to how the composition of infants' households may play a role, particularly from a cross-cultural perspective. Here, we examined relationships between infant fecal microbiome (IFM) diversity/composition and infants' household size, number of siblings, and number of other household members. MATERIALS AND METHODS: We analyzed 377 fecal samples from healthy, breastfeeding infants across 11 sites in eight different countries (Ethiopia, The Gambia, Ghana, Kenya, Peru, Spain, Sweden, and the United States). Fecal microbial community structure was determined by amplifying, sequencing, and classifying (to the genus level) the V1-V3 region of the bacterial 16S rRNA gene. Surveys administered to infants' mothers identified household members and composition. RESULTS: Our results indicated that household composition (represented by the number of cohabitating siblings and other household members) did not have a measurable impact on the bacterial diversity, evenness, or richness of the IFM. However, we observed that variation in household composition categories did correspond to differential relative abundances of specific taxa, namely: Lactobacillus, Clostridium, Enterobacter, and Klebsiella. DISCUSSION: This study, to our knowledge, is the largest cross-cultural study to date examining the association between household composition and the IFM. Our results indicate that the social environment of infants (represented here by the proxy of household composition) may influence the bacterial composition of the infant GIM, although the mechanism is unknown. A higher number and diversity of cohabitants and potential caregivers may facilitate social transmission of beneficial bacteria to the infant gastrointestinal tract, by way of shared environment or through direct physical and social contact between the maternal-infant dyad and other household members. These findings contribute to the discussion concerning ways by which infants are influenced by their social environments and add further dimensionality to the ongoing exploration of social transmission of gut microbiota and the "old friends" hypothesis.


Assuntos
Bactérias , Características da Família/etnologia , Microbioma Gastrointestinal/genética , Adolescente , Adulto , África , América , Antropologia Física , Bactérias/classificação , Bactérias/genética , Aleitamento Materno , Comparação Transcultural , Europa (Continente) , Fezes/microbiologia , Humanos , Lactente , Recém-Nascido , Mães , Irmãos , Adulto Jovem
7.
Int J Mol Sci ; 21(1)2019 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-31905614

RESUMO

B-cell lymphoma-extra large (Bcl-xL) is an anti-apoptotic member of the Bcl2 family of proteins, which supports neurite outgrowth and neurotransmission by improving mitochondrial function. During excitotoxic stimulation, however, Bcl-xL undergoes post-translational cleavage to ∆N-Bcl-xL, and accumulation of ∆N-Bcl-xL causes mitochondrial dysfunction and neuronal death. In this study, we hypothesized that the generation of reactive oxygen species (ROS) during excitotoxicity leads to formation of ∆N-Bcl-xL. We further proposed that the application of an antioxidant with neuroprotective properties such as α-tocotrienol (TCT) will prevent ∆N-Bcl-xL-induced mitochondrial dysfunction via its antioxidant properties. Primary hippocampal neurons were treated with α-TCT, glutamate, or a combination of both. Glutamate challenge significantly increased cytosolic and mitochondrial ROS and ∆N-Bcl-xL levels. ∆N-Bcl-xL accumulation was accompanied by intracellular ATP depletion, loss of mitochondrial membrane potential, and cell death. α-TCT prevented loss of mitochondrial membrane potential in hippocampal neurons overexpressing ∆N-Bcl-xL, suggesting that ∆N-Bcl-xL caused the loss of mitochondrial function under excitotoxic conditions. Our data suggest that production of ROS is an important cause of ∆N-Bcl-xL formation and that preventing ROS production may be an effective strategy to prevent ∆N-Bcl-xL-mediated mitochondrial dysfunction and thus promote neuronal survival.


Assuntos
Antioxidantes/farmacologia , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Processamento de Proteína Pós-Traducional , Proteólise , Tocotrienóis/farmacologia , Trifosfato de Adenosina/metabolismo , Animais , Células Cultivadas , Hipocampo/citologia , Potencial da Membrana Mitocondrial , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Neurônios/metabolismo , Neurônios/fisiologia , Estresse Oxidativo , Ratos , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo , Proteína bcl-X/metabolismo
8.
Am J Hum Biol ; 30(4): e23131, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29700885

RESUMO

OBJECTIVES: We present the first available data on the human milk microbiome (HMM) from small-scale societies (hunter-gatherers and horticulturalists in the Central African Republic [CAR]) and explore relationships among subsistence type and seasonality on HMM diversity and composition. Additionally, as humans are cooperative breeders and, throughout our evolutionary history and today, we rear offspring within social networks, we examine associations between the social environment and the HMM. Childrearing and breastfeeding exist in a biosocial nexus, which we hypothesize influences the HMM. METHODS: Milk samples from hunter-gatherer and horticultural mothers (n = 41) collected over two seasons, were analyzed for their microbial composition. A subsample of these women's infants (n = 33) also participated in detailed naturalistic behavioral observations which identified the breadth of infants' social and caregiving networks and the frequency of contact they had with caregivers. RESULTS: Analyses of milk produced by CAR women indicated that HMM diversity and community composition were related to the size of the mother-infant dyad's social network and frequency of care that infants receive. The abundance of some microbial taxa also varied significantly across populations and seasons. Alpha diversity, however, was not related to subsistence type or seasonality. CONCLUSION: While the origins of the HMM are not fully understood, our results provide evidence regarding possible feedback loops among the infant, the mother, and the mother's social network that might influence HMM composition.


Assuntos
Educação Infantil , Estilo de Vida , Microbiota , Leite Humano/microbiologia , Meio Social , Adolescente , Bactérias/classificação , República Centro-Africana , Criança , Pré-Escolar , Humanos , Lactente , Recém-Nascido , Estações do Ano
9.
J Nutr ; 147(9): 1739-1748, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28724659

RESUMO

Background: The human milk microbiome has been somewhat characterized, but little is known about changes over time and relations with maternal factors such as nutrient intake.Objective: We sought to characterize the human milk microbiome and described associations with maternal nutrient intake, time postpartum, delivery mode, and body mass index (BMI; in kg/m2).Methods: Milk samples (n = 104) and 24-h diet recalls were collected 9 times from 21 healthy lactating women from day 2 to 6 mo postpartum. Women were classified by BMI as healthy weight (<25) or overweight or obese (≥25). Bacterial taxa were characterized with the use of the high-throughput sequencing of the 16S ribosomal RNA gene.Results: The milk microbiome was relatively constant over time, although there were small changes in some of the lesser-abundant genera. Relative abundances of several taxa were associated with BMI, delivery mode, and infant sex. For instance, overweight and obese mothers produced milk with a higher relative abundance of Granulicatella than did healthy-weight women (1.8% ± 0.6% compared with 0.4% ± 0.2%, respectively; P < 0.05). Relative abundances of several bacterial taxa were also associated with variations in maternal dietary intake. For example, intakes of saturated fatty acids (rs = -0.59; P = 0.005) and monounsaturated fatty acids (rs = -0.46; P = 0.036) were inversely associated with the relative abundance of Corynebacterium; total carbohydrates (rs = -0.54; P = 0.011), disaccharides (rs = -0.47; P = 0.031), and lactose (rs = -0.51; P = 0.018) were negatively associated with Firmicutes; and protein consumption was positively correlated with the relative abundance of Gemella (rs = 0.46; P = 0.037).Conclusions: Factors associated with variations in the human milk microbiome are complex and may include maternal nutrient intake, maternal BMI, delivery mode, and infant sex. Future studies designed to investigate the relation between maternal nutrient intake and the milk microbiome should strive to also evaluate dietary supplement usage and analyze the collected milk for its nutrient content.


Assuntos
Bactérias/efeitos dos fármacos , Índice de Massa Corporal , Carboidratos da Dieta/farmacologia , Gorduras na Dieta/farmacologia , Proteínas Alimentares/farmacologia , Lactação , Leite Humano/microbiologia , Adulto , Bactérias/crescimento & desenvolvimento , Parto Obstétrico , Dieta , Dissacarídeos/farmacologia , Ácidos Graxos Monoinsaturados/farmacologia , Comportamento Alimentar , Feminino , Humanos , Lactente , Lactose/farmacologia , Masculino , Fenômenos Fisiológicos da Nutrição Materna , Obesidade/microbiologia , Sobrepeso , Período Pós-Parto
10.
J Appl Toxicol ; 36(4): 543-53, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26817529

RESUMO

Immune cells play an important role in recognizing and removing foreign objects, such as nanoparticles. Among various parameters, surface coatings of nanoparticles are the first contact with biological system, which critically affect nanoparticle interactions. Here, surface coating effects on nanoparticle cellular uptake, toxicity and ability to trigger immune response were evaluated on a human monocyte cell line using iron oxide nanoparticles. The cells were treated with nanoparticles of three types of coatings (negatively charged polyacrylic acid, positively charged polyethylenimine and neutral polyethylene glycol). The cells were treated at various nanoparticle concentrations (5, 10, 20, 30, 50 µg ml(-1) or 2, 4, 8, 12, 20 µg cm(-2)) with 6 h incubation or treated at a nanoparticle concentration of 50 µg ml(-1) (20 µg cm(-2)) at different incubation times (6, 12, 24, 48 or 72 h). Cell viability over 80% was observed for all nanoparticle treatment experiments, regardless of surface coatings, nanoparticle concentrations and incubation times. The much lower cell viability for cells treated with free ligands (e.g. ~10% for polyethylenimine) suggested that the surface coatings were tightly attached to the nanoparticle surfaces. The immune responses of cells to nanoparticles were evaluated by quantifying the expression of toll-like receptor 2 and tumor necrosis factor-α. The expression of tumor necrosis factor-α and toll-like receptor 2 were not significant in any case of the surface coatings, nanoparticle concentrations and incubation times. These results provide useful information to select nanoparticle surface coatings for biological and biomedical applications.


Assuntos
Compostos Férricos/toxicidade , Monócitos/efeitos dos fármacos , Nanopartículas/toxicidade , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Compostos Férricos/química , Humanos , Imunidade Inata/efeitos dos fármacos , Monócitos/citologia , Monócitos/metabolismo , Nanopartículas/química , Polietilenoglicóis/química , Propriedades de Superfície , Receptor 2 Toll-Like/genética , Receptor 2 Toll-Like/metabolismo , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
11.
J Nutr ; 145(10): 2379-88, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26311809

RESUMO

BACKGROUND: The fecal microbiota has been characterized in some adult populations, but little is known about its community structure during lactation. OBJECTIVES: We characterized the maternal fecal microbiome during lactation and explored possible mediating factors such as nutrition. METHODS: Fecal samples were collected from 20 lactating women from 2 d to 6 mo postpartum, and bacterial taxa were characterized with the use of high-throughput sequencing. Bacterial community structure (at each taxonomic level) and relations between bacterial taxa and environmental and dietary variables were visualized and analyzed with the use of stacked bar charts, principal component analysis, and multivariate analyses such as nonmetric multidimensional scaling and canonical correlation analysis. RESULTS: Complex bacterial community structure was somewhat similar to those previously published for other adult populations (although there were some notable differences), and there were no clear associations with time postpartum or anthropometric or environmental variables. However, Spearman rank correlations suggested that increased intake of pantothenic acid, riboflavin, vitamin B-6, and vitamin B-12 were related to increased relative abundance of Prevotella (r = 0.45, 0.39, 0.34, and 0.24, respectively; P ≤ 0.01) and decreased relative abundance of Bacteroides (r = -0.55, -0.46, -0.32, and -0.35, respectively; P ≤ 0.01). Intakes of copper, magnesium, manganese, and molybdenum were positively associated with Firmicutes (r = 0.33, 0.38, 0.44, and 0.51, respectively; P ≤ 0.01) and negatively associated with Bacteroidetes (r = -0.38, -0.44, -0.48, and -0.53, respectively; P ≤ 0.01). Overall, data consistently suggest that increased consumption of a more nutrient- and calorie-rich diet was positively associated with relative abundance of Firmicutes. CONCLUSIONS: The fecal microbiome of lactating women is relatively stable in the postpartum period and somewhat similar to that of other adult populations. Variation in dietary constituents may be related to that of relative abundance of individual bacterial taxa. Controlled dietary intervention studies will be required to determine whether these associations are causal in nature.


Assuntos
Dieta , Fezes/microbiologia , Microbioma Gastrointestinal , Lactação , Fenômenos Fisiológicos da Nutrição Materna , Adulto , Feminino , Humanos , Idaho , Estudos Longitudinais , Análise Multivariada , Período Pós-Parto , Análise de Componente Principal , Estudos Prospectivos , Saúde da População Rural , Washington
12.
Front Immunol ; 15: 1329092, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38585272

RESUMO

Background: There is a paucity of data on the presence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in feces of lactating women with coronavirus disease 2019 (COVID-19) and their breastfed infants as well as associations between fecal shedding and symptomatology. Objective: We examined whether and to what extent SARS-CoV-2 is detectable in the feces of lactating women and their breastfed infants following maternal COVID-19 diagnosis. Methods: This was a longitudinal study carried out from April 2020 to December 2021 involving 57 breastfeeding maternal-infant dyads: 33 dyads were enrolled within 7 d of maternal COVID-19 diagnosis, and 24 healthy dyads served as controls. Maternal/infant fecal samples were collected by participants, and surveys were administered via telephone over an 8-wk period. Feces were analyzed for SARS-CoV-2 RNA. Results: Signs/symptoms related to ears, eyes, nose, and throat (EENT); general fatigue/malaise; and cardiopulmonary signs/symptoms were commonly reported among mothers with COVID-19. In infants of mothers with COVID-19, EENT, immunologic, and cardiopulmonary signs/symptoms were most common, but prevalence did not differ from that of infants of control mothers. SARS-CoV-2 RNA was detected in feces of 7 (25%) women with COVID-19 and 10 (30%) of their infants. Duration of fecal shedding ranged from 1-4 wk for both mothers and infants. SARS-CoV-2 RNA was sparsely detected in feces of healthy dyads, with only one mother's and two infants' fecal samples testing positive. There was no relationship between frequencies of maternal and infant SARS-CoV-2 fecal shedding (P=0.36), although presence of maternal or infant fever was related to increased likelihood (7-9 times greater, P≤0.04) of fecal shedding in infants of mothers with COVID-19.


Assuntos
COVID-19 , Lactente , Humanos , Feminino , Masculino , COVID-19/diagnóstico , COVID-19/epidemiologia , SARS-CoV-2 , Aleitamento Materno , Teste para COVID-19 , Lactação , Estudos Longitudinais , RNA Viral , Prevalência , Fezes
13.
Nutr Res ; 101: 31-42, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35366596

RESUMO

Alpha-tocotrienol (α-TCT) is a member of the vitamin E family. It has been reported to protect the brain against various pathologies including cerebral ischemia and neurodegeneration. However, it is still unclear if α-TCT exhibits beneficial effects during brain development. We hypothesized that treatment with α-TCT improves intracellular redox homeostasis supporting normal development of neurons. We found that primary hippocampal neurons isolated from rat feti grown in α-TCT-containing media achieved greater levels of neurite complexity compared to ethanol-treated control neurons. Neurons were treated with 1 µM α-TCT for 3 weeks, and media were replaced with fresh α-TCT every week. Treatment with α-TCT increased α-TCT levels (26 pmol/mg protein) in the cells, whereas the control neurons did not contain α-TCT. α-TCT-treated neurons produced adenosine triphosphate (ATP) at a higher rate and increased ATP retention at neurites, supporting formation of neurite branches. Although treatment with α-TCT alone did not change neuronal viability, neurons grown in α-TCT were more resistant to death at maturity. We further found that messenger RNA and protein levels of B-cell lymphoma-extra large (Bcl-xL) are increased by α-TCT treatment without inducing posttranslational cleavage of Bcl-xL. Bcl-xL is known to enhance mitochondrial energy production, which improves neuronal function including neurite outgrowth and neurotransmission. Therefore α-TCT-mediated Bcl-xL upregulation may be the central mechanism of neuroprotection seen in the α-TCT-treated group. In summary, treatment with α-TCT upregulates Bcl-xL and increases ATP levels at neurites. This correlates with increased neurite branching during development and with protection of mature neurons against oxidative stress.


Assuntos
Linfoma de Células B , Neurônios , Trifosfato de Adenosina/metabolismo , Trifosfato de Adenosina/farmacologia , Animais , Hipocampo/metabolismo , Linfoma de Células B/metabolismo , Ratos , Tocotrienóis , Regulação para Cima , Proteína bcl-X/genética , Proteína bcl-X/metabolismo
14.
Front Immunol ; 13: 1015002, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36304449

RESUMO

Infants exposed to caregivers infected with SARS-CoV-2 may have heightened infection risks relative to older children due to their more intensive care and feeding needs. However, there has been limited research on COVID-19 outcomes in exposed infants beyond the neonatal period. Between June 2020 - March 2021, we conducted interviews and collected capillary dried blood spots from 46 SARS-CoV-2 infected mothers and their infants (aged 1-36 months) for up to two months following maternal infection onset (COVID+ group, 87% breastfeeding). Comparative data were also collected from 26 breastfeeding mothers with no known SARS-CoV-2 infection or exposures (breastfeeding control group), and 11 mothers who tested SARS-CoV-2 negative after experiencing symptoms or close contact exposure (COVID- group, 73% breastfeeding). Dried blood spots were assayed for anti-SARS-CoV-2 S-RBD IgG and IgA positivity and anti-SARS-CoV-2 S1 + S2 IgG concentrations. Within the COVID+ group, the mean probability of seropositivity among infant samples was lower than that of corresponding maternal samples (0.54 and 0.87, respectively, for IgG; 0.33 and 0.85, respectively, for IgA), with likelihood of infant infection positively associated with the number of maternal symptoms and other household infections reported. COVID+ mothers reported a lower incidence of COVID-19 symptoms among their infants as compared to themselves and other household adults, and infants had similar PCR positivity rates as other household children. No samples returned by COVID- mothers or their infants tested antibody positive. Among the breastfeeding control group, 44% of mothers but none of their infants tested antibody positive in at least one sample. Results support previous research demonstrating minimal risks to infants following maternal COVID-19 infection, including for breastfeeding infants.


Assuntos
COVID-19 , SARS-CoV-2 , Lactente , Recém-Nascido , Adulto , Feminino , Criança , Humanos , Adolescente , Anticorpos Antivirais , Imunoglobulina G , Imunoglobulina A
15.
Front Nutr ; 8: 702857, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34552953

RESUMO

Introduction: Walnuts are considered a good source of essential fatty acids, which is unique among tree nuts. Walnuts are also composed of about 10-15% protein, but the quality of this protein has not been evaluated. Pistachios and almonds have been evaluated for their protein content using a protein digestibility-corrected amino acid score (PDCAAS), but it is unclear how the quality of protein in walnuts relates to that in other commonly consumed tree nuts. The objective of this study was to substantiate the protein quality of walnuts by determining their PDCAAS. Methods: A small, 10-day dietary intervention trial was conducted using male Sprague-Dawley rats (n = 8, 4 per group) with two diets: a nitrogen-free diet and a diet containing protein exclusively from defatted walnuts. Feed intake and fecal output of nitrogen were measured to estimate the true protein digestibility, and the amino acid compositions of walnuts compared to child and adult populations were used to calculate amino acid scores (AAS) and PDCAAS. Results: The true protein digestibility score of raw walnuts was calculated to be 86.22%. Raw walnuts contained 15.6 g protein/g walnut with AAS of 0.45 and 0.63 for children aged 6 months to 3 years and 3-10 years, respectively. For each population, a PDCAAS of 39 and 46% was calculated, respectively, using a protein conversion constant of 5.30. Using a protein constant of 6.25, a PDCAAS of 39% (6 months - 3 years) or 46% (3-10 years) was calculated. Conclusions: This is the first known assessment of the PDCAAS of walnuts. Like almonds, they appear to have a low-to-moderate score, indicating they are not a quality source of protein.

16.
Biology (Basel) ; 10(8)2021 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-34440004

RESUMO

B-cell lymphoma-extra large (Bcl-xL) is a mitochondrial protein known to inhibit mitochondria-dependent intrinsic apoptotic pathways. An increasing number of studies have demonstrated that Bcl-xL is critical in regulating neuronal energy metabolism and has a protective role in pathologies associated with an energy deficit. However, it is less known how Bcl-xL regulates physiological processes of the brain. In this study, we hypothesize that Bcl-xL is required for neurite branching and maturation during neuronal development by improving local energy metabolism. We found that the absence of Bcl-xL in rat primary hippocampal neurons resulted in mitochondrial dysfunction. Specifically, the ATP/ADP ratio was significantly decreased in the neurites of Bcl-xL depleted neurons. We further found that neurons transduced with Bcl-xL shRNA or neurons treated with ABT-263, a pharmacological inhibitor of Bcl-xL, showed impaired mitochondrial motility. Neurons lacking Bcl-xL had significantly decreased anterograde and retrograde movement of mitochondria and an increased stationary mitochondrial population when Bcl-xL was depleted by either means. These mitochondrial defects, including loss of ATP, impaired normal neurite development. Neurons lacking Bcl-xL showed significantly decreased neurite arborization, growth and complexity. Bcl-xL depleted neurons also showed impaired synapse formation. These neurons showed increased intracellular calcium concentration and were more susceptible to excitotoxic challenge. Bcl-xL may support positioning of mitochondria at metabolically demanding regions of neurites like branching points. Our findings suggest a role for Bcl-xL in physiological regulation of neuronal growth and development.

17.
Front Cell Infect Microbiol ; 11: 622550, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33842385

RESUMO

Recent work has demonstrated the existence of large inter-individual and inter-population variability in the microbiota of human milk from healthy women living across variable geographical and socio-cultural settings. However, no studies have evaluated the impact that variable sequencing approaches targeting different 16S rRNA variable regions may have on the human milk microbiota profiling results. This hampers our ability to make meaningful comparisons across studies. In this context, the main purpose of the present study was to re-process and re-sequence the microbiome in a large set of human milk samples (n = 412) collected from healthy women living at diverse international sites (Spain, Sweden, Peru, United States, Ethiopia, Gambia, Ghana and Kenya), by targeting a different 16S rRNA variable region and reaching a larger sequencing depth. Despite some differences between the results obtained from both sequencing approaches were notable (especially regarding alpha and beta diversities and Proteobacteria representation), results indicate that both sequencing approaches revealed a relatively consistent microbiota configurations in the studied cohorts. Our data expand upon the milk microbiota results we previously reported from the INSPIRE cohort and provide, for the first time across globally diverse populations, evidence of the impact that different DNA processing and sequencing approaches have on the microbiota profiles obtained for human milk samples. Overall, our results corroborate some similarities regarding the microbial communities previously reported for the INSPIRE cohort, but some differences were also detected. Understanding the impact of different sequencing approaches on human milk microbiota profiles is essential to enable meaningful comparisons across studies. Clinical Trial Registration: www.clinicaltrials.gov, identifier NCT02670278.


Assuntos
Microbiota , Leite Humano , Bactérias/genética , Etiópia , Feminino , Gâmbia , Humanos , Quênia , Peru , RNA Ribossômico 16S/genética , Espanha , Suécia
18.
mBio ; 12(1)2021 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-33563823

RESUMO

Whether mother-to-infant SARS-CoV-2 transmission can occur during breastfeeding and, if so, whether the benefits of breastfeeding outweigh this risk during maternal COVID-19 illness remain important questions. Using RT-qPCR, we did not detect SARS-CoV-2 RNA in any milk sample (n = 37) collected from 18 women following COVID-19 diagnosis. Although we detected evidence of viral RNA on 8 out of 70 breast skin swabs, only one was considered a conclusive positive result. In contrast, 76% of the milk samples collected from women with COVID-19 contained SARS-CoV-2-specific IgA, and 80% had SARS-CoV-2-specific IgG. In addition, 62% of the milk samples were able to neutralize SARS-CoV-2 infectivity in vitro, whereas milk samples collected prior to the COVID-19 pandemic were unable to do so. Taken together, our data do not support mother-to-infant transmission of SARS-CoV-2 via milk. Importantly, milk produced by infected mothers is a beneficial source of anti-SARS-CoV-2 IgA and IgG and neutralizes SARS-CoV-2 activity. These results support recommendations to continue breastfeeding during mild-to-moderate maternal COVID-19 illness.IMPORTANCE Results from prior studies assaying human milk for the presence of SARS-CoV-2, the causative virus of COVID-19, have suggested milk may act as a potential vehicle for mother-to-child transmission. Most previous studies are limited because they followed only a few participants, were cross-sectional, and/or failed to report how milk was collected and/or analyzed. As such, considerable uncertainty remains regarding whether human milk is capable of transmitting SARS-CoV-2 from mother to child. Here, we report that repeated milk samples collected from 18 women following COVID-19 diagnosis did not contain SARS-CoV-2 RNA; however, risk of transmission via breast skin should be further evaluated. Importantly, we found that milk produced by infected mothers is a source of anti-SARS-CoV-2 IgA and IgG and neutralizes SARS-CoV-2 activity. These results support recommendations to continue breastfeeding during mild-to-moderate maternal COVID-19 illness as milk likely provides specific immunologic benefits to infants.


Assuntos
Anticorpos Neutralizantes/metabolismo , Anticorpos Antivirais/metabolismo , COVID-19/imunologia , Leite Humano/imunologia , Complicações Infecciosas na Gravidez/imunologia , SARS-CoV-2/imunologia , Adulto , Mama/virologia , Aleitamento Materno , COVID-19/transmissão , COVID-19/virologia , Feminino , Humanos , Lactente , Transmissão Vertical de Doenças Infecciosas , Masculino , Leite Humano/virologia , Mães , Gravidez , Complicações Infecciosas na Gravidez/virologia , RNA Viral/isolamento & purificação , SARS-CoV-2/isolamento & purificação
19.
Microorganisms ; 9(6)2021 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-34072117

RESUMO

Previously published data from our group and others demonstrate that human milk oligosaccharide (HMOs), as well as milk and infant fecal microbial profiles, vary by geography. However, little is known about the geographical variation of other milk-borne factors, such as lactose and protein, as well as the associations among these factors and microbial community structures in milk and infant feces. Here, we characterized and contrasted concentrations of milk-borne lactose, protein, and HMOs, and examined their associations with milk and infant fecal microbiomes in samples collected in 11 geographically diverse sites. Although geographical site was strongly associated with milk and infant fecal microbiomes, both sample types assorted into a smaller number of community state types based on shared microbial profiles. Similar to HMOs, concentrations of lactose and protein also varied by geography. Concentrations of HMOs, lactose, and protein were associated with differences in the microbial community structures of milk and infant feces and in the abundance of specific taxa. Taken together, these data suggest that the composition of human milk, even when produced by relatively healthy women, differs based on geographical boundaries and that concentrations of HMOs, lactose, and protein in milk are related to variation in milk and infant fecal microbial communities.

20.
Front Immunol ; 12: 801797, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35003130

RESUMO

Background: Limited data are available regarding the balance of risks and benefits from human milk and/or breastfeeding during and following maternal infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Objective: To investigate whether SARS-CoV-2 can be detected in milk and on the breast after maternal coronavirus disease 2019 (COVID-19) diagnosis; and characterize concentrations of milk immunoglobulin (Ig) A specific to the SARS-CoV-2 spike glycoprotein receptor binding domain (RBD) during the 2 months after onset of symptoms or positive diagnostic test. Methods: Using a longitudinal study design, we collected milk and breast skin swabs one to seven times from 64 lactating women with COVID-19 over a 2-month period, beginning as early as the week of diagnosis. Milk and breast swabs were analyzed for SARS-CoV-2 RNA, and milk was tested for anti-RBD IgA. Results: SARS-CoV-2 was not detected in any milk sample or on 71% of breast swabs. Twenty-seven out of 29 (93%) breast swabs collected after breast washing tested negative for SARS-CoV-2. Detection of SARS-CoV-2 on the breast was associated with maternal coughing and other household COVID-19. Most (75%; 95% CI, 70-79%; n=316) milk samples contained anti-RBD IgA, and concentrations increased (P=.02) during the first two weeks following onset of COVID-19 symptoms or positive test. Milk-borne anti-RBD IgA persisted for at least two months in 77% of women. Conclusion: Milk produced by women with COVID-19 does not contain SARS-CoV-2 and is likely a lasting source of passive immunity via anti-RBD IgA. These results support recommendations encouraging lactating women to continue breastfeeding during and after COVID-19 illness.


Assuntos
Anticorpos Antivirais/análise , Imunoglobulina A/análise , Leite Humano/imunologia , SARS-CoV-2/imunologia , Adulto , Anticorpos Antivirais/imunologia , Aleitamento Materno , COVID-19/imunologia , Feminino , Humanos , Imunização Passiva , Imunoglobulina A/imunologia , Lactação , Estudos Longitudinais , Leite Humano/virologia , RNA Viral/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA