Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
Mol Cell ; 77(5): 1055-1065.e4, 2020 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-31952990

RESUMO

In eukaryotes, three-dimensional genome organization is critical for transcriptional regulation of gene expression. Long noncoding RNAs (lncRNAs) can modulate chromatin conformation of spatially related genomic locations within the nucleus. Here, we show that the lncRNA APOLO (AUXIN-REGULATED PROMOTER LOOP) recognizes multiple distant independent loci in the Arabidopsis thaliana genome. We found that APOLO targets are not spatially associated in the nucleus and that APOLO recognizes its targets by short sequence complementarity and the formation of DNA-RNA duplexes (R-loops). The invasion of APOLO to the target DNA decoys the plant Polycomb Repressive Complex 1 component LHP1, modulating local chromatin 3D conformation. APOLO lncRNA coordinates the expression of distal unrelated auxin-responsive genes during lateral root development in Arabidopsis. Hence, R-loop formation and chromatin protein decoy mediate trans action of lncRNAs on distant loci. VIDEO ABSTRACT.


Assuntos
Arabidopsis/metabolismo , Montagem e Desmontagem da Cromatina , Cromatina/metabolismo , Regulação da Expressão Gênica de Plantas , Plantas Geneticamente Modificadas/metabolismo , RNA Longo não Codificante/metabolismo , RNA de Plantas/metabolismo , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Cromatina/genética , Montagem e Desmontagem da Cromatina/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Ácidos Indolacéticos/farmacologia , Modelos Genéticos , Plantas Geneticamente Modificadas/efeitos dos fármacos , Plantas Geneticamente Modificadas/genética , Estruturas R-Loop , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , RNA Longo não Codificante/genética , RNA de Plantas/genética , Relação Estrutura-Atividade , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
2.
Proc Natl Acad Sci U S A ; 121(28): e2400737121, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38968127

RESUMO

In recent years, the exploration of genome three-dimensional (3D) conformation has yielded profound insights into the regulation of gene expression and cellular functions in both animals and plants. While animals exhibit a characteristic genome topology defined by topologically associating domains (TADs), plants display similar features with a more diverse conformation across species. Employing advanced high-throughput sequencing and microscopy techniques, we investigated the landscape of 26 histone modifications and RNA polymerase II distribution in tomato (Solanum lycopersicum). Our study unveiled a rich and nuanced epigenetic landscape, shedding light on distinct chromatin states associated with heterochromatin formation and gene silencing. Moreover, we elucidated the intricate interplay between these chromatin states and the overall topology of the genome. Employing a genetic approach, we delved into the role of the histone modification H3K9ac in genome topology. Notably, our investigation revealed that the ectopic deposition of this chromatin mark triggered a reorganization of the 3D chromatin structure, defining different TAD-like borders. Our work emphasizes the critical role of H3K9ac in shaping the topology of the tomato genome, providing valuable insights into the epigenetic landscape of this agriculturally significant crop species.


Assuntos
Epigenoma , Histonas , Solanum lycopersicum , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Histonas/metabolismo , Histonas/genética , Epigênese Genética , Genoma de Planta , Cromatina/metabolismo , Cromatina/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas , Heterocromatina/metabolismo , Heterocromatina/genética , Código das Histonas/genética
3.
Plant Physiol ; 194(4): 2422-2433, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38235762

RESUMO

Embedded ß-barrel proteins in the outer envelope membrane mediate most cellular trafficking between the cytoplasm and plastids. Although the TRANSLOCON AT THE OUTER ENVELOPE MEMBRANE OF CHLOROPLASTS 75-V (TOC75-V)/OUTER ENVELOPE PROTEIN OF 80 KDA (OEP80) complex has been implicated in the insertion and assembly of ß-barrel proteins in the outer envelope membrane of Arabidopsis (Arabidopsis thaliana) chloroplasts, relatively little is known about this process. CRUMPLED LEAF (CRL) encodes a chloroplast outer envelope membrane-localized protein, and its loss-of-function mutation results in pleiotropic defects, including altered plant morphogenesis, growth retardation, suppression of plastid division, and spontaneous light intensity-dependent localized cell death. A suppressor screen conducted on mutagenized crl mutants revealed that a missense mutation in OEP80 suppresses the pleiotropic defects of crl. Furthermore, we found that OEP80 complex formation is compromised in crl. Additionally, we demonstrated that CRL interacts with OEP80 in vivo and that a portion of CRL is present at the same molecular weight as the OEP80 complex. Our results suggest that CRL interacts with OEP80 to facilitate its complex formation. CRL is involved in plastid protein import; therefore, the pleiotropic defects in crl are likely due to the combined effects of decreased plastid protein import and altered membrane integration of ß-barrel proteins in the outer envelope membrane. This study sheds light on the mechanisms that allow ß-barrel protein integration into the plastid outer envelope membrane and the importance of this finding for plant cellular processes.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Cloroplastos/metabolismo , Cloroplastos/metabolismo , Proteínas de Membrana/metabolismo , Plastídeos/genética , Plastídeos/metabolismo , Transporte Proteico
4.
Plant Physiol ; 195(1): 640-651, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38285074

RESUMO

The evolutionarily conserved POLYMERASE-ASSOCIATED FACTOR1 complex (Paf1C) participates in transcription, and research in animals and fungi suggests that it facilitates RNA POLYMERASE II (RNAPII) progression through chromatin. We examined the genomic distribution of the EARLY FLOWERING7 (ELF7) and VERNALIZATION INDEPENDENCE3 subunits of Paf1C in Arabidopsis (Arabidopsis thaliana). The occupancy of both subunits was confined to thousands of gene bodies and positively associated with RNAPII occupancy and the level of gene expression, supporting a role as a transcription elongation factor. We found that monoubiquitinated histone H2B, which marks most transcribed genes, was strongly reduced genome wide in elf7 seedlings. Genome-wide profiling of RNAPII revealed that in elf7 mutants, RNAPII occupancy was reduced throughout the gene body and at the transcription end site of Paf1C-targeted genes, suggesting a direct role for the complex in transcription elongation. Overall, our observations suggest a direct functional link between Paf1C activity, monoubiquitination of histone H2B, and the transition of RNAPII to productive elongation. However, for several genes, Paf1C may also act independently of H2Bub deposition or occupy these genes more stable than H2Bub marking, possibly reflecting the dynamic nature of Paf1C association and H2Bub turnover during transcription.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Regulação da Expressão Gênica de Plantas , Histonas , RNA Polimerase II , Transcrição Gênica , Ubiquitinação , Histonas/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , RNA Polimerase II/metabolismo , RNA Polimerase II/genética , Genoma de Planta , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética
5.
Nucleic Acids Res ; 51(16): 8463-8479, 2023 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-37471026

RESUMO

Transcriptional silencing is an essential mechanism for controlling the expression of genes, transgenes and heterochromatic repeats through specific epigenetic marks on chromatin that are maintained during DNA replication. In Arabidopsis, silenced transgenes and heterochromatic sequences are typically associated with high levels of DNA methylation, while silenced genes are enriched in H3K27me3. Reactivation of these loci is often correlated with decreased levels of these repressive epigenetic marks. Here, we report that the DNA helicase REGULATOR OF TELOMERE ELONGATION 1 (RTEL1) is required for transcriptional silencing. RTEL1 deficiency causes upregulation of many genes enriched in H3K27me3 accompanied by a moderate decrease in this mark, but no loss of DNA methylation at reactivated heterochromatic loci. Instead, heterochromatin exhibits DNA hypermethylation and increased H3K27me3 in rtel1. We further find that loss of RTEL1 suppresses the release of heterochromatin silencing caused by the absence of the MOM1 silencing factor. RTEL1 is conserved among eukaryotes and plays a key role in resolving DNA secondary structures during DNA replication. Inducing such aberrant DNA structures using DNA cross-linking agents also results in a loss of transcriptional silencing. These findings uncover unappreciated roles for RTEL1 in transcriptional silencing and in stabilizing DNA methylation and H3K27me3 patterns.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , DNA Helicases , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Metilação de DNA/genética , Epigenoma , Inativação Gênica , Heterocromatina/genética , Heterocromatina/metabolismo , Histonas/genética , Histonas/metabolismo , Telômero/metabolismo , DNA Helicases/metabolismo
6.
Genome Res ; 31(7): 1230-1244, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34083408

RESUMO

In animals, distant H3K27me3-marked Polycomb targets can establish physical interactions forming repressive chromatin hubs. In plants, growing evidence suggests that H3K27me3 acts directly or indirectly to regulate chromatin interactions, although how this histone modification modulates 3D chromatin architecture remains elusive. To decipher the impact of the dynamic deposition of H3K27me3 on the Arabidopsis thaliana nuclear interactome, we combined genetics, transcriptomics, and several 3D epigenomic approaches. By analyzing mutants defective for histone H3K27 methylation or demethylation, we uncovered the crucial role of this chromatin mark in short- and previously unnoticed long-range chromatin loop formation. We found that a reduction in H3K27me3 levels led to a decrease in the interactions within Polycomb-associated repressive domains. Regions with lower H3K27me3 levels in the H3K27 methyltransferase clf mutant established new interactions with regions marked with H3K9ac, a histone modification associated with active transcription, indicating that a reduction in H3K27me3 levels induces a global reconfiguration of chromatin architecture. Altogether, our results reveal that the 3D genome organization is tightly linked to reversible histone modifications that govern chromatin interactions. Consequently, nuclear organization dynamics shapes the transcriptional reprogramming during plant development and places H3K27me3 as a key feature in the coregulation of distant genes.

7.
Plant J ; 109(5): 1213-1228, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34897855

RESUMO

In monoecious melon (Cucumis melo), sex is determined by the differential expression of sex determination genes (SDGs) and adoption of sex-specific transcriptional programs. Histone modifications such as H3K27me3 have been previously shown to be a hallmark associated to unisexual flower development in melon; yet, no genetic approaches have been conducted for elucidating the roles of H3K27me3 writers, readers, and erasers in this process. Here we show that melon homologs to Arabidopsis LHP1, CmLHP1A and B, redundantly control several aspects of plant development, including sex expression. Cmlhp1ab double mutants displayed an overall loss and redistribution of H3K27me3, leading to a deregulation of genes involved in hormone responses, plant architecture, and flower development. Consequently, double mutants display pleiotropic phenotypes and, interestingly, a general increase of the male:female ratio. We associated this phenomenon with a general deregulation of some hormonal response genes and a local activation of male-promoting SDGs and MADS-box transcription factors. Altogether, these results reveal a novel function for CmLHP1 proteins in maintenance of monoecy and provide novel insights into the polycomb-mediated epigenomic regulation of sex lability in plants.


Assuntos
Arabidopsis , Cucumis melo , Cucurbitaceae , Arabidopsis/genética , Cucumis melo/genética , Cucumis melo/metabolismo , Cucurbitaceae/genética , Regulação da Expressão Gênica de Plantas/genética , Histonas/metabolismo , Desenvolvimento Vegetal , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
8.
PLoS Pathog ; 17(5): e1009572, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-34015058

RESUMO

Perception of microbes by plants leads to dynamic reprogramming of the transcriptome, which is essential for plant health. The appropriate amplitude of this transcriptional response can be regulated at multiple levels, including chromatin. However, the mechanisms underlying the interplay between chromatin remodeling and transcription dynamics upon activation of plant immunity remain poorly understood. Here, we present evidence that activation of plant immunity by bacteria leads to nucleosome repositioning, which correlates with altered transcription. Nucleosome remodeling follows distinct patterns of nucleosome repositioning at different loci. Using a reverse genetic screen, we identify multiple chromatin remodeling ATPases with previously undescribed roles in immunity, including EMBRYO SAC DEVELOPMENT ARREST 16, EDA16. Functional characterization of the immune-inducible chromatin remodeling ATPase EDA16 revealed a mechanism to negatively regulate immunity activation and limit changes in redox homeostasis. Our transcriptomic data combined with MNase-seq data for EDA16 functional knock-out and over-expressor mutants show that EDA16 selectively regulates a defined subset of genes involved in redox signaling through nucleosome repositioning. Thus, collectively, chromatin remodeling ATPases fine-tune immune responses and provide a previously uncharacterized mechanism of immune regulation.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Montagem e Desmontagem da Cromatina/imunologia , DNA Helicases/metabolismo , Doenças das Plantas/imunologia , Imunidade Vegetal/genética , Pseudomonas syringae/imunologia , Adenosina Trifosfatases/genética , Arabidopsis/genética , Arabidopsis/imunologia , Proteínas de Arabidopsis/genética , Cromatina/genética , DNA Helicases/genética , Homeostase , Nucleossomos/genética , Oxirredução , Estresse Oxidativo , Doenças das Plantas/microbiologia , Nicotiana/genética , Nicotiana/imunologia , Nicotiana/fisiologia
9.
Mol Cell ; 55(3): 383-96, 2014 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-25018019

RESUMO

The eukaryotic epigenome is shaped by the genome topology in three-dimensional space. Dynamic reversible variations in this epigenome structure directly influence the transcriptional responses to developmental cues. Here, we show that the Arabidopsis long intergenic noncoding RNA (lincRNA) APOLO is transcribed by RNA polymerases II and V in response to auxin, a phytohormone controlling numerous facets of plant development. This dual APOLO transcription regulates the formation of a chromatin loop encompassing the promoter of its neighboring gene PID, a key regulator of polar auxin transport. Altering APOLO expression affects chromatin loop formation, whereas RNA-dependent DNA methylation, active DNA demethylation, and Polycomb complexes control loop dynamics. This dynamic chromatin topology determines PID expression patterns. Hence, the dual transcription of a lincRNA influences local chromatin topology and directs dynamic auxin-controlled developmental outputs on neighboring genes. This mechanism likely underscores the adaptive success of plants in diverse environments and may be widespread in eukaryotes.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , RNA Polimerases Dirigidas por DNA/metabolismo , Ácidos Indolacéticos/farmacologia , Reguladores de Crescimento de Plantas/farmacologia , RNA Polimerase II/metabolismo , RNA Longo não Codificante/genética , RNA de Plantas/genética , Arabidopsis/enzimologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Montagem e Desmontagem da Cromatina , Metilação de DNA , Epigênese Genética , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Mutação , Proteínas do Grupo Polycomb/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo
10.
Nucleic Acids Res ; 48(11): 5953-5966, 2020 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-32396165

RESUMO

The modification of histones by acetyl groups has a key role in the regulation of chromatin structure and transcription. The Arabidopsis thaliana histone acetyltransferase GCN5 regulates histone modifications as part of the Spt-Ada-Gcn5 Acetyltransferase (SAGA) transcriptional coactivator complex. GCN5 was previously shown to acetylate lysine 14 of histone 3 (H3K14ac) in the promoter regions of its target genes even though GCN5 binding did not systematically correlate with gene activation. Here, we explored the mechanism through which GCN5 controls transcription. First, we fine-mapped its GCN5 binding sites genome-wide and then used several global methodologies (ATAC-seq, ChIP-seq and RNA-seq) to assess the effect of GCN5 loss-of-function on the expression and epigenetic regulation of its target genes. These analyses provided evidence that GCN5 has a dual role in the regulation of H3K14ac levels in their 5' and 3' ends of its target genes. While the gcn5 mutation led to a genome-wide decrease of H3K14ac in the 5' end of the GCN5 down-regulated targets, it also led to an increase of H3K14ac in the 3' ends of GCN5 up-regulated targets. Furthermore, genome-wide changes in H3K14ac levels in the gcn5 mutant correlated with changes in H3K9ac at both 5' and 3' ends, providing evidence for a molecular link between the depositions of these two histone modifications. To understand the biological relevance of these regulations, we showed that GCN5 participates in the responses to biotic stress by repressing salicylic acid (SA) accumulation and SA-mediated immunity, highlighting the role of this protein in the regulation of the crosstalk between diverse developmental and stress-responsive physiological programs. Hence, our results demonstrate that GCN5, through the modulation of H3K14ac levels on its targets, controls the balance between biotic and abiotic stress responses and is a master regulator of plant-environmental interactions.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Genes de Plantas/genética , Histona Acetiltransferases/metabolismo , Histonas/metabolismo , Homeostase , Lisina/metabolismo , Ácido Salicílico/metabolismo , Regiões 5' não Traduzidas/genética , Acetilação , Arabidopsis/imunologia , Histonas/química , Lisina/química , Imunidade Vegetal/genética , Regiões Promotoras Genéticas/genética , Transcrição Gênica
11.
Plant Cell ; 30(1): 83-100, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29298836

RESUMO

In angiosperms, the gynoecium is the last structure to develop within the flower due to the determinate fate of floral meristem (FM) stem cells. The maintenance of stem cell activity before its arrest at the stage called FM termination affects the number of carpels that develop. The necessary inhibition at this stage of WUSCHEL (WUS), which is responsible for stem cell maintenance, involves a two-step mechanism. Direct repression mediated by the MADS domain transcription factor AGAMOUS (AG), followed by indirect repression requiring the C2H2 zinc-finger protein KNUCKLES (KNU), allow for the complete termination of floral stem cell activity. Here, we show that Arabidopsis thaliana MINI ZINC FINGER2 (AtMIF2) and its homolog in tomato (Solanum lycopersicum), INHIBITOR OF MERISTEM ACTIVITY (SlIMA), participate in the FM termination process by functioning as adaptor proteins. AtMIF2 and SlIMA recruit AtKNU and SlKNU, respectively, to form a transcriptional repressor complex together with TOPLESS and HISTONE DEACETYLASE19. AtMIF2 and SlIMA bind to the WUS and SlWUS loci in the respective plants, leading to their repression. These results provide important insights into the molecular mechanisms governing (FM) termination and highlight the essential role of AtMIF2/SlIMA during this developmental step, which determines carpel number and therefore fruit size.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas de Transporte/metabolismo , Flores/metabolismo , Meristema/metabolismo , Proteínas de Plantas/metabolismo , Solanum lycopersicum/metabolismo , Acetilação , Arabidopsis/genética , Sequência de Bases , Proteínas de Ligação a DNA , Flores/genética , Frutas , Regulação da Expressão Gênica de Plantas , Loci Gênicos , Meristema/genética , Especificidade de Órgãos/genética , Fenótipo , Ligação Proteica , Homologia de Sequência de Aminoácidos
12.
Plant J ; 100(6): 1118-1131, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31437321

RESUMO

Polycomb repressive complexes (PRCs) have been traditionally associated with the regulation of developmental processes in various organisms, including higher plants. However, similar to other epigenetic regulators, there is accumulating evidence for their role in the regulation of stress and immune-related pathways. In the current study we show that the PRC1 protein LHP1 is required for the repression of the MYC2 branch of jasmonic acid (JA)/ethylene (ET) pathway of immunity. Loss of LHP1 induces the reduction in H3K27me3 levels in the gene bodies of ANAC019 and ANAC055, as well as some of their targets, leading to their transcriptional upregulation. Consistently, increased expression of these two transcription factors leads to the misregulation of several of their genomic targets. The lhp1 mutant mimics the MYC2, ANAC019, and ANAC055 overexpressers in several of their phenotypes, including increased aphid resistance, abscisic acid (ABA) sensitivity and drought tolerance. In addition, like the MYC2 and ANAC overexpressers, lhp1 displays reduced salicylic acid (SA) content caused by a deregulation of ICS1 and BSMT1, as well as increased susceptibility to the hemibiotrophic pathogen Pseudomonas syringae pv. tomato DC3000. Together, our results indicate that LHP1 regulates the expression of stress-responsive genes as well as the homeostasis and responses to the stress hormones SA and ABA. This protein emerges as a key chromatin player fine tuning the complex balance between developmental and stress-responsive processes.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Imunidade Vegetal/imunologia , Fatores de Transcrição/metabolismo , Ácido Abscísico/metabolismo , Animais , Afídeos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Ciclopentanos , Etilenos/metabolismo , Regulação da Expressão Gênica de Plantas , Oxilipinas , Doenças das Plantas/imunologia , Imunidade Vegetal/fisiologia , Proteínas do Grupo Polycomb , Pseudomonas syringae/metabolismo , Pseudomonas syringae/patogenicidade , Ácido Salicílico/metabolismo , Fatores de Transcrição/genética , Transcriptoma
13.
J Exp Bot ; 71(17): 5129-5147, 2020 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-32639553

RESUMO

In recent years, we have witnessed a significant increase in studies addressing the three-dimensional (3D) chromatin organization of the plant nucleus. Important advances in chromatin conformation capture (3C)-derived and related techniques have allowed the exploration of the nuclear topology of plants with large and complex genomes, including various crops. In addition, the increase in their resolution has permitted the depiction of chromatin compartmentalization and interactions at the gene scale. These studies have revealed the highly complex mechanisms governing plant nuclear architecture and the remarkable knowledge gaps in this field. Here we discuss the state-of-the-art in plant chromosome architecture, including our knowledge of the hierarchical organization of the genome in 3D space and regarding other nuclear components. Furthermore, we highlight the existence in plants of topologically associated domain (TAD)-like structures that display striking differences from their mammalian counterparts, proposing the concept of ICONS-intergenic condensed spacers. Similarly, we explore recent advances in the study of chromatin loops and R-loops, and their implication in the regulation of gene activity. Finally, we address the impact that polyploidization has had on the chromatin topology of modern crops, and how this is related to phenomena such as subgenome dominance and biased gene retention in these organisms.


Assuntos
Cromatina , Genoma , Animais , Núcleo Celular/genética , Cromatina/genética , Cromossomos de Plantas , Plantas/genética
14.
Plant Cell ; 29(9): 2183-2196, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28855334

RESUMO

Root growth is modulated by environmental factors and depends on cell production in the root meristem (RM). New cells in the meristem are generated by stem cells and transit-amplifying cells, which together determine RM cell number. Transcription factors and chromatin-remodeling factors have been implicated in regulating the switch from stem cells to transit-amplifying cells. Here, we show that two Arabidopsis thaliana paralogs encoding plant-specific histone deacetylases, HDT1 and HDT2, regulate a second switch from transit-amplifying cells to expanding cells. Knockdown of HDT1/2 (hdt1,2i) results in an earlier switch and causes a reduced RM cell number. Our data show that HDT1/2 negatively regulate the acetylation level of the C19-GIBBERELLIN 2-OXIDASE2 (GA2ox2) locus and repress the expression of GA2ox2 in the RM and elongation zone. Overexpression of GA2ox2 in the RM phenocopies the hdt1,2i phenotype. Conversely, knockout of GA2ox2 partially rescues the root growth defect of hdt1,2i These results suggest that by repressing the expression of GA2ox2, HDT1/2 likely fine-tune gibberellin metabolism and they are crucial for regulating the switch from cell division to expansion to determine RM cell number. We propose that HDT1/2 function as part of a mechanism that modulates root growth in response to environmental factors.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/citologia , Arabidopsis/enzimologia , Histona Desacetilases/metabolismo , Meristema/citologia , Meristema/enzimologia , Oxigenases de Função Mista/metabolismo , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Fenômenos Biomecânicos , Contagem de Células , Divisão Celular/efeitos dos fármacos , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Inativação Gênica , Giberelinas/farmacologia , Histona Desacetilases/genética , Meristema/efeitos dos fármacos , Meristema/crescimento & desenvolvimento , Fenótipo , Plântula/efeitos dos fármacos , Plântula/fisiologia
15.
Plant Cell ; 29(7): 1773-1793, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28684426

RESUMO

Histones are essential components of the nucleosome, the major chromatin subunit that structures linear DNA molecules and regulates access of other proteins to DNA. Specific histone chaperone complexes control the correct deposition of canonical histones and their variants to modulate nucleosome structure and stability. In this study, we characterize the Arabidopsis thaliana Alpha Thalassemia-mental Retardation X-linked (ATRX) ortholog and show that ATRX is involved in histone H3 deposition. Arabidopsis ATRX mutant alleles are viable, but show developmental defects and reduced fertility. Their combination with mutants of the histone H3.3 chaperone HIRA (Histone Regulator A) results in impaired plant survival, suggesting that HIRA and ATRX function in complementary histone deposition pathways. Indeed, ATRX loss of function alters cellular histone H3.3 pools and in consequence modulates the H3.1/H3.3 balance in the cell. H3.3 levels are affected especially at genes characterized by elevated H3.3 occupancy, including the 45S ribosomal DNA (45S rDNA) loci, where loss of ATRX results in altered expression of specific 45S rDNA sequence variants. At the genome-wide scale, our data indicate that ATRX modifies gene expression concomitantly to H3.3 deposition at a set of genes characterized both by elevated H3.3 occupancy and high expression. Together, our results show that ATRX is involved in H3.3 deposition and emphasize the role of histone chaperones in adjusting genome expression.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Histonas/metabolismo , Hidrolases/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Cromatina/genética , Cromatina/metabolismo , DNA Ribossômico/metabolismo , Epistasia Genética , Regulação da Expressão Gênica de Plantas , Histonas/genética , Hidrolases/metabolismo , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Mutação , Filogenia , Plantas Geneticamente Modificadas , Proteína Nuclear Ligada ao X/genética
16.
Plant Cell ; 28(9): 2197-2211, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27495811

RESUMO

LHP1-INTERACTING FACTOR2 (LIF2), a heterogeneous nuclear ribonucleoprotein involved in Arabidopsis thaliana cell fate and stress responses, interacts with LIKE HETEROCHROMATIN PROTEIN1 (LHP1), a Polycomb Repressive Complex1 subunit. To investigate LIF2-LHP1 functional interplay, we mapped their genome-wide distributions in wild-type, lif2, and lhp1 backgrounds, under standard and stress conditions. Interestingly, LHP1-targeted regions form local clusters, suggesting an underlying functional organization of the plant genome. Regions targeted by both LIF2 and LHP1 were enriched in stress-responsive genes, the H2A.Z histone variant, and antagonistic histone marks. We identified specific motifs within the targeted regions, including a G-box-like motif, a GAGA motif, and a telo-box. LIF2 and LHP1 can operate both antagonistically and synergistically. In response to methyl jasmonate treatment, LIF2 was rapidly recruited to chromatin, where it mediated transcriptional gene activation. Thus, LIF2 and LHP1 participate in transcriptional switches in stress-response pathways.

17.
Plant Cell ; 26(2): 538-51, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24510722

RESUMO

SWI/SNF complexes mediate ATP-dependent chromatin remodeling to regulate gene expression. Many components of these complexes are evolutionarily conserved, and several subunits of Arabidopsis thaliana SWI/SNF complexes are involved in the control of flowering, a process that depends on the floral repressor FLOWERING LOCUS C (FLC). BAF60 is a SWI/SNF subunit, and in this work, we show that BAF60, via a direct targeting of the floral repressor FLC, induces a change at the high-order chromatin level and represses the photoperiod flowering pathway in Arabidopsis. BAF60 accumulates in the nucleus and controls the formation of the FLC gene loop by modulation of histone density, composition, and posttranslational modification. Physiological analysis of BAF60 RNA interference mutant lines allowed us to propose that this chromatin-remodeling protein creates a repressive chromatin configuration at the FLC locus.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Montagem e Desmontagem da Cromatina , Genes de Plantas , Proteínas de Domínio MADS/genética , Conformação de Ácido Nucleico , Subunidades Proteicas/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Cromatina/metabolismo , Temperatura Baixa , Flores/genética , Flores/fisiologia , Regulação da Expressão Gênica de Plantas , Histonas/metabolismo , Proteínas de Domínio MADS/metabolismo , Modelos Biológicos , Fotoperíodo , Processamento de Proteína Pós-Traducional , Interferência de RNA , RNA Polimerase II/metabolismo , Fatores de Tempo
18.
J Exp Bot ; 67(11): 3205-21, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27129951

RESUMO

The three-dimensional organization of the eukaryotic nucleus and its chromosomal conformation have emerged as important features in the complex network of mechanisms behind gene activity and genome connectivity dynamics, which can be evidenced in the regionalized chromosomal spatial distribution and the clustering of diverse genomic regions with similar expression patterns. The development of chromatin conformation capture (3C) techniques has permitted the elucidation of commonalities between the eukaryotic phyla, as well as important differences among them. The growing number of studies in the field performed in plants has shed light on the structural and regulatory features of these organisms. For instance, it has been proposed that plant chromatin can be arranged into different conformations such as Rabl, Rosette-like, and Bouquet, and that both short- and long-range chromatin interactions occur in Arabidopsis. In this review, we compile the current knowledge about chromosome architecture characteristics in plants, as well as the molecular events and elements (including long non-coding RNAs, histone and DNA modifications, chromatin remodeling complexes, and transcription factors) shaping the genome three-dimensional conformation. Furthermore, we discuss the developmental outputs of genome topology-mediated gene expression regulation. It is becoming increasingly clear that new tools and techniques with higher resolution need to be developed and implemented in Arabidopsis and other model plants in order to better understand chromosome architecture dynamics, from an integrative perspective with other fields of plant biology such as development, stress biology, and finally agriculture.


Assuntos
Cromatina/genética , Cromossomos de Plantas/genética , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Plantas/genética , Cromatina/metabolismo , Cromossomos de Plantas/metabolismo , Cromossomos de Plantas/ultraestrutura , Conformação Molecular , Plantas/ultraestrutura
19.
Nucleic Acids Res ; 41(5): 2907-17, 2013 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-23341037

RESUMO

Because regulation of its activity is instrumental either to support cell proliferation and growth or to promote cell death, the universal myo-inositol phosphate synthase (MIPS), responsible for myo-inositol biosynthesis, is a critical enzyme of primary metabolism. Surprisingly, we found this enzyme to be imported in the nucleus and to interact with the histone methyltransferases ATXR5 and ATXR6, raising the question of whether MIPS1 has a function in transcriptional regulation. Here, we demonstrate that MIPS1 binds directly to its promoter to stimulate its own expression by locally inhibiting the spreading of ATXR5/6-dependent heterochromatin marks coming from a transposable element. Furthermore, on activation of pathogen response, MIPS1 expression is reduced epigenetically, providing evidence for a complex regulatory mechanism acting at the transcriptional level. Thus, in plants, MIPS1 appears to have evolved as a protein that connects cellular metabolism, pathogen response and chromatin remodeling.


Assuntos
Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Meristema/genética , Mio-Inositol-1-Fosfato Sintase/fisiologia , Apoptose , Arabidopsis/citologia , Arabidopsis/enzimologia , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/fisiologia , Núcleo Celular/enzimologia , Montagem e Desmontagem da Cromatina , Citoplasma/enzimologia , Metilação de DNA , Epigênese Genética , Flagelina/imunologia , Expressão Gênica , Histonas/metabolismo , Meristema/citologia , Meristema/enzimologia , Metilação , Metiltransferases/metabolismo , Metiltransferases/fisiologia , Mio-Inositol-1-Fosfato Sintase/genética , Mio-Inositol-1-Fosfato Sintase/metabolismo , Imunidade Vegetal/genética , Regiões Promotoras Genéticas , Ligação Proteica , Processamento de Proteína Pós-Traducional , Transporte Proteico , Nicotiana
20.
Plant Physiol ; 161(4): 1694-705, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23426196

RESUMO

Despite considerable progress in our knowledge regarding the cell cycle inhibitor of the Kip-related protein (KRP) family in plants, less is known about the coordination of endoreduplication and cell differentiation. In animals, the role of cyclin-dependent kinase (CDK) inhibitors as multifunctional factors coordinating cell cycle regulation and cell differentiation is well documented and involves not only the inhibition of CDK/cyclin complexes but also other mechanisms, among them the regulation of transcription. Interestingly, several plant KRPs have a punctuated distribution in the nucleus, suggesting that they are associated with heterochromatin. Here, one of these chromatin-bound KRPs, KRP5, has been studied in Arabidopsis (Arabidopsis thaliana). KRP5 is expressed in endoreduplicating cells, and loss of KRP5 function decreases endoreduplication, indicating that KRP5 is a positive regulator of endoreduplication. This regulation relies on several mechanisms: in addition to its role in cyclin/CDK kinase inhibition previously described, chromatin immunoprecipitation sequencing data combined with transcript quantification provide evidence that KRP5 regulates the transcription of genes involved in cell wall organization. Furthermore, KRP5 overexpression increases chromocenter decondensation and endoreduplication in the Arabidopsis trithorax-related protein5 (atxr5) atxr6 double mutant, which is deficient for the deposition of heterochromatin marks. Hence, KRP5 could bind chromatin to coordinately control endoreduplication and chromatin structure and allow the expression of genes required for cell elongation.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/citologia , Arabidopsis/metabolismo , Proteínas Inibidoras de Quinase Dependente de Ciclina/metabolismo , Endorreduplicação , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas Inibidoras de Quinase Dependente de Ciclina/genética , Ciclinas/metabolismo , Genes de Plantas/genética , Heterocromatina/metabolismo , Modelos Biológicos , Mutação/genética , Ligação Proteica/genética , Transporte Proteico , Plântula/metabolismo , Ativação Transcricional/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA