Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Annu Rev Cell Dev Biol ; 31: 741-77, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26422333

RESUMO

The nervous system is populated by numerous types of neurons, each bearing a dendritic arbor with a characteristic morphology. These type-specific features influence many aspects of a neuron's function, including the number and identity of presynaptic inputs and how inputs are integrated to determine firing properties. Here, we review the mechanisms that regulate the construction of cell type-specific dendrite patterns during development. We focus on four aspects of dendrite patterning that are particularly important in determining the function of the mature neuron: (a) dendrite shape, including branching pattern and geometry of the arbor; (b) dendritic arbor size;


Assuntos
Dendritos/fisiologia , Animais , Pareamento Cromossômico/fisiologia , Humanos
2.
J Neurosci ; 43(49): 8348-8366, 2023 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-37821230

RESUMO

The clustered protocadherins (cPcdhs) play a critical role in the patterning of several CNS axon and dendritic arbors, through regulation of homophilic self and neighboring interactions. While not explored, primary peripheral sensory afferents that innervate the epidermis may require similar constraints to convey spatial signals with appropriate fidelity. Here, we show that members of the γ-Pcdh (Pcdhγ) family are expressed in both adult sensory neuron axons and in neighboring keratinocytes that have close interactions during skin reinnervation. Adult mice of both sexes were studied. Pcdhγ knock-down either through small interfering RNA (siRNA) transduction or AAV-Cre recombinase transfection of adult mouse primary sensory neurons from floxed Pcdhγ mice was associated with a remarkable rise in neurite outgrowth and branching. Rises in outgrowth were abrogated by Rac1 inhibition. Moreover, AAV-Cre knock-down in Pcdhγ floxed neurons generated a rise in neurite self-intersections, and a robust rise in neighbor intersections or tiling, suggesting a role in sensory axon repulsion. Interestingly, preconditioned (3-d axotomy) neurons with enhanced growth had temporary declines in Pcdhγ and lessened outgrowth from Pcdhγ siRNA. In vivo, mice with local hindpaw skin Pcdhγ knock-down by siRNA had accelerated reinnervation by new epidermal axons with greater terminal branching and reduced intra-axonal spacing. Pcdhγ knock-down also had reciprocal impacts on keratinocyte density and nuclear size. Taken together, this work provides evidence for a role of Pcdhγ in attenuating outgrowth of sensory axons and their interactions, with implications in how new reinnervating axons following injury fare amid skin keratinocytes that also express Pcdhγ.SIGNIFICANCE STATEMENT The molecular mechanisms and potential constraints that govern skin reinnervation and patterning by sensory axons are largely unexplored. Here, we show that γ-protocadherins (Pcdhγ) may help to dictate interaction not only among axons but also between axons and keratinocytes as the former re-enter the skin during reinnervation. Pcdhγ neuronal knock-down enhances outgrowth in peripheral sensory neurons, involving the growth cone protein Rac1 whereas skin Pcdhγ knock-down generates rises in terminal epidermal axon growth and branching during re-innervation. Manipulation of sensory axon regrowth within the epidermis offers an opportunity to influence regenerative outcomes following nerve injury.


Assuntos
Regeneração Nervosa , Protocaderinas , Células Receptoras Sensoriais , Animais , Feminino , Masculino , Camundongos , Axônios/fisiologia , Regeneração Nervosa/fisiologia , Protocaderinas/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Células Receptoras Sensoriais/metabolismo
3.
Hum Mol Genet ; 29(5): 785-802, 2020 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-31943018

RESUMO

Down syndrome (DS), caused by the triplication of human chromosome 21, leads to significant alterations in brain development and is a major genetic cause of intellectual disability. While much is known about changes to neurons in DS, the effects of trisomy 21 on non-neuronal cells such as astrocytes are poorly understood. Astrocytes are critical for brain development and function, and their alteration may contribute to DS pathophysiology. To better understand the impact of trisomy 21 on astrocytes, we performed RNA-sequencing on astrocytes from newly produced DS human induced pluripotent stem cells (hiPSCs). While chromosome 21 genes were upregulated in DS astrocytes, we found consistent up- and down-regulation of genes across the genome with a strong dysregulation of neurodevelopmental, cell adhesion and extracellular matrix molecules. ATAC (assay for transposase-accessible chromatin)-seq also revealed a global alteration in chromatin state in DS astrocytes, showing modified chromatin accessibility at promoters of cell adhesion and extracellular matrix genes. Along with these transcriptomic and epigenomic changes, DS astrocytes displayed perturbations in cell size and cell spreading as well as modifications to cell-cell and cell-substrate recognition/adhesion, and increases in cellular motility and dynamics. Thus, triplication of chromosome 21 is associated with genome-wide transcriptional, epigenomic and functional alterations in astrocytes that may contribute to altered brain development and function in DS.


Assuntos
Astrócitos/patologia , Adesão Celular , Síndrome de Down/patologia , Regulação da Expressão Gênica , Genoma Humano , Células-Tronco Pluripotentes Induzidas/patologia , Células-Tronco Neurais/patologia , Astrócitos/metabolismo , Diferenciação Celular , Movimento Celular , Síndrome de Down/genética , Síndrome de Down/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Neurais/metabolismo , Transcriptoma
4.
J Neurosci ; 40(45): 8652-8668, 2020 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-33060174

RESUMO

Inhibitory interneurons integrate into developing circuits in specific ratios and distributions. In the neocortex, inhibitory network formation occurs concurrently with the apoptotic elimination of a third of GABAergic interneurons. The cell surface molecules that select interneurons to survive or die are unknown. Here, we report that members of the clustered Protocadherins (cPCDHs) control GABAergic interneuron survival during developmentally-regulated cell death. Conditional deletion of the gene cluster encoding the γ-Protocadherins (Pcdhgs) from developing GABAergic neurons in mice of either sex causes a severe loss of inhibitory populations in multiple brain regions and results in neurologic deficits such as seizures. By focusing on the neocortex and the cerebellar cortex, we demonstrate that reductions of inhibitory interneurons result from elevated apoptosis during the critical postnatal period of programmed cell death (PCD). By contrast, cortical interneuron (cIN) populations are not affected by removal of Pcdhgs from pyramidal neurons or glial cells. Interneuron loss correlates with reduced AKT signaling in Pcdhg mutant interneurons, and is rescued by genetic blockade of the pro-apoptotic factor BAX. Together, these findings identify the PCDHGs as pro-survival transmembrane proteins that select inhibitory interneurons for survival and modulate the extent of PCD. We propose that the PCDHGs contribute to the formation of balanced inhibitory networks by controlling the size of GABAergic interneuron populations in the developing brain.SIGNIFICANCE STATEMENT A pivotal step for establishing appropriate excitatory-inhibitory ratios is adjustment of neuronal populations by cell death. In the mouse neocortex, a third of GABAergic interneurons are eliminated by BAX-dependent apoptosis during the first postnatal week. Interneuron cell death is modulated by neural activity and pro-survival pathways but the cell-surface molecules that select interneurons for survival or death are unknown. We demonstrate that members of the cadherin superfamily, the clustered γ-Protocadherins (PCDHGs), regulate the survival of inhibitory interneurons and the balance of cell death. Deletion of the Pcdhgs in mice causes inhibitory interneuron loss in the cortex and cerebellum, and leads to motor deficits and seizures. Our findings provide a molecular basis for controlling inhibitory interneuron population size during circuit formation.


Assuntos
Caderinas/fisiologia , Morte Celular/fisiologia , Interneurônios/fisiologia , Ácido gama-Aminobutírico/fisiologia , Animais , Apoptose/genética , Proteínas Relacionadas a Caderinas , Caderinas/genética , Córtex Cerebral/citologia , Córtex Cerebral/diagnóstico por imagem , Córtex Cerebral/crescimento & desenvolvimento , Eletroencefalografia , Feminino , Imageamento por Ressonância Magnética , Masculino , Potenciais da Membrana/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Rede Nervosa/fisiologia , Doenças do Sistema Nervoso/etiologia , Proteína Oncogênica v-akt/genética , Proteína Oncogênica v-akt/fisiologia , Convulsões/etiologia , Proteína X Associada a bcl-2/genética , Proteína X Associada a bcl-2/fisiologia
5.
J Neurosci ; 38(11): 2713-2729, 2018 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-29439167

RESUMO

The clustered protocadherins (Pcdhs) comprise 58 cadherin-related proteins encoded by three tandemly arrayed gene clusters, Pcdh-α, Pcdh-ß, and Pcdh-γ (Pcdha, Pcdhb, and Pcdhg, respectively). Pcdh isoforms from different clusters are combinatorially expressed in neurons. They form multimers that interact homophilically and mediate a variety of developmental processes, including neuronal survival, synaptic maintenance, axonal tiling, and dendritic self-avoidance. Most studies have analyzed clusters individually. Here, we assessed functional interactions between Pcdha and Pcdhg clusters. To circumvent neonatal lethality associated with deletion of Pcdhgs, we used Crispr-Cas9 genome editing in mice to combine a constitutive Pcdha mutant allele with a conditional Pcdhg allele. We analyzed roles of Pcdhas and Pcdhgs in the retina and cerebellum from mice (both sexes) lacking one or both clusters. In retina, Pcdhgs are essential for survival of inner retinal neurons and dendritic self-avoidance of starburst amacrine cells, whereas Pcdhas are dispensable for both processes. Deletion of both Pcdha and Pcdhg clusters led to far more dramatic defects in survival and self-avoidance than Pcdhg deletion alone. Comparisons of an allelic series of mutants support the conclusion that Pcdhas and Pcdhgs function together in a dose-dependent and cell-type-specific manner to provide a critical threshold of Pcdh activity. In the cerebellum, Pcdhas and Pcdhgs also cooperate to mediate self-avoidance of Purkinje cell dendrites, with modest but significant defects in either single mutant and dramatic defects in the double mutant. Together, our results demonstrate complex patterns of redundancy between Pcdh clusters and the importance of Pcdh cluster diversity in postnatal CNS development.SIGNIFICANCE STATEMENT The formation of neural circuits requires diversification and combinatorial actions of cell surface proteins. Prominent among them are the clustered protocadherins (Pcdhs), a family of ∼60 neuronal recognition molecules. Pcdhs are encoded by three closely linked gene clusters called Pcdh-α, Pcdh-ß, and Pcdh-γ. The Pcdhs mediate a variety of developmental processes, including neuronal survival, synaptic maintenance, and spatial patterning of axons and dendrites. Most studies to date have been limited to single clusters. Here, we used genome editing to assess interactions between Pcdh-α and Pcdh-γ gene clusters. We examined two regions of the CNS, the retina and cerebellum and show that the 14 α-Pcdhs and 22 γ-Pcdhs act synergistically to mediate neuronal survival and dendrite patterning.


Assuntos
Caderinas/genética , Sobrevivência Celular/genética , Dendritos/fisiologia , Neurônios Retinianos/fisiologia , Células Amácrinas/fisiologia , Animais , Axônios/fisiologia , Proteínas Relacionadas a Caderinas , Cerebelo/metabolismo , Feminino , Deleção de Genes , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mutação/fisiologia , Neurogênese , Células de Purkinje/fisiologia , Retina/crescimento & desenvolvimento , Retina/metabolismo , Sinapses/fisiologia
6.
Semin Cell Dev Biol ; 69: 111-121, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28756270

RESUMO

Spatial patterns of neuronal connectivity are critical for neural circuit function and information processing. For many neuron types, the development of stereotyped dendritic and axonal territories involves reiterative contacts between neurites and successive re-calibration of branch outgrowth and directionality. Here I review emerging roles for members of the atypical cadherins (Fmi/Celsrs) and the clustered Protocadherins (Pcdhs) in neurite patterning. These cell-surface molecules have shared functions: they engage in homophilic recognition and mediate dynamic and contact-dependent interactions to establish reproducible and space-filling arborization patterns. As shown in genetic and molecular studies, the atypical cadherins and clustered Pcdhs serve in multiple contexts and signal diverse actions such as neurite repulsion or selective adhesion. In some cell types, they regulate the non-overlapping arrangement of branches achieved through homotypic interactions, such as in self-avoidance or tiling. In others, they promote dendritic complexity through cell-cell interactions. With critical roles in both the fine-scale arrangement of axonal and dendritic branching and the large-scale organization of axon tracts and neuronal networks, the atypical cadherins and clustered Pcdhs are key regulators of neural circuit assembly and function.


Assuntos
Caderinas/metabolismo , Neurônios/metabolismo , Animais , Caderinas/química , Humanos , Modelos Biológicos , Sinapses/metabolismo
7.
Nature ; 488(7412): 517-21, 2012 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-22842903

RESUMO

Dendritic arborizations of many neurons are patterned by a process called self-avoidance, in which branches arising from a single neuron repel each other. By minimizing gaps and overlaps within the arborization, self-avoidance facilitates complete coverage of a neuron's territory by its neurites. Remarkably, some neurons that display self-avoidance interact freely with other neurons of the same subtype, implying that they discriminate self from non-self. Here we demonstrate roles for the clustered protocadherins (Pcdhs) in dendritic self-avoidance and self/non-self discrimination. The Pcdh locus encodes 58 related cadherin-like transmembrane proteins, at least some of which exhibit isoform-specific homophilic adhesion in heterologous cells and are expressed stochastically and combinatorially in single neurons. Deletion of all 22 Pcdh genes in the mouse γ-subcluster (Pcdhg genes) disrupts self-avoidance of dendrites in retinal starburst amacrine cells (SACs) and cerebellar Purkinje cells. Further genetic analysis of SACs showed that Pcdhg proteins act cell-autonomously during development, and that replacement of the 22 Pcdhg proteins with a single isoform restores self-avoidance. Moreover, expression of the same single isoform in all SACs decreases interactions among dendrites of neighbouring SACs (heteroneuronal interactions). These results suggest that homophilic Pcdhg interactions between sibling neurites (isoneuronal interactions) generate a repulsive signal that leads to self-avoidance. In this model, heteroneuronal interactions are normally permitted because dendrites seldom encounter a matched set of Pcdhg proteins unless they emanate from the same soma. In many respects, our results mirror those reported for Dscam1 (Down syndrome cell adhesion molecule) in Drosophila: this complex gene encodes thousands of recognition molecules that exhibit stochastic expression and isoform-specific interactions, and mediate both self-avoidance and self/non-self discrimination. Thus, although insect Dscam and vertebrate Pcdh proteins share no sequence homology, they seem to underlie similar strategies for endowing neurons with distinct molecular identities and patterning their arborizations.


Assuntos
Células Amácrinas/citologia , Células Amácrinas/metabolismo , Caderinas/metabolismo , Dendritos/metabolismo , Células de Purkinje/citologia , Células de Purkinje/metabolismo , Animais , Caderinas/genética , Moléculas de Adesão Celular/genética , Moléculas de Adesão Celular/metabolismo , Células Cultivadas , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Evolução Molecular , Camundongos , Camundongos Transgênicos , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo
8.
Blood ; 123(2): 154-6, 2014 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-24408205

RESUMO

In this issue of Blood, Sapey et al. report that the human polymorphonuclear neutrophil leukocyte (or neutrophil) undergoes an age-related loss of its ability to migrate up chemotactic gradients, a functional defect that seems causally related to alterations in the polyphosphoinositide pathway.


Assuntos
Envelhecimento/imunologia , Quimiotaxia de Leucócito/imunologia , Neutrófilos/imunologia , Neutrófilos/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase , Humanos
9.
J Immunol ; 191(9): 4731-9, 2013 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-24081991

RESUMO

High rates of coinfection occur in malaria endemic regions, leading to more severe disease outcomes. Understanding how coinfecting pathogens influence the immune system is important in the development of treatment strategies that reduce morbidity and mortality. Using the Plasmodium chabaudi mouse model of malaria and immunization with model Ags that are either T-dependent (4-hydroxy-3-nitrophenyl [NP]-OVA) or T-independent (NP-Ficoll), we analyzed the effects of acute malaria on the development of humoral immunity to secondary Ags. Total Ig and IgG1 NP-specific Ab responses to NP-OVA were significantly decreased in the P. chabaudi-infected group compared with the uninfected group, whereas NP-specific IgG2c Ab was significantly increased in the P. chabaudi-infected group. In contrast, following injection with T-independent NP-Ficoll, the P. chabaudi-infected group had significantly increased NP-specific total Ig, IgM, and IgG2c Ab titers compared with controls. Treatment with anti-IFN-γ led to an abrogation of the NP-specific IgG2c Ab induced by P. chabaudi infection but did not affect other NP-specific Ab isotypes or titers. IFN-γ depletion also increased the percentage of plasma cells in both P. chabaudi-infected and uninfected groups but decreased the percentage of B cells with a germinal center (GC) phenotype. Using immunofluorescent microscopy, we were able to detect NP(+) GCs in the spleens of noninfected mice, but there were no detectible NP(+) GCs in mice infected with P. chabaudi. These data suggest that during P. chabaudi infection, there is a shift toward an extrafollicular Ab response that could be responsible for decreased Ab responses to secondary T-dependent Ags.


Assuntos
Anticorpos Antiprotozoários/sangue , Antígenos de Protozoários/imunologia , Antígenos T-Independentes/imunologia , Malária/imunologia , Plasmodium chabaudi/imunologia , Animais , Anticorpos Antiprotozoários/imunologia , Formação de Anticorpos/imunologia , Modelos Animais de Doenças , Ficoll/imunologia , Centro Germinativo/imunologia , Imunoglobulina G/imunologia , Imunoglobulina M/imunologia , Interferon gama/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Ovalbumina/imunologia , Linfócitos T/imunologia
10.
J Immunol ; 189(10): 4921-9, 2012 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-23028058

RESUMO

Influenza causes >250,000 deaths annually in the industrialized world, and bacterial infections frequently cause secondary illnesses during influenza outbreaks, including pneumonia, bronchitis, sinusitis, and otitis media. In this study, we demonstrate that cross-reactive immunity to mismatched influenza strains can reduce susceptibility to secondary bacterial infections, even though this fails to prevent influenza infection. Specifically, infecting mice with H3N2 influenza before challenging with mismatched H1N1 influenza reduces susceptibility to either Gram-positive Streptococcus pneumoniae or Gram-negative Klebsiella pneumoniae. Vaccinating mice with the highly conserved nucleoprotein of influenza also reduces H1N1-induced susceptibility to lethal bacterial infections. Both T cells and Abs contribute to defense against influenza-induced bacterial diseases; influenza cross-reactive T cells reduce viral titers, whereas Abs to nucleoprotein suppress induction of inflammation in the lung. These findings suggest that nonneutralizing influenza vaccines that fail to prevent influenza infection may nevertheless protect the public from secondary bacterial diseases when neutralizing vaccines are not available.


Assuntos
Anticorpos Antivirais/imunologia , Vírus da Influenza A Subtipo H1N1/imunologia , Vírus da Influenza A Subtipo H3N2/imunologia , Infecções por Klebsiella/imunologia , Klebsiella pneumoniae/imunologia , Proteínas do Nucleocapsídeo/imunologia , Infecções por Orthomyxoviridae/imunologia , Pneumonia Pneumocócica/imunologia , Streptococcus pneumoniae/imunologia , Linfócitos T/imunologia , Animais , Reações Cruzadas , Suscetibilidade a Doenças/imunologia , Suscetibilidade a Doenças/microbiologia , Humanos , Influenza Humana/imunologia , Influenza Humana/microbiologia , Camundongos , Infecções por Orthomyxoviridae/microbiologia
11.
Curr Biol ; 2024 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-39214087

RESUMO

Neurons form cell-type-specific morphologies that are shaped by cell-surface molecules and their cellular events governing dendrite growth. One growth rule is dendrite self-avoidance, whereby dendrites distribute uniformly within a neuron's territory by avoiding sibling branches. In mammalian neurons, dendrite self-avoidance is regulated by a large family of cell-recognition molecules called the clustered protocadherins (cPcdhs). Genetic and molecular studies suggest that the cPcdhs mediate homophilic recognition and repulsion between self-dendrites. However, this model has not been tested through direct investigation of self-avoidance during development. Here, we performed live imaging and four-dimensional (4D) quantifications of dendrite morphogenesis to define the dynamics and cPcdh-dependent mechanisms of self-avoidance. We focused on the mouse retinal starburst amacrine cell (SAC), which requires the gamma-Pcdhs (Pcdhgs) and self/non-self-recognition to establish a stereotypic radial morphology while permitting dendritic interactions with neighboring SACs. Through morphogenesis, SACs extend dendritic protrusions that iteratively fill the growing arbor and contact and retract from nearby self-dendrites. Compared to non-self-contacting protrusions, self-contacting events have longer lifetimes, and a subset persists as loops. In the absence of the Pcdhgs, non-self-contacting dynamics are unaffected but self-contacting retractions are significantly diminished. Self-contacting bridges accumulate, leading to the bundling of dendritic processes and disruption to the arbor shape. By tracking dendrite self-avoidance in real time, our findings establish that the γ-Pcdhs mediate self-recognition and retraction between contacting sibling dendrites. Our results also illustrate how self-avoidance shapes stochastic and space-filling dendritic outgrowth for robust pattern formation in mammalian neurons.

12.
Intensive Crit Care Nurs ; 83: 103628, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38244252

RESUMO

OBJECTIVES: This prospective cohort study aimed to assess the predictive value of the Nurse Intuition Patient Deterioration Scale (NIPDS) combined with the National Early Warning Score (NEWS) for identifying serious adverse events in patients admitted to diverse hospital wards. RESEARCH METHODOLOGY/DESIGN: Data was collected between December 2020 and February 2021 in a 350-bed acute hospital near Brussels, Belgium. The study followed a prospective cohort design, employing NIPDS alongside NEWS for risk assessment. Patients were monitored for 24 h post-registration, with outcomes recorded. SETTING: The study was conducted in a hospital with a Rapid Response System (RRS) and electronic patient record wherein NEWS was routinely collected. Patients admitted to two medical, two surgical, and two geriatric wards were included. MAIN OUTCOME MEASURES: The primary outcome included death, urgent code calls, or unplanned ICU transfers within 24 h after NIPDS registration. The secondary outcome comprised rapid response team activations or changes in Do-Not-Resuscitate codes. RESULTS: In a cohort of 313 patients, 10/313 and 31/313 patients reached the primary and secondary outcome respectively. For the primary outcome, NIPDS had a sensitivity of 0.900 and specificity of 0.927, while NEWS had a sensitivity of 0.300 and specificity of 0.974. Decision Curve Analysis demonstrated that NIPDS provided more Net Benefit across various Threshold Probabilities. Combining NIPDS and NEWS showed potential for optimizing rapid response systems. Especially in resource-constrained settings, NIPDS could be used as a calling criterion. CONCLUSION: The NIPDS displayed strong predictive capabilities for adverse events. Integrating NIPDS into existing rapid response systems can objectify nurse intuition, enhancing patient safety. IMPLICATIONS FOR CLINICAL PRACTICE: The Nurse Intuition Patient Deterioration Scale (NIPDS) is a valuable tool for detecting patient deterioration. Implementing NIPDS alongside traditional scores such as NEWS can improve patient care and safety. The optimal NIPDS threshold to activate rapid response is ≥5.


Assuntos
Escore de Alerta Precoce , Humanos , Estudos Prospectivos , Feminino , Masculino , Idoso , Bélgica , Estudos de Coortes , Pessoa de Meia-Idade , Idoso de 80 Anos ou mais , Deterioração Clínica , Adulto , Valor Preditivo dos Testes
13.
Cell Rep ; 43(4): 114005, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38551961

RESUMO

The retina is exquisitely patterned, with neuronal somata positioned at regular intervals to completely sample the visual field. Here, we show that phosphatase and tensin homolog (Pten) controls starburst amacrine cell spacing by modulating vesicular trafficking of cell adhesion molecules and Wnt proteins. Single-cell transcriptomics and double-mutant analyses revealed that Pten and Down syndrome cell adhesion molecule Dscam) are co-expressed and function additively to pattern starburst amacrine cell mosaics. Mechanistically, Pten loss accelerates the endocytic trafficking of DSCAM, FAT3, and MEGF10 off the cell membrane and into endocytic vesicles in amacrine cells. Accordingly, the vesicular proteome, a molecular signature of the cell of origin, is enriched in exocytosis, vesicle-mediated transport, and receptor internalization proteins in Pten conditional knockout (PtencKO) retinas. Wnt signaling molecules are also enriched in PtencKO retinal vesicles, and the genetic or pharmacological disruption of Wnt signaling phenocopies amacrine cell patterning defects. Pten thus controls vesicular trafficking of cell adhesion and signaling molecules to establish retinal amacrine cell mosaics.


Assuntos
Células Amácrinas , Adesão Celular , Endocitose , PTEN Fosfo-Hidrolase , Retina , Via de Sinalização Wnt , Animais , PTEN Fosfo-Hidrolase/metabolismo , PTEN Fosfo-Hidrolase/genética , Retina/metabolismo , Camundongos , Células Amácrinas/metabolismo , Camundongos Knockout , Transporte Proteico , Proteínas Wnt/metabolismo , Moléculas de Adesão Celular/metabolismo , Moléculas de Adesão Celular/genética
14.
J Cell Mol Med ; 17(12): 1554-65, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24373549

RESUMO

Insufficient oxygen delivery to organs leads to tissue dysfunction and cell death. Reperfusion, although vital to organ survival, initiates an inflammatory response that may both aggravate local tissue injury and elicit remote organ damage. Polymorphonuclear neutrophil (PMN) trafficking to remote organs following ischaemia/reperfusion (I/R) is associated with the release of lipid mediators, including leucotriene (LT) B4 , cysteinyl-LTs (CysLTs) and platelet-activating factor (PAF). Yet, their potentially cooperative role in regulating I/R-mediated inflammation has not been thoroughly assessed. The present study aimed to determine the cooperative role of lipid mediators in regulating PMN migration, tissue oedema and injury using selective receptor antagonists in selected models of I/R and dermal inflammation. Our results show that rabbits, pre-treated orally with BIIL 284 and/or WEB 2086 and MK-0571, were protected from remote tissue injury following I/R or dermal inflammation in an additive or synergistic manner when the animals were pre-treated with two drugs concomitantly. The functional selectivity of the antagonists towards their respective agonists was assessed in vitro, showing that neither BIIL 284 nor WEB 2086 prevented the inflammatory response to IL-8, C5a and zymosan-activated plasma stimulation. However, these agonists elicited LTB4 biosynthesis in isolated rabbit PMNs. Similarly, a cardioprotective effect of PAF and LTB4 receptor antagonists was shown following myocardial I/R in mice. Taken together, these results underscore the intricate involvement of LTB4 and PAF in each other's responses and provide further evidence that targeting both LTs and PAF receptors provides a much stronger anti-inflammatory effect, regulating PMN migration and oedema formation.


Assuntos
Leucotrienos/metabolismo , Fator de Ativação de Plaquetas/metabolismo , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/patologia , Amidinas/farmacologia , Animais , Azepinas/farmacologia , Bioensaio , Carbamatos/farmacologia , Derme/patologia , Modelos Animais de Doenças , Extravasamento de Materiais Terapêuticos e Diagnósticos/metabolismo , Extravasamento de Materiais Terapêuticos e Diagnósticos/patologia , Extremidades/irrigação sanguínea , Extremidades/patologia , Inflamação/patologia , Leucotrieno B4/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Isquemia Miocárdica/metabolismo , Isquemia Miocárdica/patologia , Infiltração de Neutrófilos/efeitos dos fármacos , Glicoproteínas da Membrana de Plaquetas/agonistas , Glicoproteínas da Membrana de Plaquetas/metabolismo , Propionatos/farmacologia , Quinolinas/farmacologia , Coelhos , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Leucotrienos/agonistas , Receptores de Leucotrienos/metabolismo , Triazóis/farmacologia
15.
J Immunol ; 186(5): 3188-96, 2011 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-21278347

RESUMO

Although endocannabinoids are important players in nociception and obesity, their roles as immunomodulators remain elusive. The main endocannabinoids described to date, namely 2-arachidonoyl-glycerol (2-AG) and arachidonyl-ethanolamide (AEA), induce an intriguing profile of pro- and anti-inflammatory effects. This could relate to cell-specific cannabinoid receptor expression and/or the action of endocannabinoid-derived metabolites. Importantly, 2-AG and AEA comprise a molecule of arachidonic acid (AA) in their structure and are hydrolyzed rapidly. We postulated the following: 1) the released AA from endocannabinoid hydrolysis would be metabolized into eicosanoids; and 2) these eicosanoids would mediate some of the effects of endocannabinoids. To confirm these hypotheses, experiments were performed in which freshly isolated human neutrophils were treated with endocannabinoids. Unlike AEA, 2-AG stimulated myeloperoxidase release, kinase activation, and calcium mobilization by neutrophils. Although 2-AG did not induce the migration of neutrophils, it induced the release of a migrating activity for neutrophils. 2-AG also rapidly (1 min) induced a robust biosynthesis of leukotrienes, similar to that observed with AA. The effects of 2-AG were not mimicked nor prevented by cannabinoid receptor agonists or antagonists, respectively. Finally, the blockade of either 2-AG hydrolysis, leukotriene (LT) B(4) biosynthesis, or LTB(4) receptor 1 activation prevented all the effects of 2-AG on neutrophil functions. In conclusion, we demonstrated that 2-AG potently activates human neutrophils. This is the consequence of 2-AG hydrolysis, de novo LTB(4) biosynthesis, and an autocrine activation loop involving LTB(4) receptor 1.


Assuntos
Ácidos Araquidônicos/fisiologia , Moduladores de Receptores de Canabinoides/fisiologia , Endocanabinoides , Glicerídeos/fisiologia , Leucotrieno B4/biossíntese , Leucotrieno B4/fisiologia , Ativação de Neutrófilo/imunologia , Neutrófilos/imunologia , Anti-Inflamatórios não Esteroides/sangue , Anti-Inflamatórios não Esteroides/farmacologia , Araquidonato 5-Lipoxigenase/farmacologia , Araquidonato 5-Lipoxigenase/fisiologia , Ácido Araquidônico/metabolismo , Ácidos Araquidônicos/sangue , Moduladores de Receptores de Canabinoides/sangue , Degranulação Celular/efeitos dos fármacos , Degranulação Celular/imunologia , Glicerídeos/sangue , Humanos , Hidrólise/efeitos dos fármacos , Leucotrieno B4/sangue , Ativação de Neutrófilo/efeitos dos fármacos , Neutrófilos/metabolismo
16.
Neuron ; 111(1): 5-8, 2023 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-36603550

RESUMO

Visual impairments in albinism result from decreased ipsilateral retinal projections. In this issue of Neuron, Slavi, Balasubramanian, and colleagues1 demonstrate how low CyclinD2 in the ciliary marginal zone perturbs generation of ipsilaterally projecting RGCs and that restoring CyclinD2 improves vision in albino mice.


Assuntos
Albinismo , Células Ganglionares da Retina , Animais , Camundongos , Retina , Visão Ocular , Vias Visuais
17.
Arthritis Rheum ; 63(6): 1527-33, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21360520

RESUMO

OBJECTIVE: There is increasing evidence of a role for Toll-like receptors (TLRs) in inflammatory arthritis. The extra domain A (ED-A)-containing isoform of fibronectin is generated under pathologic conditions such as rheumatoid arthritis, and ED-A has been identified as an endogenous TLR-4 ligand. Leukotriene B4 (LTB4) and polymorphonuclear neutrophils (PMNs) play a critical role in murine models of inflammatory arthritis. The aim of this study was therefore to investigate the putative effects of ED-A on leukotriene biosynthesis and PMN migration through TLR signaling. METHODS: The effect of recombinant human ED-A (rhED-A) on leukotriene biosynthesis was evaluated in isolated human blood PMNs and monocytes by high-performance liquid chromatography. The capacity of rhED-A to stimulate PMN migration was evaluated using a transendothelial/matrix migration assay in vitro and the mouse air-pouch model in vivo. RESULTS: Recombinant human ED-A efficiently primed the biosynthesis of LTB4 in PMN and monocyte suspensions. This priming effect was dependent on TLR-4 activation, since the TLR-4-signaling inhibitor CLI-095 completely blocked the effect of rhED-A but not that of other TLR ligands (R-848, Pam2 CSK4) or cytokines. Moreover, rhED-A stimulated transendothelial migration of PMNs in vitro, which was inhibited by 50-60% with the LTB4 receptor 1 (BLT1) antagonist CP105,696 or the cytosolic phospholipase A2 α inhibitor pyrrophenone. In vivo, rhED-A induced a significant PMN recruitment into the air pouch of C3H/HeOuJ mice (expressing functional TLR-4), but not in C3H/HeJ mice (expressing nonsignaling TLR-4). CONCLUSION: These results demonstrate the ability of rhED-A to promote LTB4 biosynthesis and PMN migration through TLR-4 activation, thus providing new insights on TLR-dependent mechanisms of regulation of LTB4 biosynthesis and PMN infiltration in inflammatory joint diseases.


Assuntos
Fibronectinas/farmacologia , Leucotrieno B4/biossíntese , Leucotrienos/biossíntese , Neutrófilos/metabolismo , Receptor 4 Toll-Like/metabolismo , Animais , Anti-Inflamatórios/farmacologia , Benzopiranos/farmacologia , Ácidos Carboxílicos/farmacologia , Citocinas/farmacologia , Feminino , Fibronectinas/química , Humanos , Imidazóis/farmacologia , Leucotrieno B4/antagonistas & inibidores , Lipopeptídeos/farmacologia , Camundongos , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Monócitos/metabolismo , Isoformas de Proteínas/metabolismo , Pirrolidinas/farmacologia , Proteínas Recombinantes/metabolismo , Sulfonamidas/farmacologia , Migração Transendotelial e Transepitelial/efeitos dos fármacos
18.
Sensors (Basel) ; 12(3): 3669-92, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22737031

RESUMO

A series of M[Au(CN)(2)](2)(analyte)(x) coordination polymers (M = Co, Ni; analyte = dimethylsulfoxide (DMSO), N,N-dimethylformamide (DMF), pyridine; x = 2 or 4) was prepared and characterized. Addition of analyte vapours to solid M(µ-OH(2))[Au(CN)(2)](2) yielded visible vapochromic responses for M = Co but not M = Ni; the IR ν(CN) spectral region changed in every case. A single crystal structure of Zn[Au(CN)(2)](2)(DMSO)(2) revealed a corrugated 2-D layer structure with cis-DMSO units. Reacting a Ni(II) salt and K[Au(CN)(2)] in DMSO yielded the isostructural Ni[Au(CN)(2)](2)(DMSO)(2) product. Co[Au(CN)(2)](2)(DMSO)(2) and M[Au(CN)(2)](2)(DMF)(2) (M = Co, Ni) complexes have flat 2-D square-grid layer structures with trans-bound DMSO or DMF units; they are formed via vapour absorption by solid M(µ-OH(2))[Au(CN)(2)](2) and from DMSO or DMF solution synthesis. Co[Au(CN)(2)](2)(pyridine)(4) is generated via vapour absorption by Co(µ-OH(2))[Au(CN)(2)](2); the analogous Ni complex is synthesized by immersion of Ni(µ-OH(2))[Au(CN)(2)](2) in 4% aqueous pyridine. Similar immersion of Co(µ-OH(2))[Au(CN)(2)](2) yielded Co[Au(CN)(2)](2)(pyridine)(2), which has a flat 2-D square-grid structure with trans-pyridine units. Absorption of pyridine vapour by solid Ni(µ-OH(2))[Au(CN)(2)](2) was incomplete, generating a mixture of pyridine-bound complexes. Analyte-free Co[Au(CN)(2)](2) was prepared by dehydration of Co(µ-OH(2))[Au(CN)(2)](2) at 145 °C; it has a 3-D diamondoid-type structure and absorbs DMSO, DMF and pyridine to give the same materials as by vapour absorption from the hydrate.

19.
Nat Commun ; 13(1): 3433, 2022 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-35701402

RESUMO

Understanding how diverse neurons are assembled into circuits requires a framework for describing cell types and their developmental trajectories. Here we combine genetic fate-mapping, pseudotemporal profiling of morphogenesis, and dual morphology and RNA labeling to resolve the diversification of mouse cerebellar inhibitory interneurons. Molecular layer interneurons (MLIs) derive from a common progenitor population but comprise diverse dendritic-, somatic-, and axon initial segment-targeting interneurons. Using quantitative morphology from 79 mature MLIs, we identify two discrete morphological types and presence of extensive within-class heterogeneity. Pseudotime trajectory inference using 732 developmental morphologies indicate the emergence of distinct MLI types during migration, before reaching their final positions. By comparing MLI identities from morphological and transcriptomic signatures, we demonstrate the dissociation between these modalities and that subtype divergence can be resolved from axonal morphogenesis prior to marker gene expression. Our study illustrates the utility of applying single-cell methods to quantify morphology for defining neuronal diversification.


Assuntos
Cerebelo , Interneurônios , Animais , Interneurônios/fisiologia , Camundongos , Neurônios/fisiologia
20.
Mol Brain ; 15(1): 85, 2022 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-36274179

RESUMO

Parvalbumin-expressing inhibitory neurons (PV-INs) are critical for the balance and fine-tuning of complex neuronal circuits. Studies of PV-IN biology require tools for their specific labeling, targeting and manipulation. Among these, the Cre/LoxP system is the most popular in mice, with the two commonly used PV-Cre lines cited over 5600 times. Here we report in the mouse cerebellar cortex that PV-Cre activity is not restricted to inhibitory neurons. Imaging of Cre-activated reporters demonstrated recombination in excitatory granule cells. We present evidence that PV-Cre recombination is: (1) spatially regulated and lobule specific; (2) detected in granule cells in the external and internal granule cell layers arising from strong, but transient Pvalb expression in progenitors between E13-E15; and (3) delayed in a subset of inhibitory interneurons, asynchronous with PV protein expression. Together, our findings establish the spatio-temporal patterns PV-Cre activation in the mouse cerebellum, raising considerations for conditional targeting of Pvalb-expressing inhibitory populations.


Assuntos
Interneurônios , Parvalbuminas , Animais , Camundongos , Parvalbuminas/metabolismo , Interneurônios/metabolismo , Neurônios/metabolismo , Cerebelo/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA