Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
FASEB J ; 34(1): 1231-1246, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31914695

RESUMO

Endothelial progenitor cells (EPCs) promote neovascularization and tissue repair by migrating to vascular injury sites; therefore, factors that enhance EPC homing to damaged tissues are of interest. Here, we provide evidence of the prominent role of the Netrin-4 (NTN4)-Unc-5 Netrin receptor B (UNC5B) axis in EPC-specific promotion of ischemic neovascularization. Our results showed that NTN4 promoted the proliferation, chemotactic migration, and paracrine effects of small EPCs (SEPCs) and significantly increased the incorporation of large EPCs (LEPCs) into tubule networks. Additionally, NTN4 prominently augmented neovascularization in mice with hindlimb ischemia by increasing the homing of exogenously transplanted EPCs to the ischemic limb and incorporating EPCs into vessels. Moreover, silencing of UNC5B, an NTN4 receptor, abrogated the NTN4-induced cellular activities of SEPCs in vitro and blood-flow recovery and neovascularization in vivo in ischemic muscle by reducing EPC homing and incorporation. These findings suggest NTN4 as an EPC-based therapy for treating angiogenesis-dependent diseases.


Assuntos
Células Progenitoras Endoteliais/metabolismo , Isquemia/metabolismo , Músculo Esquelético/metabolismo , Neovascularização Patológica/metabolismo , Receptores de Netrina/metabolismo , Netrinas/metabolismo , Animais , Células Progenitoras Endoteliais/patologia , Células Progenitoras Endoteliais/transplante , Inativação Gênica , Xenoenxertos , Membro Posterior/irrigação sanguínea , Humanos , Isquemia/genética , Isquemia/patologia , Isquemia/terapia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Músculo Esquelético/irrigação sanguínea , Músculo Esquelético/patologia , Neovascularização Patológica/genética , Neovascularização Patológica/patologia , Neovascularização Patológica/terapia , Receptores de Netrina/genética , Netrinas/genética
2.
J Nanobiotechnology ; 17(1): 24, 2019 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-30722792

RESUMO

BACKGROUND: Silica nanoparticles (SiNPs) are widely used for biosensing and diagnostics, and for the targeted delivery of therapeutic agents. Safety concerns about the biomedical and clinical applications of SiNPs have been raised, necessitating analysis of the effects of their intrinsic properties, such as sizes, shapes, and surface physicochemical characteristics, on human health to minimize risk in biomedical applications. In particular, SiNP size-associated toxicological effects, and the underlying molecular mechanisms in the vascular endothelium remain unclear. This study aimed to elucidate the detailed mechanisms underlying the cellular response to exposure to trace amounts of SiNPs and to determine applicable size criteria for biomedical application. METHODS: To clarify whether these SiNP-mediated cytotoxicity due to induction of apoptosis or necrosis, human ECs were treated with SiNPs of four different non-overlapping sizes under low serum-containing condition, stained with annexin V and propidium iodide (PI), and subjected to flow cytometric analysis (FACS). Two types of cell death mechanisms were assessed in terms of production of reactive oxygen species (ROS), endoplasmic reticulum (ER) stress induction, and autophagy activity. RESULTS: Spherical SiNPs had a diameter of 21.8 nm; this was further increased to 31.4, 42.9, and 56.7 nm. Hence, we investigated these effects in human endothelial cells (ECs) treated with these nanoparticles under overlap- or agglomerate-free conditions. The 20-nm SiNPs, but not SiNPs of other sizes, significantly induced apoptosis and necrosis. Surprisingly, the two types of cell death occurred independently and through different mechanisms. Apoptotic cell death resulted from ROS-mediated ER stress. Furthermore, autophagy-mediated necrotic cell death was induced through the PI3K/AKT/eNOS signaling axis. Together, the present results indicate that SiNPs within a diameter of < 20-nm pose greater risks to cells in terms of cytotoxic effects. CONCLUSION: These data provide novel insights into the size-dependence of the cytotoxic effects of silica nanoparticles and the underlying molecular mechanisms. The findings are expected to inform the applicable size range of SiNPs to ensure their safety in biomedical and clinical applications.


Assuntos
Apoptose/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Nanopartículas/toxicidade , Necrose/patologia , Transdução de Sinais/efeitos dos fármacos , Dióxido de Silício , Autofagia/efeitos dos fármacos , Células Cultivadas , Meios de Cultura , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Células Endoteliais da Veia Umbilical Humana/patologia , Humanos , Nanopartículas/química , Necrose/metabolismo , Tamanho da Partícula , Fosfatidilinositol 3-Quinases/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Dióxido de Silício/química , Dióxido de Silício/toxicidade
3.
Bioengineering (Basel) ; 10(10)2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37892862

RESUMO

Blood-brain barrier (BBB) models are important tools for studying CNS drug delivery, brain development, and brain disease. In vitro BBB models have been obtained from animals and immortalized cell lines; however, brain microvascular endothelial cells (BMECs) derived from them have several limitations. Furthermore, obtaining mature brain microvascular endothelial-like cells (BME-like cells) from human pluripotent stem cells (hPSCs) with desirable properties for establishing BBB models has been challenging. Here, we developed an efficient method for differentiating hPSCs into BMECs that are amenable to the development and application of human BBB models. The established conditions provided an environment similar to that occurring during BBB differentiation in the presence of the co-differentiating neural cell population by the modulation of TGF-ß and SHH signaling. The developed BME-like cells showed well-organized tight junctions, appropriate expression of nutrient transporters, and polarized efflux transporter activity. In addition, BME-like cells responded to astrocytes, acquiring substantial barrier properties as measured by transendothelial electrical resistance. Moreover, the BME-like cells exhibited an immune quiescent property of BBB endothelial cells by decreasing the expression of adhesion molecules. Therefore, our novel cellular platform could be useful for drug screening and the development of brain-permeable pharmaceuticals.

4.
BMB Rep ; 55(3): 142-147, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34674794

RESUMO

Human pluripotent stem cells (PSCs) have been utilized as a promising source in regenerative medicine. However, the risk of teratoma formation that comes with residual undifferentiated PSCs in differentiated cell populations is most concerning in the clinical use of PSC derivatives. Here, we report that a monoclonal antibody (mAb) targeting PSCs could distinguish undifferentiated PSCs, with potential teratoma-forming activity, from differentiated PSC progeny. A panel of hybridomas generated from mouse immunization with H9 human embryonic stem cells (hESCs) was screened for ESC-specific binding using flow cytometry. A novel mAb, K312, was selected considering its high stem cell-binding activity, and this mAb could bind to several human induced pluripotent stem cells and PSC lines. Cell-binding activity of K312 was markedly decreased as hESCs were differentiated into embryoid bodies or by retinoic acid treatment. In addition, a cell population negatively isolated from undifferentiated or differentiated H9 hESCs via K312 targeting showed a significantly reduced expression of pluripotency markers, including Oct4 and Nanog. Furthermore, K312-based depletion of pluripotent cells from differentiated PSC progeny completely prevented teratoma formation. Therefore, our findings suggest that K312 is utilizable in improving stem cell transplantation safety by specifically distinguishing residual undifferentiated PSCs. [BMB Reports 2022; 55(3): 142-147].


Assuntos
Células-Tronco Pluripotentes Induzidas , Células-Tronco Pluripotentes , Teratoma , Animais , Anticorpos Monoclonais/metabolismo , Diferenciação Celular , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Camundongos , Células-Tronco Pluripotentes/metabolismo
5.
Biomaterials ; 259: 120265, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32827795

RESUMO

The self-renewal properties of human pluripotent stem cells (hPSCs) contribute to their efficacy in tissue regeneration applications yet increase the likelihood of teratoma formation, thereby limiting their clinical utility. To address this issue, we developed a tool to specifically target and neutralize undifferentiated hPSCs, thereby minimizing tumorigenicity risk without negatively affecting regenerated and somatic tissues. Specifically, we conjugated a monoclonal antibody (K6-1) previously generated in our laboratory against desmoglein 2 (Dsg2), which is highly differentially expressed in undifferentiated hPSCs versus somatic tissues, to the chemotherapeutic agent doxorubicin (DOX). The K6-1-DOX conjugates were selectively targeted and incorporated into Dsg2-positive hPSCs, leading to pH-dependent endosomal release and nuclear localization of DOX with subsequent cytotoxicity via an apoptotic caspase cascade. Conversely, Dsg2-negative fibroblasts showed minimal conjugate uptake or cytotoxicity, suggesting that K6-1-DOX treatment would yield few side effects owing to off-target effects. Selective removal of undifferentiated stem cells was also supported by in vivo studies using a mouse xenograft model, wherein hIgG-DOX- but not K6-1-DOX-pretreated-hPSC injection led to teratoma development. Together, these results validated the ability of the Dsg2-targeted antibody-anticancer drug conjugate to facilitate the safety of stem cell therapies.


Assuntos
Antineoplásicos , Células-Tronco Pluripotentes , Teratoma , Anticorpos Monoclonais , Doxorrubicina/farmacologia , Humanos
6.
Stem Cell Reports ; 11(1): 115-127, 2018 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-29910125

RESUMO

Pluripotent stem cells (PSCs) represent the most promising clinical source for regenerative medicine. However, given the cellular heterogeneity within cultivation and safety concerns, the development of specific and efficient tools to isolate a pure population and eliminate all residual undifferentiated PSCs from differentiated derivatives is a prerequisite for clinical applications. In this study, we raised a monoclonal antibody and identified its target antigen as desmoglein-2 (DSG2). DSG2 co-localized with human PSC (hPSC)-specific cell surface markers, and its expression was rapidly downregulated upon differentiation. The depletion of DSG2 markedly decreased hPSC proliferation and pluripotency marker expression. In addition, DSG2-negative population in hPSCs exhibited a notable suppression in embryonic body and teratoma formation. The actions of DSG2 in regulating the self-renewal and pluripotency of hPSCs were predominantly exerted through the regulation of ß-catenin/Slug-mediated epithelial-to-mesenchymal transition. Our results demonstrate that DSG2 is a valuable PSC surface marker that is essential for the maintenance of PSC self-renewal.


Assuntos
Antígenos de Superfície/metabolismo , Desmogleína 2/metabolismo , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/metabolismo , Antígenos de Superfície/genética , Biomarcadores , Diferenciação Celular/genética , Linhagem Celular , Autorrenovação Celular/genética , Separação Celular/métodos , Reprogramação Celular/genética , Desmogleína 2/genética , Transição Epitelial-Mesenquimal/genética , Regulação da Expressão Gênica , Humanos , Imunofenotipagem , Fatores de Transcrição da Família Snail/genética , Fatores de Transcrição da Família Snail/metabolismo , beta Catenina/metabolismo
7.
Biomaterials ; 51: 119-128, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25771003

RESUMO

Angiopoietin-1 (Ang1) and its endothelium-specific receptor, tyrosine kinase with Ig and epidermal growth factor homology domain 2 (Tie2), play critical roles in vascular development. Although the Ang1/Tie2 system has been considered a promising target for therapeutic neovascularization, several imitations of large-scale production have hampered the development of recombinant Ang1 for therapeutics. In this study, we produced a fully human agonistic antibody against Tie2, designated 1-4h, and tested the applicability of 1-4h as an alternative to native Ang1 in therapeutic angiogenesis. 1-4h significantly enhanced the phosphorylation of Tie2 in a dose- and time-dependent manner in human Tie2-expressing HEK293 cells and human umbilical vein endothelial cells. Moreover, 1-4h induced the activation of Tie2-mediated intracellular signaling such as AKT, eNOS, MAPK, and Focal Adhesion Kinase p125(FAK). In addition, 1-4h increased the chemotactic motility and capillary-like tube formation of endothelial cells in vitro and enhanced the survival of serum-deprived endothelial cells. Taken together, our data clearly suggest that a human Tie2 agonistic antibody is a potentially useful therapeutic approach for the treatment of several ischemic diseases including delayed-wound healing and ischemic heart and limb diseases.


Assuntos
Anticorpos Monoclonais/farmacologia , Células Endoteliais da Veia Umbilical Humana/citologia , Neovascularização Fisiológica/efeitos dos fármacos , Receptor TIE-2/imunologia , Animais , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Movimento Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células HEK293 , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Espaço Intracelular/metabolismo , Camundongos , Células NIH 3T3 , Biblioteca de Peptídeos , Ligação Proteica/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Anticorpos de Cadeia Única/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA