Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 13(13)2023 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-37446411

RESUMO

Using renewable photocatalysts for pollutant degradation represents a promising approach to addressing environmental water challenges by harnessing solar energy without additional energy consumption. However, for the practical use of photocatalysts, it is necessary to improve catalyst efficiency, considering cost and biocompatibility. In this study, we developed a new superabsorbent photocatalyst for the degradation of organic dyes in water. Our photocatalyst comprises halloysite nanotubes (HNTs) with a large outer diameter and Si-O and Al-O groups on the outer and inner surfaces, respectively; graphene oxide (GO) possessing numerous sp2 bonds and light-conductive properties; and ZnO, which can degrade organic molecules via a photon source. By exploiting the superabsorbent properties of GOs for organic dyes and stabilizing ZnO nanoparticles on HNTs to inhibit aggregation, our photocatalysts demonstrated significantly improved degradability compared to ZnO nanoparticles alone and combinations of ZnO with HNTs or GO. The structural characteristics of the nanocomposites were characterized using SEM, EDX, Raman spectroscopy, and XRD. Their enhanced photocatalytic activity was demonstrated by the degradation of rhodamine b in water, showing 95% photodegradation under UV illumination for 60 min, while the ZnO nanoparticles showed only 56% dye degradation under the same condition. Additionally, the degradation rate was enhanced by four times. Furthermore, the catalysts maintained their initial activity with no significant loss after four uses, showing their potential for practical implementation in the mass purification of wastewater.

2.
J Nanosci Nanotechnol ; 20(8): 5024-5027, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32126694

RESUMO

The adsorption capability of eosin Y as a model anionic dye on natural halloysite nanotubes (HNTs) and sulfuric acid-treated HNTs as a function of acid treatment time (1 h, 3 h, and 5 h) was examined. Scanning electron microscopy revealed that natural HNTs had a very uniform surface, whereas acid-treated HNTs had a rough surface with structural defects, which increased with acid treatment time. The total specific pore volume and total surface area of the acid-treated HNTs increased due to formation of nanopores in the HNTs via dissolution of the inner AlO6 octahedral layer. With acid treatment, the surface ξ-potentials were positively shifted from -42.9 mV (for the natural HNTs) to -1.9, -3.0, and +1.2 mV after 1, 3, and 5 h, respectively. The adsorption amount (qe) of eosin Y on natural HNTs and the three acid-treated HNTs was 2.3, 125.5, 118.9, and 118.9 mg g-1, respectively, implying that the adsorption capacity of acid-treated HNTs is ~50 times higher than that of natural HNTs. In this study, we clearly demonstrated that acid-treated HNTs can be used as highly efficient nanomaterials for removal of dyes from wastewater containing anionic dyes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA