Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Occup Environ Med ; 77(4): 214-222, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32079716

RESUMO

OBJECTIVE: The objective of the study was to examine the effects of occupational exposure to diisononyl phthalate (DINP) on serum testosterone levels in male workers. METHODS: From 2015 to 2018, 97 male workers were recruited from six French factories in the plastics industry. In a short longitudinal study, changes over 3 days in the level of total or free serum testosterone and DINP exposure were measured. DINP exposure was measured by urinary biomonitoring: mono-4-methyl-7-oxo-octyl phthalate (OXO-MINP), mono-4-methyl-7-hydroxy-octyl phthalate (OH-MINP) and mono-4-methyl-7-carboxyheptylphthalate (CX-MINP). We further analysed changes in follicle-stimulating hormone, luteinising hormone, total testosterone to oestradiol ratio and two bone turnover markers (procollagen-type-I-N propeptide, C terminal cross-linking telopeptide of type I collagen), and erectile dysfunction via standardised questionnaires (International Index of Erectile Function, Androgen Deficiency in Aging Males). Linear mixed models were used with the variables 'age' and 'abdominal diameter' included as confounder. RESULTS: Increased urinary OXO-MINP was associated with a significant decrease in total serum testosterone concentrations, but only for workers who exhibited the smallest variations and lowest exposures (p=0.002). The same pattern was observed for CX-MINP but was not significant; no association with OH-MINP was detectable. More self-reported erectile problems were found in workers exposed directly to DINP at the workstation (p=0.01). No changes were observed for the other biological parameters. CONCLUSIONS: Short-term exposure to DINP is associated with a decrease in total serum testosterone levels in male workers. Our results suggest that DINP could present weak antiandrogenic properties in humans, but these need to be confirmed by other studies.


Assuntos
Exposição Ocupacional/efeitos adversos , Ácidos Ftálicos/efeitos adversos , Ácidos Ftálicos/urina , Testosterona/sangue , Adulto , Biomarcadores/sangue , Biomarcadores/urina , Monitoramento Ambiental/métodos , França , Humanos , Indústrias , Modelos Lineares , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Exposição Ocupacional/análise , Plásticos
2.
Drug Chem Toxicol ; 41(1): 42-50, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28633598

RESUMO

Methylethylketone (MEK) is widely used in industry, often in combination with other compounds. Although nontoxic, it can make other chemicals harmful. This study investigates the fate of MEK in rat blood, brain and urine as well as its hepatic metabolism following inhalation over 1 month (at 20, 200 or 1400 ppm). MEK did not significantly accumulate in the organism: blood concentrations were similar after six-hour or 1-month inhalation periods, and brain concentrations only increased slightly after 1 month's exposure. Urinary excretion, based on the major metabolites, 2,3-butanediols (± and meso forms), accounted for less than 2.4% of the amount inhaled. 2-Butanol, 3-hydroxy-2-butanone and MEK itself were only detectable in urine in the highest concentration conditions investigated, when metabolic saturation occurred. Although MEK exposure did not alter the total cytochrome P450 concentration, it induced activation of both CYP1A2 and CYP2E1 enzymes. In addition, the liver glutathione concentration (reduced and oxidized forms) decreased, as did glutathione S-transferase (GST) activity (at exposure levels over 200 ppm). These metabolic data could be useful for pharmacokinetic model development and/or verification and suggest the ability of MEK to influence the metabolism (and potentiate the toxicity) of other substances.


Assuntos
Butanonas/farmacocinética , Acetoína/urina , Administração por Inalação , Animais , Biotransformação , Encéfalo/metabolismo , Butanóis/urina , Butanonas/administração & dosagem , Butanonas/sangue , Butanonas/urina , Citocromo P-450 CYP1A2/metabolismo , Citocromo P-450 CYP2E1/metabolismo , Ativação Enzimática , Glutationa/metabolismo , Glutationa Transferase/metabolismo , Fígado/efeitos dos fármacos , Fígado/enzimologia , Masculino , Ratos Endogâmicos BN , Eliminação Renal , Distribuição Tecidual
3.
Artigo em Inglês | MEDLINE | ID: mdl-31352201

RESUMO

Mixed exposure to chemical products is a topical issue for occupational health and often includes exposure to volatile organic compounds (VOCs). As very few methods are available for evaluating these mixed exposures, the aim of this work was to develop a simple biomonitoring method to assess simultaneous occupational exposures to chlorinated and aromatic VOCs by analyzing the unmetabolized fraction of the VOCs in the urine of workers. Volatile organic compounds were analyzed using dynamic headspace gas chromatography coupled to mass spectrometry (dHS-GC-MS), and 11 unmetabolized urinary VOCs were measured into headspace phase, without any time-consuming pretreatment. Simultaneously, a standardized collection protocol was designed to avoid VOC losses or the contamination of urinary samples. The calibration samples were real urines, spiked with known amounts of the VOC mixtures studied. Test investigations were performed on potentially exposed workers in three factories in order to assess the effectiveness of both the collection protocol and analytical method. A satisfactory level of sensitivity was achieved, with limits of quantification (LOQ) between 10 and 15 ng/L obtained for all VOCs (except for styrene at 50 ng/L). Calibration curves were linear in the 0-20 µg/L range tested, with R2 correlation coefficients of 0.991 to 0.998. At the lowest concentration tested (0.08 µg/L), within-day precision varied from 2.1 to 5.5% and between-day precision ranged from 2.7 to 8.5%. Sample stability at -20 °C required that urinary samples be analyzed within 3 months. Even though the urinary concentrations of VOCs used in the plants were mostly quite low, significant differences between post-shift and pre-shift were observed. In conclusion, a fast, sensitive, specific and easy-to-use method has been developed for extracting VOCs from human urine using dHS-GC-MS. The method described has proven to be reliable for assessing current occupational exposure to chlorinated and aromatic VOCs in France.


Assuntos
Cromatografia Gasosa-Espectrometria de Massas/métodos , Exposição Ocupacional/análise , Compostos Orgânicos Voláteis/urina , Halogenação , Humanos , Limite de Detecção , Compostos Orgânicos Voláteis/química
4.
Toxicol Lett ; 314: 133-141, 2019 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-31325633

RESUMO

Hexavalent chromium (Cr(VI)) compounds are classified as carcinogenic to humans. Whereas chromium measurements in urine and plasma attest to the last few hours of total chromium exposure (all oxidation states of chromium), chromium in red blood cells (RBC) is attributable specifically to Cr(VI) exposure over the last few days. Before recommending Cr in RBC (CrIE) as a biological indicator of Cr(VI) exposure, in vivo studies must be undertaken to assess its reliability. The present study examines the kinetics of Cr(VI) in rat after a single intravenous dose of ammonium dichromate. Chromium levels were measured in plasma, red blood cells and urine. The decay of the chromium concentration in plasma is one-phase-like (with half-life time of 0.55 day) but still measurable two days post injection. The excretion of urinary chromium peaks between five and six hours after injection and shows large variations. Intra-erythrocyte chromium (CrIE) was very constant up to a minimum of 2 days and half-life time was estimated to 13.3 days. Finally, Cr(III) does not interfere with Cr(VI) incorporation in RBC. On the basis of our results, we conclude that, unlike urinary chromium, chromium levels in RBC are indicative of the amount of dichromate (Cr(VI)) in blood.


Assuntos
Carcinógenos Ambientais/administração & dosagem , Carcinógenos Ambientais/metabolismo , Cromo/administração & dosagem , Cromo/sangue , Eritrócitos/metabolismo , Administração Intravenosa , Animais , Biomarcadores/sangue , Biomarcadores/urina , Carga Corporal (Radioterapia) , Carcinógenos Ambientais/farmacocinética , Carcinógenos Ambientais/toxicidade , Cromo/farmacocinética , Cromo/toxicidade , Masculino , Modelos Biológicos , Oxirredução , Ratos Sprague-Dawley , Reprodutibilidade dos Testes , Especificidade da Espécie , Toxicocinética
5.
Hear Res ; 189(1-2): 83-91, 2004 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-14987755

RESUMO

Both noise and styrene can injure the cochlea, resulting in a reduction of incoming inputs from the cochlea to the central nervous system. In addition, styrene is known to have neurotoxic properties at high doses. The loss of inputs caused by noise has been shown to be compensated by a new equilibrium between excitatory and inhibitory influences within the inferior colliculus (IC). The main goal of this study was to determine whether styrene-induced hearing loss could also be counterbalanced by a GABAergic adjustment in the IC. For this purpose, rats were exposed to noise (97 dB SPL octave band noise centered at 8 kHz), or to a non-neurotoxic dose of styrene for 4 weeks (700 ppm, 6 h/day, 5 days/week). Auditory sensitivity was tested by evoked potentials, and cochlear damage was assessed by hair cell counts. Glutamate decarboxylase (GAD) was dosed in the IC by indirect competitive enzyme-linked immunosorbent assay. Both noise and styrene caused PTSs that reached 27.0 and 14.6 dB respectively. Outer hair cell (OHC) loss caused by noise did not exceed 9% in the first row, on the other hand OHC loss induced by styrene reached 63% in the third row. Only the noise caused a decrease of GAD of 37% compared to that measured in the controls. No significant modification of GAD concentration has been shown after styrene exposure. Thus, central compensation for cochlear damage may depend on the nature of the ototoxic agent. Unless styrene directly affects IC function, it is reasonable to assume that noise causes a modification of inhibitory neurotransmission within the structure because of impairment of afferent supply to the auditory brainstem. The present findings suggest that central compensation for cochlear damage can preferably occur when afferent fibers are altered.


Assuntos
Cóclea/efeitos dos fármacos , Cóclea/lesões , Glutamato Descarboxilase/metabolismo , Perda Auditiva/induzido quimicamente , Colículos Inferiores/enzimologia , Isoenzimas/metabolismo , Ruído , Estireno/farmacologia , Ferimentos e Lesões/enzimologia , Animais , Audiometria , Limiar Auditivo , Cóclea/patologia , Ensaio de Imunoadsorção Enzimática , Potenciais Evocados Auditivos , Células Ciliadas Auditivas/patologia , Perda Auditiva/diagnóstico , Perda Auditiva/enzimologia , Perda Auditiva/patologia , Perda Auditiva Provocada por Ruído/diagnóstico , Perda Auditiva Provocada por Ruído/fisiopatologia , Testes Auditivos , Masculino , Ratos , Ratos Long-Evans , Ferimentos e Lesões/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA