Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Am Chem Soc ; 138(13): 4342-5, 2016 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-26999044

RESUMO

The α,ß-epoxyketone proteasome inhibitor TMC-86A was discovered as a previously unreported metabolite of Streptomyces chromofuscus ATCC49982, and the gene cluster responsible for its biosynthesis was identified via genome sequencing. Incorporation experiments with [(13)C-methyl]l-methionine implicated an α-dimethyl-ß-keto acid intermediate in the biosynthesis of TMC-86A. Incubation of the chemically synthesized α-dimethyl-ß-keto acid with a purified recombinant flavin-dependent enzyme that is conserved in all known pathways for epoxyketone biosynthesis resulted in formation of the corresponding α-methyl-α,ß-epoxyketone. This transformation appears to proceed via an unprecedented decarboxylation-dehydrogenation-monooxygenation cascade. The biosynthesis of the TMC-86A warhead is completed by cytochrome P450-mediated hydroxylation of the α-methyl-α,ß-epoxyketone.


Assuntos
Flavinas/metabolismo , Inibidores de Proteassoma/farmacologia , Carboxiliases/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Dinitrocresóis , Dipeptídeos/farmacologia , Metionina/química , Complexo de Endopeptidases do Proteassoma/metabolismo , Estereoisomerismo , Streptomyces/enzimologia
2.
J Am Chem Soc ; 138(9): 3038-45, 2016 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-26867114

RESUMO

Bioorthogonal chemistry enables a specific moiety in a complex biomolecule to be selectively modified in the presence of many reactive functional groups and other cellular entities. Such selectivity has become indispensable in biology, enabling biomolecules to be derivatized, conjugated, labeled, or immobilized for imaging, biochemical assays, or therapeutic applications. Methyltransferase enzymes (MTase) that accept analogues of the cofactor S-adenosyl methionine have been widely deployed for alkyl-diversification and bioorthogonal labeling. However, MTases typically possess tight substrate specificity. Here we introduce a more flexible methodology for selective derivatization of phenolic moieties in complex biomolecules. Our approach relies on the tandem enzymatic reaction of a fungal tyrosinase and the mammalian catechol-O-methyltransferase (COMT), which can effect the sequential hydroxylation of the phenolic group to give an intermediate catechol moiety that is subsequently O-alkylated. When used in this combination, the alkoxylation is highly selective for tyrosine residues in peptides and proteins, yet remarkably tolerant to changes in the peptide sequence. Tyrosinase-COMT are shown to provide highly versatile and regioselective modification of a diverse range of substrates including peptide antitumor agents, hormones, cyclic peptide antibiotics, and model proteins.


Assuntos
Catecol O-Metiltransferase/metabolismo , Monofenol Mono-Oxigenase/metabolismo , Peptídeos/metabolismo , Proteínas/metabolismo , Tirosina/metabolismo , Agaricales/enzimologia , Agaricales/metabolismo , Alquilação , Catálise , Catecol O-Metiltransferase/química , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Hidroxilação , Levodopa/química , Levodopa/metabolismo , Monofenol Mono-Oxigenase/química , Peptídeos/química , Peptídeos Cíclicos/química , Peptídeos Cíclicos/metabolismo , Proteínas/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Tirosina/química
3.
Angew Chem Int Ed Engl ; 55(8): 2683-7, 2016 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-26797714

RESUMO

Catechol-O-methyltransferase (COMT), an important therapeutic target in the treatment of Parkinson's disease, is also being developed for biocatalytic processes, including vanillin production, although lack of regioselectivity has precluded its more widespread application. By using structural and mechanistic information, regiocomplementary COMT variants were engineered that deliver either meta- or para-methylated catechols. X-ray crystallography further revealed how the active-site residues and quaternary structure govern regioselectivity. Finally, analogues of AdoMet are accepted by the regiocomplementary COMT mutants and can be used to prepare alkylated catechols, including ethyl vanillin.


Assuntos
Catecol O-Metiltransferase/metabolismo , Domínio Catalítico , Catecol O-Metiltransferase/química , Cristalografia por Raios X , Estrutura Quaternária de Proteína
4.
Microbiology (Reading) ; 161(7): 1338-47, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25878261

RESUMO

The lipopeptides ramoplanin from Actinoplanes sp. ATCC 33076 and enduracidin produced by Streptomyces fungicidicus are effective antibiotics against a number of drug-resistant Gram-positive pathogens. While these two antibiotics share a similar cyclic peptide structure, comprising 17 amino acids with an N-terminal fatty acid side chain, ramoplanin has a di-mannose moiety that enduracidin lacks. The mannosyl substituents of ramoplanin enhance aqueous solubility, which was important in the development of ramoplanin as a potential treatment for Clostridium difficile infections. In this study we have determined the function of the putative mannosyltransferase encoded by ram29 from the ramoplanin biosynthetic gene cluster. Bioinformatics revealed that Ram29 is an integral membrane protein with a putative DxD motif that is suggested to bind to, and activate, a polyprenyl phosphomannose donor and an extracytoplasmic C-terminal domain that is predicted to bind the ramoplanin aglycone acceptor. The ram29 gene was cloned into the tetracycline inducible plasmid pMS17 and integrated into the genome of the enduracidin producer S. fungicidicus. Induction of ram29 expression in S. fungicidicus resulted in the production of monomannosylated enduracidin derivatives, which are not present in the WT strain. Tandem MS analysis showed that mannosylation occurs on the Hpg11 residue of enduracidin. In addition to confirming the function of Ram29, these findings demonstrate how the less common, membrane-associated, polyprenyl phosphosugar-dependent glycosyltransferases can be used in natural product glycodiversification. Such a strategy may be valuable in future biosynthetic engineering approaches aimed at improving the physico-chemical and biological properties of bioactive secondary metabolites including antibiotics.


Assuntos
Antibacterianos/biossíntese , Vias Biossintéticas/genética , Depsipeptídeos/metabolismo , Manosiltransferases/metabolismo , Engenharia Metabólica , Peptídeos Cíclicos/biossíntese , Clonagem Molecular , Expressão Gênica , Glicopeptídeos/biossíntese , Lipopeptídeos/biossíntese , Manosiltransferases/genética , Modelos Biológicos , Modelos Moleculares , Estrutura Molecular , Plasmídeos , Streptomyces/genética , Streptomyces/metabolismo , Espectrometria de Massas em Tandem
5.
Nat Commun ; 12(1): 6872, 2021 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-34824225

RESUMO

Re-engineering biosynthetic assembly lines, including nonribosomal peptide synthetases (NRPS) and related megasynthase enzymes, is a powerful route to new antibiotics and other bioactive natural products that are too complex for chemical synthesis. However, engineering megasynthases is very challenging using current methods. Here, we describe how CRISPR-Cas9 gene editing can be exploited to rapidly engineer one of the most complex megasynthase assembly lines in nature, the 2.0 MDa NRPS enzymes that deliver the lipopeptide antibiotic enduracidin. Gene editing was used to exchange subdomains within the NRPS, altering substrate selectivity, leading to ten new lipopeptide variants in good yields. In contrast, attempts to engineer the same NRPS using a conventional homologous recombination-mediated gene knockout and complementation approach resulted in only traces of new enduracidin variants. In addition to exchanging subdomains within the enduracidin NRPS, subdomains from a range of NRPS enzymes of diverse bacterial origins were also successfully utilized.


Assuntos
Antibacterianos/biossíntese , Edição de Genes/métodos , Complexos Multienzimáticos/genética , Antibacterianos/química , Proteína 9 Associada à CRISPR , Sistemas CRISPR-Cas , Lipopeptídeos/biossíntese , Lipopeptídeos/química , Complexos Multienzimáticos/química , Complexos Multienzimáticos/metabolismo , Mutação , Peptídeo Sintases/química , Peptídeo Sintases/genética , Peptídeo Sintases/metabolismo , Peptídeos Cíclicos/biossíntese , Peptídeos Cíclicos/química , Domínios Proteicos , Streptomyces/genética , Streptomyces/metabolismo , Biologia Sintética
6.
Chem Sci ; 6(5): 2885-2892, 2015 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-29403635

RESUMO

The methylation of natural products by S-adenosyl methionine (AdoMet, also known as SAM)-dependent methyltransferase enzymes is a common tailoring step in many biosynthetic pathways. The introduction of methyl substituents can affect the biological and physicochemical properties of the secondary metabolites produced. Recently it has become apparent that some AdoMet-dependent methyltransferases exhibit promiscuity and will accept AdoMet analogues enabling the transfer of alternative alkyl groups. In this study we have characterised a methyltransferase, RapM, which is involved in the biosynthesis of the potent immunosuppressive agent rapamycin. We have shown that recombinant RapM regioselectively methylates the C16 hydroxyl group of desmethyl rapamycin precursors in vitro and is promiscuous in accepting alternative co-factors in addition to AdoMet. A coupled enzyme system was developed, including a mutant human enzyme methionine adenosyl transferase (MAT), along with RapM, which was used to prepare alkylated rapamycin derivatives (rapalogs) with alternative ethyl and allyl ether groups, derived from simple S-ethyl or S-allyl methionine analogues. There are two other methyltransferases RapI and RapQ which provide methyl substituents of rapamycin. Consequently, using the enzymatic approach described here, it should be possible to generate a diverse array of alkylated rapalogs, with altered properties, that would be difficult to obtain by traditional synthetic approaches.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA