Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nat Immunol ; 22(11): 1382-1390, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34663978

RESUMO

Intergenerational inheritance of immune traits linked to epigenetic modifications has been demonstrated in plants and invertebrates. Here we provide evidence for transmission of trained immunity across generations to murine progeny that survived a sublethal systemic infection with Candida albicans or a zymosan challenge. The progeny of trained mice exhibited cellular, developmental, transcriptional and epigenetic changes associated with the bone marrow-resident myeloid effector and progenitor cell compartment. Moreover, the progeny of trained mice showed enhanced responsiveness to endotoxin challenge, alongside improved protection against systemic heterologous Escherichia coli and Listeria monocytogenes infections. Sperm DNA of parental male mice intravenously infected with the fungus C. albicans showed DNA methylation differences linked to immune gene loci. These results provide evidence for inheritance of trained immunity in mammals, enhancing protection against infections.


Assuntos
Candida albicans/imunologia , Candidíase/imunologia , Infecções por Escherichia coli/imunologia , Escherichia coli/imunologia , Hereditariedade , Imunidade Inata/genética , Listeria monocytogenes/imunologia , Listeriose/imunologia , Células Mieloides/imunologia , Animais , Candida albicans/patogenicidade , Candidíase/genética , Candidíase/metabolismo , Candidíase/microbiologia , Células Cultivadas , Metilação de DNA , Modelos Animais de Doenças , Epigênese Genética , Escherichia coli/patogenicidade , Infecções por Escherichia coli/genética , Infecções por Escherichia coli/metabolismo , Infecções por Escherichia coli/microbiologia , Interações Hospedeiro-Patógeno , Listeria monocytogenes/patogenicidade , Listeriose/genética , Listeriose/metabolismo , Listeriose/microbiologia , Masculino , Camundongos Transgênicos , Células Mieloides/metabolismo , Células Mieloides/microbiologia , Espermatozoides/imunologia , Espermatozoides/metabolismo , Transcrição Gênica
4.
Nat Immunol ; 16(9): 970-9, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26168081

RESUMO

Interleukin 17-producing helper T cells (T(H)17 cells) have a major role in protection against infections and in mediating autoimmune diseases, yet the mechanisms involved are incompletely understood. We found that interleukin 26 (IL-26), a human T(H)17 cell-derived cytokine, is a cationic amphipathic protein that kills extracellular bacteria via membrane-pore formation. Furthermore, T(H)17 cell-derived IL-26 formed complexes with bacterial DNA and self-DNA released by dying bacteria and host cells. The resulting IL-26-DNA complexes triggered the production of type I interferon by plasmacytoid dendritic cells via activation of Toll-like receptor 9, but independently of the IL-26 receptor. These findings provide insights into the potent antimicrobial and proinflammatory function of T(H)17 cells by showing that IL-26 is a natural human antimicrobial that promotes immune sensing of bacterial and host cell death.


Assuntos
DNA Bacteriano/imunologia , DNA/imunologia , Imunidade Inata/imunologia , Interleucinas/imunologia , Células Th17/imunologia , Receptor Toll-Like 9/imunologia , Animais , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Humanos , Interferon Tipo I/imunologia , Interferon Tipo I/metabolismo , Camundongos , Psoríase/imunologia , Receptores de Interleucina/imunologia , Receptores de Interleucina/metabolismo
5.
Eur J Immunol ; 52(10): 1676-1679, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35689332

RESUMO

We used unsupervised immunophenotyping of blood leukocytes and measured cytokine production by innate immune cell exposed to LPS and R848. We show that COVID-19 induces a rapid, transient upregulation of myeloid-derived suppressor cells (MDSCs) accompanied by a rapid, sustained (up to 3 months) hyporesponsiveness of dendritic cells and monocytes. Blood MDSCs may represent biomarkers and targets for intervention strategies in COVID-19 patients.


Assuntos
COVID-19 , Doenças do Sistema Imunitário , Células Supressoras Mieloides , Biomarcadores , Citocinas/farmacologia , Humanos , Imunidade Inata , Lipopolissacarídeos
6.
FASEB J ; 35(5): e21418, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33774873

RESUMO

Constitutively expressed by innate immune cells, the cytokine macrophage migration inhibitory factor (MIF) initiates host immune responses and drives pathogenic responses in infectious, inflammatory, and autoimmune diseases. Dendritic cells (DCs) express high levels of MIF, but the role of MIF in DC function remains poorly characterized. As migration is critical for DC immune surveillance, we investigated whether MIF promoted the migration of DCs. In classical transwell experiments, MIF-/- bone marrow-derived DCs (BMDCs) or MIF+/+ BMDCs treated with ISO-1, an inhibitor of MIF, showed markedly reduced spontaneous migration and chemotaxis. CD74-/- BMDCs that are deficient in the ligand-binding component of the cognate MIF receptor exhibited a migration defect similar to that of MIF-/- BMDCs. Adoptive transfer experiments of LPS-matured MIF+/+ and MIF-/- and of CD74+/+ and CD74-/- BMDCs injected into the hind footpads of homologous or heterologous mice showed that the autocrine and paracrine MIF activity acting via CD74 contributed to the recruitment of DCs to the draining lymph nodes. Mechanistically, MIF activated the Src/PI3K signaling pathway and myosin II complexes, which were required for the migration of BMDCs. Altogether, these data show that the cytokine MIF exerts chemokine-like activity for DC motility and trafficking.


Assuntos
Antígenos de Diferenciação de Linfócitos B/fisiologia , Quimiotaxia , Células Dendríticas/fisiologia , Antígenos de Histocompatibilidade Classe II/fisiologia , Oxirredutases Intramoleculares/metabolismo , Fatores Inibidores da Migração de Macrófagos/metabolismo , Miosina Tipo II/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Quinases da Família src/metabolismo , Animais , Células Cultivadas , Quimiocinas/metabolismo , Células Dendríticas/citologia , Imunidade , Oxirredutases Intramoleculares/genética , Fatores Inibidores da Migração de Macrófagos/genética , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Miosina Tipo II/genética , Fosfatidilinositol 3-Quinases/genética , Transdução de Sinais , Quinases da Família src/genética
7.
J Surg Res ; 272: 132-138, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34973547

RESUMO

BACKGROUND: Biological xenografts using tubulized porcine pericardium are an alternative to replace infected prosthetic graft. We recently reported an innovative technique using a stapled porcine pericardial bioconduit for immediate vascular reconstruction in emergency. The objective of this study is to compare the growth and adherence to grafts of bacteria and yeast incubated with stapled porcine pericardium, sutured or naked pericardium. MATERIAL AND METHODS: One square centimeter of porcine pericardial patches, with or without staples or sutures, was incubated with 105 colony forming units of Escherichia coli, Staphylococcus aureus, Staphylococcus epidermidis, and Candida albicans for 1, 6, and 24 h. The medium was collected to quantify planktonic microorganisms, while grafts were sonicated to quantify adherent microorganisms. Dacron and Dacron Silver were analyzed in parallel as synthetic reference prostheses. RESULTS: Stapled porcine pericardium reduced the growth and the adherence of E coli (2- to 30-fold; P < 0.0005), S aureus (11- to 1000-fold; P < 0.0006), S epidermidis (>500-fold; P < 0.0001), and C albicans (12- to 50-fold; P < 0.0001) when compared to medium alone (growth) and pericardium or Dacron (adherence). Native and sutured porcine pericardium interfered with the growth and the adherence of E coli and C albicans, and Dacron with that of S epidermidis. As expected, Dacron Silver was robustly bactericidal. CONCLUSIONS: Stapled porcine pericardium exhibited a lower susceptibility to infection by bacteria and yeasts in vitro when compared to the native and sutured porcine pericardium. Stapled porcine pericardium might be a good option for rapid vascular grafting without increasing infectivity.


Assuntos
Prótese Vascular , Polietilenotereftalatos , Animais , Escherichia coli , Humanos , Pericárdio , Prata , Staphylococcus aureus , Staphylococcus epidermidis , Suínos
8.
J Infect Dis ; 222(11): 1869-1881, 2020 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-31889191

RESUMO

BACKGROUND: The innate immune system recalls a challenge to adapt to a secondary challenge, a phenomenon called trained immunity. Training involves cellular metabolic, epigenetic and functional reprogramming, but how broadly trained immunity protects from infections is unknown. For the first time, we addressed whether trained immunity provides protection in a large panel of preclinical models of infections. METHODS: Mice were trained and subjected to systemic infections, peritonitis, enteritis, and pneumonia induced by Staphylococcus aureus, Listeria monocytogenes, Escherichia coli, Citrobacter rodentium, and Pseudomonas aeruginosa. Bacteria, cytokines, leukocytes, and hematopoietic precursors were quantified in blood, bone marrow, and organs. The role of monocytes/macrophages, granulocytes, and interleukin 1 signaling was investigated using depletion or blocking approaches. RESULTS: Induction of trained immunity protected mice in all preclinical models, including when training and infection were initiated in distant organs. Trained immunity increased bone marrow hematopoietic progenitors, blood Ly6Chigh inflammatory monocytes and granulocytes, and sustained blood antimicrobial responses. Monocytes/macrophages and interleukin 1 signaling were required to protect trained mice from listeriosis. Trained mice were efficiently protected from peritonitis and listeriosis for up to 5 weeks. CONCLUSIONS: Trained immunity confers broad-spectrum protection against lethal bacterial infections. These observations support the development of trained immunity-based strategies to improve host defenses.


Assuntos
Infecções Bacterianas/imunologia , Imunidade Inata , Animais , Infecções Bacterianas/microbiologia , Medula Óssea , Citrobacter rodentium , Citocinas/metabolismo , Escherichia coli , Feminino , Interleucina-1/metabolismo , Listeria monocytogenes , Listeriose/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Monócitos/imunologia , Pseudomonas aeruginosa , Sepse/imunologia , Transdução de Sinais , Infecções Estafilocócicas/imunologia , Staphylococcus aureus
9.
EMBO Rep ; 19(12)2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30337494

RESUMO

Chitin is the second most abundant polysaccharide in nature and linked to fungal infection and asthma. However, bona fide immune receptors directly binding chitin and signaling immune activation and inflammation have not been clearly identified because polymeric crude chitin with unknown purity and molecular composition has been used. By using defined chitin (N-acetyl-glucosamine) oligomers, we here identify six-subunit-long chitin chains as the smallest immunologically active motif and the innate immune receptor Toll-like receptor (TLR2) as a primary fungal chitin sensor on human and murine immune cells. Chitin oligomers directly bind TLR2 with nanomolar affinity, and this fungal TLR2 ligand shows overlapping and distinct signaling outcomes compared to known mycobacterial TLR2 ligands. Unexpectedly, chitin oligomers composed of five or less subunits are inactive, hinting to a size-dependent system of immuno-modulation that appears conserved in plants and humans. Since blocking of the chitin-TLR2 interaction effectively prevents chitin-mediated inflammation in vitro and in vivo, our study highlights the chitin-TLR2 interaction as a potential target for developing novel therapies in chitin-related pathologies and fungal disease.


Assuntos
Quitina/química , Quitina/metabolismo , Fungos/metabolismo , Inflamação/metabolismo , Inflamação/patologia , Receptor 2 Toll-Like/metabolismo , Animais , Parede Celular/efeitos dos fármacos , Parede Celular/metabolismo , Quitinases/metabolismo , Feminino , Humanos , Interações Hidrofóbicas e Hidrofílicas , Fatores Imunológicos/farmacologia , Ligantes , Linfócitos/efeitos dos fármacos , Linfócitos/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células THP-1 , Receptor 1 Toll-Like/agonistas , Receptor 1 Toll-Like/metabolismo , Receptor 2 Toll-Like/química , Zimosan/metabolismo
10.
Proc Natl Acad Sci U S A ; 113(8): E997-1005, 2016 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-26858459

RESUMO

The vulnerability to infection of newborns is associated with a limited ability to mount efficient immune responses. High concentrations of adenosine and prostaglandins in the fetal and neonatal circulation hamper the antimicrobial responses of newborn immune cells. However, the existence of mechanisms counterbalancing neonatal immunosuppression has not been investigated. Remarkably, circulating levels of macrophage migration inhibitory factor (MIF), a proinflammatory immunoregulatory cytokine expressed constitutively, were 10-fold higher in newborns than in children and adults. Newborn monocytes expressed high levels of MIF and released MIF upon stimulation with Escherichia coli and group B Streptococcus, the leading pathogens of early-onset neonatal sepsis. Inhibition of MIF activity or MIF expression reduced microbial product-induced phosphorylation of p38 and ERK1/2 mitogen-activated protein kinases and secretion of cytokines. Recombinant MIF used at newborn, but not adult, concentrations counterregulated adenosine and prostaglandin E2-mediated inhibition of ERK1/2 activation and TNF production in newborn monocytes exposed to E. coli. In agreement with the concept that once infection is established high levels of MIF are detrimental to the host, treatment with a small molecule inhibitor of MIF reduced systemic inflammatory response, bacterial proliferation, and mortality of septic newborn mice. Altogether, these data provide a mechanistic explanation for how newborns may cope with an immunosuppressive environment to maintain a certain threshold of innate defenses. However, the same defense mechanisms may be at the expense of the host in conditions of severe infection, suggesting that MIF could represent a potential attractive target for immune-modulating adjunctive therapies for neonatal sepsis.


Assuntos
Regulação da Expressão Gênica/imunologia , Imunidade Inata/fisiologia , Oxirredutases Intramoleculares/imunologia , Sistema de Sinalização das MAP Quinases/imunologia , Fatores Inibidores da Migração de Macrófagos/imunologia , Monócitos/imunologia , Adulto , Animais , Escherichia coli/imunologia , MAP Quinases Reguladas por Sinal Extracelular/imunologia , Feminino , Humanos , Recém-Nascido , Masculino , Camundongos , Streptococcus agalactiae/imunologia
11.
Proc Natl Acad Sci U S A ; 113(13): 3597-602, 2016 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-26976591

RESUMO

Pneumococcal meningitis is the most frequent and critical type of bacterial meningitis. Because cytokines play an important role in the pathogenesis of bacterial meningitis, we examined whether functional polymorphisms of the proinflammatory cytokine macrophage migration inhibitory factor (MIF) were associated with morbidity and mortality of pneumococcal meningitis. Two functional MIF promoter polymorphisms, a microsatellite (-794 CATT5-8; rs5844572) and a single-nucleotide polymorphism (-173 G/C; rs755622) were genotyped in a prospective, nationwide cohort of 405 patients with pneumococcal meningitis and in 329 controls matched for age, gender, and ethnicity. Carriages of the CATT7 and -173 C high-expression MIF alleles were associated with unfavorable outcome (P= 0.005 and 0.003) and death (P= 0.03 and 0.01). In a multivariate logistic regression model, shock [odds ratio (OR) 26.0, P= 0.02] and carriage of the CATT7 allele (OR 5.12,P= 0.04) were the main predictors of mortality. MIF levels in the cerebrospinal fluid were associated with systemic complications and death (P= 0.0002). Streptococcus pneumoniae strongly up-regulated MIF production in whole blood and transcription activity of high-expression MIF promoter Luciferase reporter constructs in THP-1 monocytes. Consistent with these findings, treatment with anti-MIF immunoglogulin G (IgG) antibodies reduced bacterial loads and improved survival in a mouse model of pneumococcal pneumonia and sepsis. The present study provides strong evidence that carriage of high-expression MIF alleles is a genetic marker of morbidity and mortality of pneumococcal meningitis and also suggests a potential role for MIF as a target of immune-modulating adjunctive therapy.


Assuntos
Oxirredutases Intramoleculares/genética , Fatores Inibidores da Migração de Macrófagos/genética , Meningite Pneumocócica/genética , Polimorfismo Genético , Adulto , Idoso , Animais , Anticorpos Neutralizantes/administração & dosagem , Estudos de Casos e Controles , Linhagem Celular , Modelos Animais de Doenças , Feminino , Predisposição Genética para Doença , Humanos , Oxirredutases Intramoleculares/antagonistas & inibidores , Oxirredutases Intramoleculares/líquido cefalorraquidiano , Oxirredutases Intramoleculares/imunologia , Fatores Inibidores da Migração de Macrófagos/antagonistas & inibidores , Fatores Inibidores da Migração de Macrófagos/líquido cefalorraquidiano , Fatores Inibidores da Migração de Macrófagos/imunologia , Masculino , Meningite Pneumocócica/líquido cefalorraquidiano , Meningite Pneumocócica/mortalidade , Camundongos , Camundongos Endogâmicos BALB C , Repetições de Microssatélites , Pessoa de Meia-Idade , Países Baixos/epidemiologia , Polimorfismo de Nucleotídeo Único , Regiões Promotoras Genéticas , Estudos Prospectivos , Streptococcus pneumoniae/patogenicidade
12.
J Toxicol Environ Health A ; 78(13-14): 871-85, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26167753

RESUMO

Chronic inhalation of grain dust is associated with asthma and chronic bronchitis in grain worker populations. Exposure to fungal particles was postulated to be an important etiologic agent of these pathologies. Fusarium species frequently colonize grain and straw and produce a wide array of mycotoxins that impact human health, necessitating an evaluation of risk exposure by inhalation of Fusarium and its consequences on immune responses. Data showed that Fusarium culmorum is a frequent constituent of aerosols sampled during wheat harvesting in the Vaud region of Switzerland. The aim of this study was to examine cytokine/chemokine responses and innate immune sensing of F. culmorum in bone-marrow-derived dendritic cells and macrophages. Overall, dendritic cells and macrophages responded to F. culmorum spores but not to its secreted components (i.e., mycotoxins) by releasing large amounts of macrophage inflammatory protein (MIP)-1α, MIP-1ß, MIP-2, monocyte chemoattractant protein (MCP)-1, RANTES, and interleukin (IL)-12p40, intermediate amounts of tumor necrosis factor (TNF), IL-6, IL-12p70, IL-33, granulocyte colony-stimulating factor (G-CSF), and interferon gamma-induced protein (IP-10), but no detectable amounts of IL-4 and IL-10, a pattern of mediators compatible with generation of Th1 or Th17 antifungal protective immune responses rather than with Th2-dependent allergic responses. The sensing of F. culmorum spores by dendritic cells required dectin-1, the main pattern recognition receptor involved in ß-glucans detection, but likely not MyD88 and TRIF-dependent Toll-like receptors. Taken together, our results indicate that F. culmorum stimulates potently innate immune cells in a dectin-1-dependent manner, suggesting that inhalation of F. culmorum from grain dust may promote immune-related airway diseases in exposed worker populations.


Assuntos
Microbiologia do Ar , Células Dendríticas/imunologia , Fusarium/fisiologia , Imunidade Inata , Aerossóis/análise , Poluentes Atmosféricos/análise , Animais , Quimiocinas/genética , Quimiocinas/metabolismo , Citocinas/genética , Citocinas/metabolismo , Células Dendríticas/microbiologia , Feminino , Macrófagos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Receptores de Reconhecimento de Padrão/genética , Receptores de Reconhecimento de Padrão/metabolismo , Organismos Livres de Patógenos Específicos , Suíça , Triticum
13.
Biochim Biophys Acta ; 1833(6): 1498-510, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23499872

RESUMO

Sirtuins (SIRT1-7) are NAD(+)-dependent histone deacetylases (HDACs) that play an important role in the control of metabolism and proliferation and the development of age-associated diseases like oncologic, cardiovascular and neurodegenerative diseases. Cambinol was originally described as a compound inhibiting the activity of SIRT1 and SIRT2, with efficient anti-tumor activity in vivo. Here, we studied the effects of cambinol on microbial sensing by mouse and human immune cells and on host innate immune responses in vivo. Cambinol inhibited the expression of cytokines (TNF, IL-1ß, IL-6, IL-12p40, and IFN-γ), NO and CD40 by macrophages, dendritic cells, splenocytes and whole blood stimulated with a broad range of microbial and inflammasome stimuli. Sirtinol, an inhibitor of SIRT1 and SIRT2 structurally related to cambinol, also decreased macrophage response to TLR stimulation. On the contrary, selective inhibitors of SIRT1 (EX-527 and CHIC-35) and SIRT2 (AGK2 and AK-7) used alone or in combination had no inhibitory effect, suggesting that cambinol and sirtinol act by targeting more than just SIRT1 and SIRT2. Cambinol and sirtinol at anti-inflammatory concentrations also did not inhibit SIRT6 activity in in vitro assay. At the molecular level, cambinol impaired stimulus-induced phosphorylation of MAPKs and upstream MEKs. Going well along with its powerful anti-inflammatory activity, cambinol reduced TNF blood levels and bacteremia and improved survival in preclinical models of endotoxic shock and septic shock. Altogether, our data suggest that pharmacological inhibitors of sirtuins structurally related to cambinol may be of clinical interest to treat inflammatory diseases.


Assuntos
Imunidade Inata/imunologia , Inflamação/prevenção & controle , Macrófagos/efeitos dos fármacos , Naftalenos/farmacologia , Pirimidinonas/farmacologia , Choque Séptico/prevenção & controle , Sirtuínas/antagonistas & inibidores , Animais , Apoptose , Benzamidas/farmacologia , Western Blotting , Proliferação de Células , Células Cultivadas , Citocinas/metabolismo , Citometria de Fluxo , Humanos , Inflamação/imunologia , Inflamação/microbiologia , Infecções por Klebsiella/imunologia , Infecções por Klebsiella/microbiologia , Infecções por Klebsiella/prevenção & controle , Klebsiella pneumoniae , Macrófagos/imunologia , Macrófagos/microbiologia , Camundongos , Camundongos Endogâmicos BALB C , Proteínas Quinases Ativadas por Mitógeno/genética , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Naftóis/farmacologia , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Choque Séptico/imunologia , Choque Séptico/microbiologia
14.
J Infect Dis ; 207(2): 331-9, 2013 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-23125447

RESUMO

The cytokine macrophage migration inhibitory factor (MIF) is an important component of the early proinflammatory response of the innate immune system. However, the antimicrobial defense mechanisms mediated by MIF remain fairly mysterious. In the present study, we examined whether MIF controls bacterial uptake and clearance by professional phagocytes, using wild-type and MIF-deficient macrophages. MIF deficiency did not affect bacterial phagocytosis, but it strongly impaired the killing of gram-negative bacteria by macrophages and host defenses against gram-negative bacterial infection, as shown by increased mortality in a Klebsiella pneumonia model. Consistent with MIF's regulatory role of Toll-like 4 expression in macrophages, MIF-deficient cells stimulated with lipopolysaccharide or Escherichia coli exhibited reduced nuclear factor κB activity and tumor necrosis factor (TNF) production. Addition of recombinant MIF or TNF corrected the killing defect of MIF-deficient macrophages. Together, these data show that MIF is a key mediator of host responses against gram-negative bacteria, acting in part via a modulation of bacterial killing by macrophages.


Assuntos
Bactérias Gram-Negativas/imunologia , Infecções por Klebsiella/imunologia , Klebsiella pneumoniae/patogenicidade , Fatores Inibidores da Migração de Macrófagos/deficiência , Macrófagos/imunologia , Animais , Linhagem Celular , Células Cultivadas , Humanos , Infecções por Klebsiella/microbiologia , Klebsiella pneumoniae/imunologia , Fatores Inibidores da Migração de Macrófagos/imunologia , Fatores Inibidores da Migração de Macrófagos/metabolismo , Macrófagos/microbiologia , Camundongos , Camundongos Endogâmicos BALB C , Fagocitose/imunologia
15.
Cells ; 13(4)2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38391927

RESUMO

Patients admitted to the intensive care unit (ICU) often experience endotoxemia, nosocomial infections and sepsis. Polymorphonuclear and monocytic myeloid-derived suppressor cells (PMN-MDSCs and M-MDSCs) can have an important impact on the development of infectious diseases, but little is known about their potential predictive value in critically ill patients. Here, we used unsupervised flow cytometry analyses to quantify MDSC-like cells in healthy subjects challenged with endotoxin and in critically ill patients admitted to intensive care units and at risk of developing infections. Cells phenotypically similar to PMN-MDSCs and M-MDSCs increased after endotoxin challenge. Similar cells were elevated in patients at ICU admission and normalized at ICU discharge. A subpopulation of M-MDSC-like cells expressing intermediate levels of CD15 (CD15int M-MDSCs) was associated with overall mortality (p = 0.02). Interestingly, the high abundance of PMN-MDSCs and CD15int M-MDSCs was a good predictor of mortality (p = 0.0046 and 0.014), with area under the ROC curve for mortality of 0.70 (95% CI = 0.4-1.0) and 0.86 (0.62-1.0), respectively. Overall, our observations support the idea that MDSCs represent biomarkers for sepsis and that flow cytometry monitoring of MDSCs may be used to risk-stratify ICU patients for targeted therapy.


Assuntos
Endotoxemia , Células Supressoras Mieloides , Humanos , Estado Terminal , Prognóstico , Cuidados Críticos , Endotoxinas
16.
J Biol Chem ; 287(10): 7446-55, 2012 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-22238348

RESUMO

The macrophage migration inhibitory factor (MIF) is a proinflammatory cytokine that recently emerged as an attractive therapeutic target for a variety of diseases. A diverse panel of fully human anti-MIF antibodies was generated by selection from a phage display library and extensively analyzed in vitro. Epitope mapping studies identified antibodies specific for linear as well as structural epitopes. Experimental animal studies revealed that only those antibodies binding epitopes within amino acids 50-68 or 86-102 of the MIF molecule exerted protective effects in models of sepsis or contact hypersensitivity. Within the MIF protein, these two binding regions form a ß-sheet structure that includes the MIF oxidoreductase motif. We therefore conclude that this ß-sheet structure is a crucial region for MIF activity and a promising target for anti-MIF antibody therapy.


Assuntos
Anticorpos Monoclonais/química , Anticorpos Neutralizantes/química , Oxirredutases Intramoleculares/química , Fatores Inibidores da Migração de Macrófagos/química , Motivos de Aminoácidos , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/uso terapêutico , Anticorpos Neutralizantes/imunologia , Anticorpos Neutralizantes/uso terapêutico , Dermatite de Contato/tratamento farmacológico , Dermatite de Contato/imunologia , Modelos Animais de Doenças , Humanos , Oxirredutases Intramoleculares/imunologia , Fatores Inibidores da Migração de Macrófagos/imunologia , Camundongos , Sepse/tratamento farmacológico , Sepse/imunologia
17.
Blood ; 117(4): 1205-17, 2011 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-20956800

RESUMO

Regulated by histone acetyltransferases and deacetylases (HDACs), histone acetylation is a key epigenetic mechanism controlling chromatin structure, DNA accessibility, and gene expression. HDAC inhibitors induce growth arrest, differentiation, and apoptosis of tumor cells and are used as anticancer agents. Here we describe the effects of HDAC inhibitors on microbial sensing by macrophages and dendritic cells in vitro and host defenses against infection in vivo. HDAC inhibitors down-regulated the expression of numerous host defense genes, including pattern recognition receptors, kinases, transcription regulators, cytokines, chemokines, growth factors, and costimulatory molecules as assessed by genome-wide microarray analyses or innate immune responses of macrophages and dendritic cells stimulated with Toll-like receptor agonists. HDAC inhibitors induced the expression of Mi-2ß and enhanced the DNA-binding activity of the Mi-2/NuRD complex that acts as a transcriptional repressor of macrophage cytokine production. In vivo, HDAC inhibitors increased the susceptibility to bacterial and fungal infections but conferred protection against toxic and septic shock. Thus, these data identify an essential role for HDAC inhibitors in the regulation of the expression of innate immune genes and host defenses against microbial pathogens.


Assuntos
Inibidores de Histona Desacetilases/farmacologia , Imunidade Inata/efeitos dos fármacos , Infecções/imunologia , Receptores Toll-Like/agonistas , Animais , Células Cultivadas , Modelos Animais de Doenças , Regulação para Baixo/efeitos dos fármacos , Regulação para Baixo/genética , Avaliação Pré-Clínica de Medicamentos , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Imunidade Inata/genética , Infecções/patologia , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Análise em Microsséries
18.
J Infect Dis ; 205(6): 944-54, 2012 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-22315281

RESUMO

BACKGROUND: Aspergillus fumigatus causes invasive aspergillosis, a potentially fatal infection in oncohematological patients. Innate immune detection of A. fumigatus involves Toll-like receptor (TLR) 4 and TLR2, which forms a heterodimer with either TLR1 or TLR6. The role of those coreceptors in Aspergillus sensing is unknown. METHODS: Cytokine production was measured in bone marrow-derived macrophages (BMDMs) from wild-type (WT) and TLR-deficient mice after incubation with a WT and an immunogenic RodA-deficient (ΔrodA-47) strain of A. fumigatus and in lungs from these mice after intranasal mold inoculation. Aspergillus fumigatus-mediated NF-κB activation was measured in HEK293T cells transfected with plasmids expressing mouse or human TLRs. RESULTS: Bone marrow-derived macrophages from TLR1- and TLR6-deficient mice produced lower amounts of interleukin 12p40, CXCL2, interleukin 6, and tumor necrosis factor α than BMDMs from WT mice after stimulation with A. fumigatus. Lungs from TLR1- and TLR6-deficient mice had diminished CXCL1 and CXCL2 production and increased fungal burden after intranasal inoculation of ΔrodA A. fumigatus compared with lungs from WT mice. ΔrodA strain-mediated NF-κB activation was observed in HEK293T cells expressing mouse TLR2/1, mouse TLR2/6, and human TLR2/1 but not human TLR2/6. CONCLUSIONS: Innate immune detection of A. fumigatus is mediated by TLR4 and TLR2 together with TLR1 or TLR6 in mice and TLR1 but not TLR6 in humans.


Assuntos
Aspergillus fumigatus/patogenicidade , Deleção de Genes , Receptor 1 Toll-Like/metabolismo , Receptor 6 Toll-Like/metabolismo , Animais , Aspergilose/genética , Quimiocina CXCL2/metabolismo , Feminino , Células HEK293 , Humanos , Imunidade Inata , Subunidade p40 da Interleucina-12/biossíntese , Interleucina-6/biossíntese , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , NF-kappa B/metabolismo , Especificidade da Espécie , Fator de Necrose Tumoral alfa/metabolismo
19.
J Immunother Cancer ; 11(1)2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36593065

RESUMO

BACKGROUND: Agonistic anti-CD40 monoclonal antibodies (mAbs) have emerged as promising immunotherapeutic compounds with impressive antitumor effects in mouse models. However, preclinical and clinical studies faced dose-limiting toxicities mediated by necroinflammatory liver disease. An effective prophylactic treatment for liver immune-related adverse events that does not suppress specific antitumor immunity remains to be found. METHODS: We used different mouse models and time-resolved single-cell RNA-sequencing to characterize the pathogenesis of anti-CD40 mAb induced liver toxicity. Subsequently, we developed an antibody-based treatment protocol to selectively target red blood cells (RBCs) for erythrophagocytosis in the liver, inducing an anti-inflammatory liver macrophage reprogramming. RESULTS: We discovered that CD40 signaling in Clec4f+ Kupffer cells is the non-redundant trigger of anti-CD40 mAb-induced liver toxicity. Taking advantage of the highly specific functionality of liver macrophages to clear antibody-tagged RBCs from the blood, we hypothesized that controlled erythrophagocytosis and the linked anti-inflammatory signaling by the endogenous metabolite heme could be exploited to reprogram liver macrophages selectively. Repeated low-dose administration of a recombinant murine Ter119 antibody directed RBCs for selective phagocytosis in the liver and skewed the phenotype of liver macrophages into a Hmoxhigh/Marcohigh/MHCIIlow anti-inflammatory phenotype. This unique mode of action prevented necroinflammatory liver disease following high-dose administration of anti-CD40 mAbs. In contrast, extrahepatic inflammation, antigen-specific immunity, and antitumor activity remained unaffected in Ter119 treated animals. CONCLUSIONS: Our study offers a targeted approach to uncouple CD40-augmented antitumor immunity in peripheral tissues from harmful inflammatoxicity in the liver.


Assuntos
Antineoplásicos , Neoplasias , Camundongos , Animais , Células de Kupffer/metabolismo , Anticorpos Monoclonais/uso terapêutico , Antineoplásicos/uso terapêutico , Imunoterapia/métodos , Fígado
20.
Proc Natl Acad Sci U S A ; 106(7): 2348-52, 2009 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-19181857

RESUMO

Toll-like receptor 4 (TLR4), the signal-transducing molecule of the LPS receptor complex, plays a fundamental role in the sensing of LPS from gram-negative bacteria. Activation of TLR4 signaling pathways by LPS is a critical upstream event in the pathogenesis of gram-negative sepsis, making TLR4 an attractive target for novel antisepsis therapy. To validate the concept of TLR4-targeted treatment strategies in gram-negative sepsis, we first showed that TLR4(-/-) and myeloid differentiation primary response gene 88 (MyD88)(-/-) mice were fully resistant to Escherichia coli-induced septic shock, whereas TLR2(-/-) and wild-type mice rapidly died of fulminant sepsis. Neutralizing anti-TLR4 antibodies were then generated using a soluble chimeric fusion protein composed of the N-terminal domain of mouse TLR4 (amino acids 1-334) and the Fc portion of human IgG1. Anti-TLR4 antibodies inhibited intracellular signaling, markedly reduced cytokine production, and protected mice from lethal endotoxic shock and E. coli sepsis when administered in a prophylactic and therapeutic manner up to 13 h after the onset of bacterial sepsis. These experimental data provide strong support for the concept of TLR4-targeted therapy for gram-negative sepsis.


Assuntos
Regulação Bacteriana da Expressão Gênica , Bactérias Gram-Negativas/metabolismo , Sepse/microbiologia , Receptor 4 Toll-Like/fisiologia , Animais , Escherichia coli/metabolismo , Humanos , Imunoglobulina G/química , Lipopolissacarídeos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Modelos Genéticos , Fator 88 de Diferenciação Mieloide/genética , Proteínas Recombinantes de Fusão/metabolismo , Sepse/genética , Sepse/patologia , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA