Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
MAbs ; 14(1): 2007564, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34965193

RESUMO

Rapid release of biopharmaceutical products enables a more efficient drug manufacturing process. Multi-attribute methods that target several product quality attributes (PQAs) at one time are an essential pillar of the rapid-release strategy. The novel, high-throughput, and nondestructive multi-attribute Raman spectroscopy (MARS) method combines Raman spectroscopy, design of experiments, and multivariate data analysis (MVDA). MARS allows the measurement of multiple PQAs for formulated protein therapeutics without sample preparation from a single spectroscopic scan. Variable importance in projection analysis is used to associate the chemical and spectral basis of targeted PQAs, which assists in model interpretation and selection. This study shows the feasibility of MARS for the measurement of both protein purity-related and formulation-related PQAs; measurements of protein concentration, osmolality, and some formulation additives were achieved by a generic multiproduct model for various protein products containing the same formulation components. MARS demonstrates the potential to be a powerful methodology to improve the efficiency of biopharmaceutical development and manufacturing, as it features fast turnaround time, good robustness, less human intervention, and potential for automation.


Assuntos
Anticorpos Monoclonais/química , Controle de Qualidade , Animais , Anticorpos Monoclonais/imunologia , Células CHO , Cricetulus , Proteínas Recombinantes/química , Proteínas Recombinantes/imunologia , Análise Espectral Raman
2.
Forensic Sci Int ; 263: 39-47, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27060443

RESUMO

A study (Muehlethaler et al. [9]) has demonstrated the application of chemometrics for the analysis of domestic red paints. The paints have been analyzed with IR and Raman spectroscopies. As a result of these analyses, exploratory techniques, such as principal component analysis (PCA) and hierarchical clusters analysis (HCA) have been applied to both IR and Raman spectra. This allowed to observe the structure of the data among those red paints, and infer potential groups among them and to propose a classification model based on their chemical composition. IR spectroscopy showed group patterns related mainly to the binder and extender composition of the paints, whereas Raman spectroscopy data were mainly related to the pigment composition. The aim of the present study is to evaluate the potential of a Multiblock algorithm applied to the same data set. The concept of Multiblock, as a chemometric tool, is to combine data from several different analytical techniques in order to visualize most of the information at once. IR and Raman spectroscopy are then considered as "blocks" of data of the same dataset. One algorithm called common component and specific weight analysis (CCSWA) has been used in order to produce independent PCAs for each block, and the combined (common) information in a score plot. The results of this study showed group patterns of the analyzed paints, related to both binder and pigment compositions in one single score plot. Moreover, the number of groups observed with the multiblock representation (20 groups) is higher than independent PCAs projections (12 and 7 groups for IR and Raman respectively). This new application of chemometrics showed a great potential in forensic science, as practitioners often use a combination of several analytical techniques in order to characterize samples. This could be helpful when multiple and complementary analytical techniques are used in order to characterize and compare paint samples.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA