Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Neurosci ; 44(30)2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-38871460

RESUMO

It has been suggested that, prior to a saccade, visual neurons predictively respond to stimuli that will fall in their receptive fields after completion of the saccade. This saccadic remapping process is thought to compensate for the shift of the visual world across the retina caused by eye movements. To map the timing of this predictive process in the brain, we recorded neural activity using electroencephalography during a saccade task. Human participants (male and female) made saccades between two fixation points while covertly attending to oriented gratings briefly presented at various locations on the screen. Data recorded during trials in which participants maintained fixation were used to train classifiers on stimuli in different positions. Subsequently, data collected during saccade trials were used to test for the presence of remapped stimulus information at the post-saccadic retinotopic location in the peri-saccadic period, providing unique insight into when remapped information becomes available. We found that the stimulus could be decoded at the remapped location ∼180 ms post-stimulus onset, but only when the stimulus was presented 100-200 ms before saccade onset. Within this range, we found that the timing of remapping was dictated by stimulus onset rather than saccade onset. We conclude that presenting the stimulus immediately before the saccade allows for optimal integration of the corollary discharge signal with the incoming peripheral visual information, resulting in a remapping of activation to the relevant post-saccadic retinotopic neurons.


Assuntos
Eletroencefalografia , Estimulação Luminosa , Movimentos Sacádicos , Humanos , Movimentos Sacádicos/fisiologia , Masculino , Feminino , Adulto , Estimulação Luminosa/métodos , Adulto Jovem , Percepção Espacial/fisiologia , Fixação Ocular/fisiologia
2.
J Neurosci ; 43(48): 8189-8200, 2023 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-37793909

RESUMO

Spontaneous speech is produced in chunks called intonation units (IUs). IUs are defined by a set of prosodic cues and presumably occur in all human languages. Recent work has shown that across different grammatical and sociocultural conditions IUs form rhythms of ∼1 unit per second. Linguistic theory suggests that IUs pace the flow of information in the discourse. As a result, IUs provide a promising and hitherto unexplored theoretical framework for studying the neural mechanisms of communication. In this article, we identify a neural response unique to the boundary defined by the IU. We measured the EEG of human participants (of either sex), who listened to different speakers recounting an emotional life event. We analyzed the speech stimuli linguistically and modeled the EEG response at word offset using a GLM approach. We find that the EEG response to IU-final words differs from the response to IU-nonfinal words even when equating acoustic boundary strength. Finally, we relate our findings to the body of research on rhythmic brain mechanisms in speech processing. We study the unique contribution of IUs and acoustic boundary strength in predicting delta-band EEG. This analysis suggests that IU-related neural activity, which is tightly linked to the classic Closure Positive Shift (CPS), could be a time-locked component that captures the previously characterized delta-band neural speech tracking.SIGNIFICANCE STATEMENT Linguistic communication is central to human experience, and its neural underpinnings are a topic of much research in recent years. Neuroscientific research has benefited from studying human behavior in naturalistic settings, an endeavor that requires explicit models of complex behavior. Usage-based linguistic theory suggests that spoken language is prosodically structured in intonation units. We reveal that the neural system is attuned to intonation units by explicitly modeling their impact on the EEG response beyond mere acoustics. To our understanding, this is the first time this is demonstrated in spontaneous speech under naturalistic conditions and under a theoretical framework that connects the prosodic chunking of speech, on the one hand, with the flow of information during communication, on the other.


Assuntos
Percepção da Fala , Fala , Humanos , Fala/fisiologia , Eletroencefalografia , Estimulação Acústica , Percepção da Fala/fisiologia , Idioma
3.
J Cogn Neurosci ; 36(4): 632-639, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-37713671

RESUMO

Neural oscillations in the 8-12 Hz alpha band are thought to represent top-down inhibitory control and to influence temporal resolution: Individuals with faster peak frequencies segregate stimuli appearing closer in time. Recently, this theory has been challenged. Here, we investigate a special case in which alpha does not correlate with temporal resolution: when stimuli are presented amidst strong visual drive. Based on findings regarding alpha rhythmogenesis and wave spatial propagation, we suggest that stimulus-induced, bottom-up alpha oscillations play a role in temporal integration. We propose a theoretical model, informed by visual persistence, lateral inhibition, and network refractory periods, and simulate physiologically plausible scenarios of the interaction between bottom-up alpha and the temporal segregation. Our simulations reveal that different features of oscillations, including frequency, phase, and power, can influence temporal perception and provide a theoretically informed starting point for future empirical studies.


Assuntos
Percepção do Tempo , Percepção Visual , Humanos , Percepção Visual/fisiologia , Ritmo alfa/fisiologia , Estimulação Luminosa , Atenção/fisiologia
4.
J Cogn Neurosci ; 36(4): 614-631, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38010294

RESUMO

Perception is suggested to occur in discrete temporal windows, clocked by cycles of neural oscillations. An important testable prediction of this theory is that individuals' peak frequencies of oscillations should correlate with their ability to segregate the appearance of two successive stimuli. An influential study tested this prediction and showed that individual peak frequency of spontaneously occurring alpha (8-12 Hz) correlated with the temporal segregation threshold between two successive flashes of light [Samaha, J., & Postle, B. R. The speed of alpha-band oscillations predicts the temporal resolution of visual perception. Current Biology, 25, 2985-2990, 2015]. However, these findings were recently challenged [Buergers, S., & Noppeney, U. The role of alpha oscillations in temporal binding within and across the senses. Nature Human Behaviour, 6, 732-742, 2022]. To advance our understanding of the link between oscillations and temporal segregation, we devised a novel experimental approach. Rather than relying entirely on spontaneous brain dynamics, we presented a visual grating before the flash stimuli that is known to induce continuous oscillations in the gamma band (45-65 Hz). By manipulating the contrast of the grating, we found that high contrast induces a stronger gamma response and a shorter temporal segregation threshold, compared to low-contrast trials. In addition, we used a novel tool to characterize sustained oscillations and found that, for half of the participants, both the low- and high-contrast gratings were accompanied by a sustained and phase-locked alpha oscillation. These participants tended to have longer temporal segregation thresholds. Our results suggest that visual stimulus drive, reflected by oscillations in specific bands, is related to the temporal resolution of visual perception.


Assuntos
Encéfalo , Percepção Visual , Humanos , Encéfalo/fisiologia , Percepção Visual/fisiologia , Estimulação Luminosa/métodos
5.
J Cogn Neurosci ; 35(8): 1350-1360, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37315334

RESUMO

Our ability to detect targets in the environment fluctuates in time. When individuals focus attention on a single location, the ongoing temporal structure of performance fluctuates at 8 Hz. When task demands require the distribution of attention over two objects defined by their location, color or motion direction, ongoing performance fluctuates at 4 Hz per object. This suggests that distributing attention entails the division of the sampling process found for focused attention. It is unknown, however, at what stage of the processing hierarchy this sampling occurs, and whether attentional sampling depends on awareness. Here, we show that unaware selection between the two eyes leads to rhythmic sampling. We presented a display with a single central object to both eyes and manipulated the presentation of a reset event (i.e., cue) and a detection target to either both eyes (binocular) or separately to the different eyes (monocular). We assume that presenting a cue to one eye biases the selection process to content presented in that eye. Although participants were unaware of this manipulation, target detection fluctuated at 8 Hz under the binocular condition, and at 4 Hz when the right (and dominant) eye was cued. These results are consistent with recent findings reporting that competition between receptive fields leads to attentional sampling and demonstrate that this competition does not rely on aware processes. Furthermore, attentional sampling occurs at an early site of competition among monocular channels, before they are fused in the primary visual cortex.


Assuntos
Atenção , Sinais (Psicologia) , Humanos , Percepção Visual
6.
Eur J Neurosci ; 57(4): 646-656, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36512369

RESUMO

The impact of external rhythmic structure on perception has been demonstrated across different modalities and experimental paradigms. However, recent findings emphasize substantial individual differences in rhythm-based perceptual modulation. Here, we examine the link between spontaneous rhythmic preferences, as measured through the motor system, and individual differences in rhythmic modulation of visual discrimination. As a first step, we measure individual rhythmic preferences using the spontaneous tapping task. Then we assess perceptual rhythmic modulation using a visual discrimination task in which targets can appear either in-phase or out-of-phase with a preceding rhythmic stream of visual stimuli. The tempo of the preceding stream was manipulated over different experimental blocks (0.77 Hz, 1.4 Hz, 2 Hz). We find that visual rhythmic stimulation modulates discrimination performance. The modulation is dependent on the tempo of stimulation, with maximal perceptual benefits for the slowest tempo of stimulation (0.77 Hz). Most importantly, the strength of modulation is also linked to individuals' spontaneous motor tempo. Individuals with slower spontaneous tempi show greater rhythmic modulation compared to individuals with faster spontaneous tempi. This finding suggests that different tempi affect the cognitive system with varying levels of efficiency and that self-generated rhythms impact our ability to utilize rhythmic structure in the environment for guiding perception and performance.


Assuntos
Percepção Visual , Humanos , Percepção Visual/fisiologia , Estimulação Luminosa
7.
J Neurosci ; 40(39): 7523-7530, 2020 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-32826312

RESUMO

Through statistical learning (SL), cognitive systems may discover the underlying regularities in the environment. Testing human adults (n = 35, 21 females), we document, in the context of a classical visual SL task, divergent rhythmic EEG activity in the interstimulus delay periods within patterns versus between patterns (i.e., pattern transitions). Our findings reveal increased oscillatory activity in the beta band (∼20 Hz) at triplet transitions that indexes learning: it emerges with increased pattern repetitions; and importantly, it is highly correlated with behavioral learning outcomes. These findings hold the promise of converging on an online measure of learning regularities and provide important theoretical insights regarding the mechanisms of SL and prediction.SIGNIFICANCE STATEMENT Statistical learning has become a major theoretical construct in cognitive science, providing the primary means by which organisms learn about regularities in the environment. As such, it is a critical building block for basic and higher-order cognitive functions. Here we identify, for the first time, a spectral neural index in the time window before stimulus presentation, which evolves with increased pattern exposure, and is predictive of learning performance. The manifestation of learning that is revealed, not in stimulus processing but in the blank interval between stimuli, makes a direct link between the fields of statistical learning on the one hand and either prediction or consolidation on the other hand, suggesting a possible mechanistic account of visual statistical learning.


Assuntos
Ritmo beta , Cognição , Aprendizagem , Adulto , Córtex Cerebral/fisiologia , Feminino , Humanos , Masculino , Percepção Visual
8.
J Cogn Neurosci ; 32(2): 315-325, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31633463

RESUMO

In a dynamically changing environment, the ability to capture regularities in our sensory input helps us generate predictions about future events. In most sensory systems, the basic finding is clear: Knowing when something will happen improves performance on it [Nobre, A. C., & van Ede, F. (2017). Anticipated moments: Temporal structure in attention. Nature Reviews Neuroscience, 19, 34-48, 2017]. We here examined the impact of temporal predictions on a less-explored modality: touch. Participants were instructed to detect a brief target embedded in an ongoing vibrotactile stimulus. Unbeknownst to them, the experiment had two timing conditions: In one part, the time of target onset was fixed and thus temporally predictable, whereas in the other, it could appear at a random time within the ongoing stimulation. We found a clear modulation of detection thresholds due to temporal predictability: Contrary to other sensory systems, detecting a predictable tactile target was worse relative to unpredictable targets. We discuss our findings within the framework of tactile suppression.


Assuntos
Antecipação Psicológica/fisiologia , Percepção Auditiva/fisiologia , Desempenho Psicomotor/fisiologia , Percepção do Tato/fisiologia , Adulto , Feminino , Humanos , Masculino , Fatores de Tempo , Vibração , Adulto Jovem
9.
Psychol Sci ; 30(6): 907-916, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30990763

RESUMO

Retinal input is frequently lost because of eye blinks, yet humans rarely notice these gaps in visual input. Although previous studies focused on the perceptual and neural correlates of diminished awareness to blinks, the impact of these correlates on the perceived time of concurrent events is unknown. Here, we investigated whether the subjective sense of time is altered by spontaneous blinks. We found that participants (N = 22) significantly underestimated the duration of a visual stimulus when a spontaneous blink occurred during stimulus presentation and that this underestimation was correlated with the blink duration of individual participants. Importantly, the effect was not present when durations of an auditory stimulus were judged (N = 23). The results point to a link between spontaneous blinks, previously demonstrated to induce activity suppression in the visual cortex, and a compression of subjective time. They suggest that ongoing encoding within modality-specific sensory cortices, independent of conscious awareness, informs the subjective sense of time.


Assuntos
Piscadela , Percepção do Tempo , Córtex Visual/fisiologia , Percepção Visual , Adulto , Feminino , Humanos , Masculino , Modelos Neurológicos , Adulto Jovem
10.
Atten Percept Psychophys ; 86(1): 295-311, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37872432

RESUMO

Touch is unique among the sensory modalities in that our tactile receptors are spread across the body surface and continuously receive different inputs at the same time. These inputs vary in type, properties, relevance according to current goals, and, of course, location on the body. Sometimes, they must be integrated, and other times set apart and distinguished. Here, we investigate how simultaneous stimulation to different body sites affects tactile cognition. Specifically, we characterized the impact of irrelevant tactile sensations on tactile change detection. To this end, we embedded detection targets amidst ongoing performance, akin to the conditions encountered in everyday life, where we are constantly confronted with new events within ongoing stimuli. In the set of experiments presented here, participants detected a brief intensity change (.04 s) within an ongoing vibrotactile stimulus (1.6 s) that was always presented in a constantly attended location. The intensity change (i.e., the detection target) varied parametrically, from hardly detectable to easily detectable. In half of the trials, irrelevant ongoing stimulation was simultaneously presented to a site across the body midline, but participants were instructed to ignore it. In line with previous bimanual studies employing brief onset targets, we document robust interference on performance due to the irrelevant stimulation at each of the measured body sites (homologous and nonhomologous fingers, and the contralateral ankle). After describing this basic phenomenon, we further examine the conditions under which such interference occurs in three additional tasks. In each task, we honed in on a different aspect of the stimulation protocol (e.g., hand distance, the strength of the irrelevant stimulation, the detection target itself) in order to better understand the principles governing the observed interference effects. Our findings suggest a minimal role for exogenous attentional capture in producing the observed interference effects (Exp. 2), and a principled distribution of attentional resources or sensory integration between body sides (Exps. 3, 4). In our last study (Exp. 4), we presented bilateral tactile targets of varying intensities to both the relevant and irrelevant stimulation sites. We then characterized the degree to which the irrelevant stimulation is also processed. Our results-that participants' perception of target intensity is always proportional to the combined bilateral signal-suggest that both body sites are equally weighed and processed despite clear instructions to attend only the target site. In light of this observation and participants' inability to use selection processes to guide their perception, we propose that bilateral tactile inputs are automatically combined, quite possibly early in the hierarchy of somatosensory processing.


Assuntos
Percepção do Tato , Tato , Humanos , Tato/fisiologia , Estimulação Física/métodos , Percepção do Tato/fisiologia , Dedos/fisiologia , Mãos
11.
Cereb Cortex ; 22(5): 1133-8, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-21799208

RESUMO

Involuntary visual spatial attention is captured when a salient cue appears in the visual field. If a target appears soon after the cue, response times to targets at the cue location are faster relative to other locations. However, after longer cue-target intervals, responses to targets at the cue location are slower, due to inhibition of return (IOR). IOR depends on striatal dopamine (DA) levels: It varies with different alleles of the DA transporter gene DAT1 and is reduced in patients with Parkinson's disease, a disease characterized by reduced striatal dopaminergic transmission. We examined the role of DA in involuntary attention and IOR by administering the DA D2 receptor-specific agonist bromocriptine to healthy human subjects. There was no effect of either DAT1 genotype or bromocriptine on involuntary attention, but participants with DAT1 alleles predicting higher striatal DA had a larger IOR. Furthermore, bromocriptine increased the magnitude of IOR in participants with low striatal DA but abolished the IOR in subjects with high striatal DA. This inverted U-shaped pattern resembles previously described relationships between DA levels and performance on cognitive tasks and suggests an involvement of striatal DA in IOR that does not include a role in involuntary attention.


Assuntos
Bromocriptina/farmacologia , Agonistas de Dopamina/farmacologia , Proteínas da Membrana Plasmática de Transporte de Dopamina/genética , Dopamina/metabolismo , Inibição Neural/genética , Atenção/efeitos dos fármacos , Atenção/fisiologia , Corpo Estriado/metabolismo , Estudos Cross-Over , Método Duplo-Cego , Feminino , Genótipo , Humanos , Masculino , Inibição Neural/efeitos dos fármacos , Tempo de Reação/fisiologia , Receptores de Dopamina D2/agonistas , Percepção Visual/efeitos dos fármacos , Percepção Visual/fisiologia , Adulto Jovem
12.
Curr Biol ; 32(18): 4093-4100.e6, 2022 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-36007527

RESUMO

Cognitive models of interval timing can be formulated as an accumulation-to-bound process.1-5 However, the physiological manifestation of such processes has not yet been identified. We used electroencephalography (EEG) to measure the neural responses of participants while they performed a temporal bisection task in which they were requested to categorize the duration of visual stimuli as short or long.6 We found that the stimulus-offset and response-locked activity depends on both stimulus duration and the participants' decision. To relate this activity to the underlying cognitive processes, we used a drift-diffusion model.7 The model includes a noisy accumulator starting with the stimulus onset and a decision threshold. According to the model, a stimulus duration will be categorized as "long" if the accumulator reaches the threshold during stimulus presentation. Otherwise, it will be categorized as "short." We found that at the offset of stimulus presentation, an EEG response marks the distance of the accumulator from the threshold. Therefore, this model offers an accurate description of our behavioral data as well as the EEG response using the same two model parameters. We then replicated this finding in an identical experiment conducted in the tactile domain. We also extended this finding to two different temporal ranges (sub- and supra-second). Taken together, the work provides a new way to study the cognitive processes underlying temporal decisions, using a combination of behavior, EEG, and modeling.


Assuntos
Tomada de Decisões , Eletroencefalografia , Tomada de Decisões/fisiologia , Humanos
13.
J Neurosci ; 30(45): 15254-61, 2010 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-21068330

RESUMO

We examined the effect of linguistic comprehension on early perceptual encoding in a series of electrophysiological and behavioral studies on humans. Using the fact that pictures of faces elicit a robust and reliable evoked response that peaks at ∼170 ms after stimulus onset (N170), we measured the N170 to faces that were preceded by primes that referred to either faces or scenes. When the primes were auditory sentences, the magnitude of the N170 was larger when the face stimuli were preceded by sentences describing faces compared to sentences describing scenes. In contrast, when the primes were visual, the N170 was smaller after visual primes of faces compared to visual primes of scenes. Similar opposing effects of linguistic and visual primes were also observed in a reaction time experiment in which participants judged the gender of faces. These results provide novel evidence of the influence of language on early perceptual processes and suggest a surprising mechanistic description of this interaction: linguistic primes produce content-specific interference on subsequent visual processing. This interference may be a consequence of the natural statistics of language and vision given that linguistic content is generally uncorrelated with the contents of perception.


Assuntos
Córtex Cerebral/fisiologia , Idioma , Percepção da Fala/fisiologia , Percepção Visual/fisiologia , Adulto , Análise de Variância , Eletroencefalografia , Face , Feminino , Humanos , Masculino , Estimulação Luminosa
14.
Sci Rep ; 10(1): 15846, 2020 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-32985572

RESUMO

Studies of speech processing investigate the relationship between temporal structure in speech stimuli and neural activity. Despite clear evidence that the brain tracks speech at low frequencies (~ 1 Hz), it is not well understood what linguistic information gives rise to this rhythm. In this study, we harness linguistic theory to draw attention to Intonation Units (IUs), a fundamental prosodic unit of human language, and characterize their temporal structure as captured in the speech envelope, an acoustic representation relevant to the neural processing of speech. IUs are defined by a specific pattern of syllable delivery, together with resets in pitch and articulatory force. Linguistic studies of spontaneous speech indicate that this prosodic segmentation paces new information in language use across diverse languages. Therefore, IUs provide a universal structural cue for the cognitive dynamics of speech production and comprehension. We study the relation between IUs and periodicities in the speech envelope, applying methods from investigations of neural synchronization. Our sample includes recordings from every-day speech contexts of over 100 speakers and six languages. We find that sequences of IUs form a consistent low-frequency rhythm and constitute a significant periodic cue within the speech envelope. Our findings allow to predict that IUs are utilized by the neural system when tracking speech. The methods we introduce here facilitate testing this prediction in the future (i.e., with physiological data).


Assuntos
Acústica da Fala , Percepção da Fala/fisiologia , Estimulação Acústica , Humanos , Idioma , Psicolinguística , Interação Social , Som
15.
Curr Biol ; 29(4): 693-699.e4, 2019 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-30744973

RESUMO

Attention supports the allocation of resources to relevant locations and objects in a scene. Under most conditions, several stimuli compete for neural representation. Attention biases neural representation toward the response associated with the attended object [1, 2]. Therefore, an attended stimulus enjoys a neural response that resembles the response to that stimulus in isolation. Factors that determine and generate attentional bias have been researched, ranging from endogenously controlled processes to exogenous capture of attention [1-4]. Recent studies investigate the temporal structure governing attention. When participants monitor a single location, visual-target detection depends on the phase of an ∼8-Hz brain rhythm [5, 6]. When two locations are monitored, performance fluctuates at 4 Hz for each location [7, 8]. The hypothesis is that 4-Hz sampling for two locations may reflect a common sampler that operates at 8 Hz globally, which is divided between relevant locations [5-7, 9]. The present study targets two properties of this phenomenon, called rhythmic-attentional sampling: first, sampling is typically described for selection over different locations. We examined whether rhythmic sampling is limited to selection over space or whether it extends to feature-based attention. Second, we examined whether sampling at 4 Hz results from the division of an 8-Hz rhythm over two objects. We found that two overlapping objects defined by features are sampled at ∼4 Hz per object. In addition, performance on a single object fluctuated at 8 Hz. Rhythmic sampling of features did not result from temporal structure in eye movements.


Assuntos
Atenção/fisiologia , Encéfalo/fisiologia , Sinais (Psicologia) , Percepção Visual/fisiologia , Adulto , Feminino , Humanos , Masculino , Periodicidade , Adulto Jovem
16.
J Neurosci ; 27(44): 11986-90, 2007 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-17978039

RESUMO

Previous studies have shown that EEG activity in the gamma range can be modulated by attention. Here, we compared this activity for voluntary and involuntary spatial attention in a spatial-cueing paradigm with faces as targets. The stimuli and trial timing were kept constant across attention conditions with only the predictive value of the cue changing. Gamma-band response was linked to voluntary shifts of attention, but not to the involuntary capture of attention. The presence of increased gamma responses for the voluntary allocation of attention, and its absence in cases of involuntary capture suggests that the neural mechanisms governing these two types of attention are different. Moreover, these data allow a description of the temporal dynamics contributing to the dissociation between voluntary and involuntary attention. The distribution of this correlate of voluntary attention is consistent with a top-down process involving contralateral anterior and posterior regions.


Assuntos
Atenção/fisiologia , Discriminação Psicológica/fisiologia , Eletroencefalografia , Potenciais Evocados Visuais/fisiologia , Percepção Espacial/fisiologia , Adolescente , Adulto , Análise de Variância , Mapeamento Encefálico , Sinais (Psicologia) , Feminino , Lateralidade Funcional , Humanos , Masculino , Dinâmica não Linear , Estimulação Luminosa/métodos , Tempo de Reação/fisiologia , Análise Espectral/métodos , Fatores de Tempo
17.
J Int Neuropsychol Soc ; 14(2): 243-56, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18282322

RESUMO

Increased computer use in clinical settings offers an opportunity to develop new neuropsychological tests that exploit the control computers have over stimulus dimensions and timing. However, before adopting new tools, empirical validation is necessary. In the current study, our aims were twofold: to describe a computerized adaptive procedure with broad potential for neuropsychological investigations, and to demonstrate its implementation in testing for visual hemispatial neglect. Visual search results from adaptive psychophysical procedures are reported from 12 healthy individuals and 23 individuals with unilateral brain injury. Healthy individuals reveal spatially symmetric performance on adaptive search measures. In patients, psychophysical outcomes (as well as those from standard paper-and-pencil search tasks) reveal visual hemispatial neglect. Consistent with previous empirical studies of hemispatial neglect, lateralized impairments in adaptive conjunction search are greater than in adaptive feature search tasks. Furthermore, those with right hemisphere damage show greater lateralized deficits in conjunction search than do those with left hemisphere damage. We argue that adaptive tests, which automatically adjust to each individual's performance level, are efficient methods for both clinical evaluations and neuropsychological investigations and have the potential to detect subtle deficits even in chronic stages, when flagrant clinical signs have frequently resolved.


Assuntos
Atenção/fisiologia , Reconhecimento Visual de Modelos/fisiologia , Transtornos da Percepção/fisiopatologia , Adaptação Fisiológica , Idoso , Idoso de 80 Anos ou mais , Feminino , Lateralidade Funcional , Humanos , Masculino , Pessoa de Meia-Idade , Testes Neuropsicológicos , Estimulação Luminosa/métodos , Desempenho Psicomotor/fisiologia , Psicofísica , Tempo de Reação/fisiologia
18.
J Exp Psychol Hum Percept Perform ; 34(4): 818-30, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18665728

RESUMO

When 2 different visual targets presented among different distracters in a rapid serial visual presentation (RSVP) are separated by 400 ms or less, detection and identification of the 2nd targets are reduced relative to longer time intervals. This phenomenon, termed the attentional blink (AB), is attributed to the temporary engagement of a limited-capacity attentional system by the 1st target, which reduces resources available for processing the 2nd target. Although AB has been reliably obtained with many stimulus types, it has not been found for faces (E. Awh et al., 2004). In the present study, the authors investigate the underpinnings of this immunity. Unveiling circumstances in which AB occurs within and across faces and other categories, the authors demonstrate that a multichannel model cannot account for the absence of AB effects on faces. The authors suggest instead that perceptual salience of the face within the distracters' series as well as the available resources determine whether or not faces are blinked in RSVP.


Assuntos
Atenção , Intermitência na Atenção Visual , Discriminação Psicológica , Face , Reconhecimento Visual de Modelos , Estimulação Luminosa/métodos , Piscadela , Sinais (Psicologia) , Fixação Ocular , Humanos , Rememoração Mental , Orientação , Mascaramento Perceptivo , Desempenho Psicomotor , Tempo de Reação , Percepção Espacial , Percepção Visual
19.
Curr Biol ; 28(15): R830-R832, 2018 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-30086315

RESUMO

Ongoing perception ebbs and flows rhythmically. Understanding the source and scope of this phenomenon is an important step in unraveling the foundations of sensory processing. A new study demonstrates that local neuronal interactions generate rhythmic brain activity and correspond to rhythmic performance patterns on a visual-detection task.


Assuntos
Neurociências , Ritmo Teta , Atenção , Neurônios , Tempo de Reação
20.
Neuropsychologia ; 45(9): 2066-77, 2007 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-17339044

RESUMO

We present a case (SE) with integrative visual agnosia following ischemic stroke affecting the right dorsal and the left ventral pathways of the visual system. Despite his inability to identify global hierarchical letters [Navon, D. (1977). Forest before trees: The precedence of global features in visual perception. Cognitive Psychology, 9, 353-383], and his dense object agnosia, SE showed normal global-to-local interference when responding to local letters in Navon hierarchical stimuli and significant picture-word identity priming in a semantic decision task for words. Since priming was absent if these features were scrambled, it stands to reason that these effects were not due to priming by distinctive features. The contrast between priming effects induced by coherent and scrambled stimuli is consistent with implicit but not explicit integration of features into a unified whole. We went on to show that possible/impossible object decisions were facilitated by words in a word-picture priming task, suggesting that prompts could activate perceptually integrated images in a backward fashion. We conclude that the absence of SE's ability to identify visual objects except through tedious serial construction reflects a deficit in accessing an integrated visual representation through bottom-up visual processing alone. However, top-down generated images can help activate these visual representations through semantic links.


Assuntos
Agnosia/fisiopatologia , Processos Mentais/fisiologia , Percepção Visual/fisiologia , Agnosia/etiologia , Agnosia/patologia , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Pessoa de Meia-Idade , Testes Neuropsicológicos , Estimulação Luminosa/métodos , Desempenho Psicomotor/fisiologia , Reconhecimento Psicológico , Acidente Vascular Cerebral/complicações
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA