Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Anesth Analg ; 137(6): 1241-1249, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36881544

RESUMO

BACKGROUND: Infants under spinal anesthesia appear to be sedated despite the absence of systemic sedative medications. In this prospective observational study, we investigated the electroencephalogram (EEG) of infants under spinal anesthesia and hypothesized that we would observe EEG features similar to those seen during sleep. METHODS: We computed the EEG power spectra and spectrograms of 34 infants undergoing infraumbilical surgeries under spinal anesthesia (median age 11.5 weeks postmenstrual age, range 38-65 weeks postmenstrual age). Spectrograms were visually scored for episodes of EEG discontinuity or spindle activity. We characterized the relationship between EEG discontinuity or spindles and gestational age, postmenstrual age, or chronological age using logistic regression analyses. RESULTS: The predominant EEG patterns observed in infants under spinal anesthesia were slow oscillations, spindles, and EEG discontinuities. The presence of spindles, observed starting at about 49 weeks postmenstrual age, was best described by postmenstrual age ( P =.002) and was more likely with increasing postmenstrual age. The presence of EEG discontinuities, best described by gestational age ( P = .015), was more likely with decreasing gestational age. These age-related changes in the presence of spindles and EEG discontinuities in infants under spinal anesthesia generally corresponded to developmental changes in the sleep EEG. CONCLUSIONS: This work illustrates 2 separate key age-dependent transitions in EEG dynamics during infant spinal anesthesia that may reflect the maturation of underlying brain circuits: (1) diminishing discontinuities with increasing gestational age and (2) the appearance of spindles with increasing postmenstrual age. The similarity of these age-dependent transitions under spinal anesthesia with transitions in the developing brain during physiological sleep supports a sleep-related mechanism for the apparent sedation observed during infant spinal anesthesia.


Assuntos
Raquianestesia , Humanos , Lactente , Sono/fisiologia , Eletroencefalografia , Encéfalo/fisiologia , Idade Gestacional
2.
Anesth Analg ; 131(4): 1043-1056, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32925322

RESUMO

For this child, at this particular moment, how much anesthesia should I give? Determining the drug requirements of a specific patient is a fundamental problem in medicine. Our current approach uses population-based pharmacological models to establish dosing. However, individual patients, and children in particular, may respond to drugs differently. In anesthesiology, we have the advantage that we can monitor our patients in real time and titrate drugs to the desired effect. Examples include blood pressure management or muscle relaxation. Although the brain is the primary site of action for sedative-hypnotic drugs, the brain is not routinely monitored during general anesthesia or sedation, a fact that would surprise many patients. One reason for this is that, until recently, physiologically principled approaches for anesthetic brain monitoring have not been articulated. In the past few years, our knowledge of anesthetic brain mechanisms has developed rapidly. We now know that anesthetic drug effects are clearly visible in the electroencephalogram (EEG) of adults and reflect underlying anesthetic pharmacology and brain mechanisms. Most recently, similar effects have been characterized in children. In this article, we describe how EEG monitoring could be used to guide anesthetic management in pediatric patients. We review previous evidence and present multiple case studies showing how drug-specific and dose-dependent EEG signatures seen in adults are visible in children and infants, including those with neurological disorders. We propose that the EEG can be used in the anesthetic care of children to enable anesthesiologists to better assess the drug requirements of individual patients in real time and improve patient safety and experience.


Assuntos
Anestesia , Eletroencefalografia/métodos , Monitorização Neurofisiológica Intraoperatória/métodos , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Segurança do Paciente , Pediatria
3.
Eur J Anaesthesiol ; 35(1): 49-59, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29120939

RESUMO

BACKGROUND: Few studies have systematically described relationships between clinical-behavioural signs, electroencephalographic (EEG) patterns and age during emergence from anaesthesia in young children. OBJECTIVE: To identify the relationships between end-tidal sevoflurane (ETsevoflurane) concentration, age and frontal EEG spectral properties in predicting recovery of clinical-behavioural signs during emergence from sevoflurane in children 0 to 3 years of age, with and without exposure to nitrous oxide. The hypothesis was that clinical signs occur sequentially during emergence, and that for infants aged more than 3 months, changes in alpha EEG power are correlated with clinical-behavioural signs. DESIGN: An observational study. SETTING: A tertiary paediatric teaching hospital from December 2012 to August 2016. PATIENTS: Ninety-five children aged 0 to 3 years who required surgery below the neck. OUTCOME MEASURES: Time-course of, and ETsevoflurane concentrations at first gross body movement, first cough, first grimace, dysconjugate eye gaze, frontal (F7/F8) alpha EEG power (8 to 12 Hz), frontal beta EEG power (13 to 30 Hz), surgery-end. RESULTS: Clinical signs of emergence followed an orderly sequence of events across all ages. Clinical signs occurred over a narrow ETsevoflurane, independent of age [movement: 0.4% (95% confidence interval (CI), 0.3 to 0.4), cough 0.3% (95% CI, 0.3 to 0.4), grimace 0.2% (95% CI, 0 to 0.3); P > 0.5 for age vs. ETsevoflurane]. Dysconjugate eye gaze was observed between ETsevoflurane 1 to 0%. In children more than 3 months old, frontal alpha EEG oscillations were present at ETsevoflurane 2.0% and disappeared at 0.5%. Movement occurred within 5 min of alpha oscillation disappearance in 99% of patients. Nitrous oxide had no effect on the time course or ETsevoflurane at which children showed body movement, grimace or cough. CONCLUSION: Several clinical signs occur sequentially during emergence, and are independent of exposure to nitrous oxide. Eye position is poorly correlated with other clinical signs or ETsevoflurane. EEG spectral characteristics may aid prediction of clinical-behavioural signs in children more than 3 months.


Assuntos
Período de Recuperação da Anestesia , Anestesia por Inalação/métodos , Anestésicos Inalatórios/administração & dosagem , Ondas Encefálicas/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Eletroencefalografia , Sevoflurano/administração & dosagem , Fatores Etários , Anestesia por Inalação/efeitos adversos , Anestésicos Inalatórios/efeitos adversos , Encéfalo/fisiopatologia , Pré-Escolar , Feminino , Fixação Ocular/efeitos dos fármacos , Humanos , Lactente , Comportamento do Lactente/efeitos dos fármacos , Masculino , Atividade Motora/efeitos dos fármacos , Óxido Nitroso/administração & dosagem , Valor Preditivo dos Testes , Estudos Prospectivos , Recuperação de Função Fisiológica , Sevoflurano/efeitos adversos , Fatores de Tempo
4.
Anesthesiology ; 127(2): 293-306, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28657957

RESUMO

BACKGROUND: In adults, frontal electroencephalogram patterns observed during propofol-induced unconsciousness consist of slow oscillations (0.1 to 1 Hz) and coherent alpha oscillations (8 to 13 Hz). Given that the nervous system undergoes significant changes during development, anesthesia-induced electroencephalogram oscillations in children may differ from those observed in adults. Therefore, we investigated age-related changes in frontal electroencephalogram power spectra and coherence during propofol-induced unconsciousness. METHODS: We analyzed electroencephalogram data recorded during propofol-induced unconsciousness in patients between 0 and 21 yr of age (n = 97), using multitaper spectral and coherence methods. We characterized power and coherence as a function of age using multiple linear regression analysis and within four age groups: 4 months to 1 yr old (n = 4), greater than 1 to 7 yr old (n = 16), greater than 7 to 14 yr old (n = 30), and greater than 14 to 21 yr old (n = 47). RESULTS: Total electroencephalogram power (0.1 to 40 Hz) peaked at approximately 8 yr old and subsequently declined with increasing age. For patients greater than 1 yr old, the propofol-induced electroencephalogram structure was qualitatively similar regardless of age, featuring slow and coherent alpha oscillations. For patients under 1 yr of age, frontal alpha oscillations were not coherent. CONCLUSIONS: Neurodevelopmental processes that occur throughout childhood, including thalamocortical development, may underlie age-dependent changes in electroencephalogram power and coherence during anesthesia. These age-dependent anesthesia-induced electroencephalogram oscillations suggest a more principled approach to monitoring brain states in pediatric patients.


Assuntos
Anestésicos Intravenosos/farmacologia , Encéfalo/efeitos dos fármacos , Eletroencefalografia/efeitos dos fármacos , Propofol/farmacologia , Adolescente , Adulto , Fatores Etários , Criança , Pré-Escolar , Humanos , Lactente , Masculino , Estudos Prospectivos , Adulto Jovem
5.
Front Syst Neurosci ; 12: 23, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29988455

RESUMO

Patients with autism spectrum disorder (ASD) often require sedation or general anesthesia. ASD is thought to arise from deficits in GABAergic signaling leading to abnormal neurodevelopment. We sought to investigate differences in how ASD patients respond to the GABAergic drug propofol by comparing the propofol-induced electroencephalogram (EEG) of ASD and neurotypical (NT) patients. This investigation was a prospective observational study. Continuous 4-channel frontal EEG was recorded during routine anesthetic care of patients undergoing endoscopic procedures between July 1, 2014 and May 1, 2016. Study patients were defined as those with previously diagnosed ASD by DSM-V criteria, aged 2-30 years old. NT patients were defined as those lacking neurological or psychiatric abnormalities, aged 2-30 years old. The primary outcome was changes in propofol-induced alpha (8-13 Hz) and slow (0.1-1 Hz) oscillation power by age. A post hoc analysis was performed to characterize incidence of burst suppression during propofol anesthesia. The primary risk factor of interest was a prior diagnosis of ASD. Outcomes were compared between ASD and NT patients using Bayesian methods. Compared to NT patients, slow oscillation power was initially higher in ASD patients (17.05 vs. 14.20 dB at 2.33 years), but progressively declined with age (11.56 vs. 13.95 dB at 22.5 years). Frontal alpha power was initially lower in ASD patients (17.65 vs. 18.86 dB at 5.42 years) and continued to decline with age (6.37 vs. 11.89 dB at 22.5 years). The incidence of burst suppression was significantly higher in ASD vs. NT patients (23.0% vs. 12.2%, p < 0.01) despite reduced total propofol dosing in ASD patients. Ultimately, we found that ASD patients respond differently to propofol compared to NT patients. A similar pattern of decreased alpha power and increased sensitivity to burst suppression develops in older NT adults; one interpretation of our data could be that ASD patients undergo a form of accelerated neuronal aging in adolescence. Our results suggest that investigations of the propofol-induced EEG in ASD patients may enable insights into the underlying differences in neural circuitry of ASD and yield safer practices for managing patients with ASD.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA