Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Environ Sci Technol ; 56(19): 14133-14145, 2022 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-36108131

RESUMO

Colloidal organo-mineral associations contribute to soil organic matter (OM) preservation and mainly occur in two forms: (i) as water-dispersible colloids that are potentially mobile (free colloids) and (ii) as building units of soil microaggregates that are occluded inside them (occluded colloids). However, the way in which these two colloidal forms differ in terms of textural characteristics and chemical composition, together with the nature of their associated OM, remains unknown. To fill these knowledge gaps, free and occluded fine colloids <220 nm were isolated from arable soils with comparable organic carbon (Corg) but different clay contents. Free colloids were dispersed in water suspensions during wet-sieving, while occluded colloids were released from water-stable aggregates by sonication. The asymmetric flow field-flow fractionation analysis on the free and occluded colloids suggested that most of the 0.6-220 nm fine colloidal Corg was present in size fractions that showed high abundances of Si, Al, and Fe. The pyrolysis-field ionization mass spectrometry revealed that the free colloids were relatively rich in less decomposed plant-derived OM (i.e., lipids, suberin, and free fatty acids), whereas the occluded colloids generally contained more decomposed and microbial-derived OM (i.e., carbohydrates and amides). In addition, a higher thermal stability of OM in occluded colloids pointed to a higher resistance to further degradation and mineralization of OM in occluded colloids than that in free colloids. This study provides new insights into the characteristics of subsized fractions of fine colloidal organo-mineral associations in soils and explores the impacts of free versus occluded colloidal forms on the composition and stability of colloid-associated OM.


Assuntos
Ácidos Graxos não Esterificados , Solo , Amidas , Carboidratos , Carbono/análise , Argila , Coloides/química , Minerais/química , Solo/química , Água
2.
J Environ Manage ; 316: 115282, 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-35576710

RESUMO

Restoring drained peatlands has been practiced to mitigate climate change, regulate water quality, and restore biodiversity. However, no information is available on the long-term impact of drainage and restoration of peatlands on total sulfur (St), fractions, and S species. We investigated the long-term drained and restored forested and coastal peatlands and percolation mires using the sequential S fractionation and S K-edge X-ray near-edge absorption structure (XANES) spectroscopy analysis to address this knowledge gap. The St concentrations in the drained forested peatland and percolation mire were low by 4 and 1.5 folds compared to their respective restored peatlands at the topsoil horizons. Similarly, the H2O-S and NaH2PO4-S fractions in the drained forested peatland (28 and 18 mg kg-1) were lower than in the restored forested peatland (165 and 166 mg kg-1). However, the S fractions were higher in the drained percolation mire (449 and 247 mg kg-1) than in the restored percolation mire (150 and 41 mg kg-1). The relative proportion of the residual-S fraction (70-97% of St) was equivalent to the relative proportion of organic S species (76-97% of St) derived from the XANES analysis. The XANES analysis revealed the reduced organic S (44-62%), organic S with intermediate oxidation states (16-47%), strongly reduced (0-21%) and oxidized inorganic S species (4-12%) of the St. The results indicate that long-term restoration conserved St, decreased labile S fractions and enriched the strongly reduced inorganic and organic S species.


Assuntos
Solo , Áreas Alagadas , Biodiversidade , Alemanha , Solo/química , Enxofre
3.
Ecotoxicol Environ Saf ; 225: 112768, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34530265

RESUMO

Stable isotope labeling of pollutants is a valuable tool to investigate their environmental transport and degradation. For the globally most frequently used herbicide glyphosate, such studies have, so far, been hampered by the absence of an analytical standard for its labeled metabolite AMPA-15N, which is formed during the degradation of all commercially available glyphosate isotopologues. Without such a standard, detection and quantitation of AMPA-15N, e.g. with LC-MS/MS, is not possible. Therefore, a synthetic pathway to AMPA-15N from benzamide-15N via the hemiaminal was developed. AMPA-15N was obtained in sufficient yield and purity to be used as a standard compound for LC-MS/MS analysis. Suitable MS-detection settings as well as a calibration using the internal standard (IS) approach were established for Fmoc-derivatized AMPA-15N. The use of different AMPA isotopologues as IS was complicated by the parallel formation of [M+H]+ and [M]+• AMPA-Fmoc precursor ions in ESI-positive mode, causing signal interferences between analyte and IS. We recommend the use of either AMPA-13C-15N, AMPA-13C-15N-D2 or a glyphosate isotopologue as IS, as they do not affect the linearity of the calibration curve. As a proof of concept, the developed analysis procedure for AMPA-15N was used to refine the results from a field lysimeter experiment investigating leaching and degradation of glyphosate-2-13C-15N. The newly enabled quantitation of AMPA-15N in soil extracts showed that similar amounts (0.05 - 0.22 mg·kg-1) of the parent herbicide glyphosate and its primary metabolite AMPA persisted in the topsoil over the study period of one year, while vertical transport through the soil column did not occur for either of the compounds. The herein developed analysis concepts will facilitate future design and execution of experiments on the environmental fate of the herbicide glyphosate.


Assuntos
Herbicidas , Espectrometria de Massas em Tandem , Cromatografia Líquida , Glicina/análogos & derivados , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiônico , Glifosato
4.
Water Sci Technol ; 84(5): 1293-1301, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34534124

RESUMO

Glyphosate (GLP) is one of the most widely applied herbicides, and is found ubiquitously in the environment. The removal of glyphosate from waste water and soil is challenging and can be achieved with chemical or biological methods, which, nevertheless, suffer from different disadvantages. The application of a physical plasma for the removal of GLP in water was examined by the application of surface corona discharges in a wire-to-cylinder setup filled with argon. The plasma was ignited at the liquid surface without any additives. By applying a photometric method, GLP was detected after derivatisation with fluorenyl methoxycarbonyl chloride, whereas phosphate was determined with ammonium molybdate. A GLP degradation rate of 90.8% could be achieved within a treatment time of 30 minutes with an estimated energy efficiency of 0.32 g/kWh.


Assuntos
Herbicidas , Poluentes do Solo , Glicina/análogos & derivados , Herbicidas/análise , Águas Residuárias , Água , Glifosato
5.
Phys Chem Chem Phys ; 22(45): 26509-26524, 2020 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-33185198

RESUMO

The soil pH plays a substantial role in controlling phosphorus (P) adsorption and mobilization. These processes are strongly affected by the phosphate interaction strength with P-fixing soil minerals such as goethite. The target of the current contribution is to draw a molecular level picture of the interplay between pH and phosphate binding at the goethite-water interface via a joint experimental-theoretical approach. Periodic density functional theory (DFT) calculations were carried out to provide a molecular level understanding of the pH dependence of P adsorption. To validate the modeling approach, adsorption experiments of phosphate at goethite were performed in the pH range of 4-12. There was agreement between experiments and simulations in the description of the adsorption behavior by two pH-dependent successive stages. The adsorption increases along the pH change from 4 to 8. A further increase of pH leads to a decrease of adsorption. By comparing with literature data it is concluded that the first stage will be observed only if there is no significant change of the surface charge at low pH. Moreover, the molecular modeling results point to the abundance of the monodentate (M) binding motif at both extremely low and high pH ranges. Otherwise, the bidentate (B) one is predominant along the intermediate pH range. These observations could resolve the existing debate about the assignment of phosphate-goethite binding motifs. Furthermore, the results point to a decrease of pH upon phosphate sorption due to an induced acidification of soil solution. The present joint experimental-theoretical approach provides a better understanding and description of the existing phosphate sorption experiments and highlights new findings at the atomistic/molecular scale.

6.
Environ Geochem Health ; 42(10): 3231-3246, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32323172

RESUMO

Controlled drainage is considered as a soil management tool to improve water supply to crops and reduce nutrient losses from fields; however, its closure may affect phosphorus (P) mobilization in soil. To assess the P mobilization potential, three soil profiles with redoximorphic features were selected along a slight hill in Northern Germany. Soil samples from three depths of each profile were characterized for basic properties, total element content, oxalate- and dithionite-extractable pedogenic Al, Fe and Mn (hydr)oxides, P pools (sequential extraction), P species [P K-edge X-ray absorption near-edge structure (XANES) spectroscopy] and P sorption behavior. In topsoil (~ 10 cm depth), labile P (H2O-P + resin-P + NaHCO3-P) accounted for 26-32% of total P (Pt). Phosphorus K-edge XANES revealed that up to 49% of Pt was bound to Al and/or Fe (hydr)oxides, but sequential fractionation indicated that > 30% of this P was occluded within sesquioxide aggregates. A low binding capacity for P was demonstrated by P sorption capacity and low Kf coefficients (20-33 [Formula: see text]) of the Freundlich equation. In the subsoil layers (~ 30 and ~ 65 cm depth), higher proportions of Al- and Fe-bound P along with other characteristics suggested that all profiles might be prone to P mobilization/leaching risk under reducing conditions even if the degree of P saturation (DPS) of a profile under oxic conditions was < 25%. The results suggest that a closure of the controlled drainage may pose a risk of increased P mobilization, but this needs to be compared with the risk of uncontrolled drainage and P losses to avoid P leaching into the aquatic ecosystem.


Assuntos
Fósforo/química , Solo/química , Adsorção , Agricultura , Alemanha , Oxirredução , Solo/classificação
7.
Environ Monit Assess ; 192(2): 127, 2020 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-31960150

RESUMO

Glyphosate (GLYP), the globally most important herbicide, may have effects in various compartments of the environment such as soil and water. Although laboratory studies showed fast microbial degradation and a low leaching potential, it is often detected in various environmental compartments, but pathways are unknown. Therefore, the objective was to study GLYP leaching and transformations in a lysimeter field experiment over a study period of one hydrological year using non-radioactive 13C2-15N-GLYP labelling and maize cultivation. 15N and 13C were selectively measured using isotopic ratio mass spectrometry (IR-MS) in leachates, soil, and plant material. Additionally, HPLC coupled to tandem mass spectrometry (HPLC-MS/MS) was used for quantitation of GLYP and its main degradation product aminomethylphosphonic acid (AMPA) in different environmental compartments (leachates and soil). Results show low recoveries for GLYP (< 3%) and AMPA (< level of detection) in soil after the study period, whereas recoveries of 15N (11-19%) and 13C (23-54%) were higher. Time independent enrichment of 15N and 13C and the absence of GLYP and AMPA in leachates indicated further degradation. 15N was enriched in all compartments of maize plants (roots, shoots, and cobs). 13C was only enriched in roots. Results confirmed rapid degradation to further degradation products, e.g., 15NH4+, which plausibly was taken up as nutrient by plants. Due to the discrepancy of low GLYP and AMPA concentrations in soil, but higher values for 15N and 13C after the study period, it cannot be excluded that non-extractable residues of GLYP remained and accumulated in soil.


Assuntos
Monitoramento Ambiental , Glicina/análogos & derivados , Poluentes do Solo/análise , Poluentes Químicos da Água/análise , Cromatografia Líquida de Alta Pressão/métodos , Glicina/química , Herbicidas/análise , Isoxazóis , Solo/química , Espectrometria de Massas em Tandem , Tetrazóis , Água/análise , Zea mays/metabolismo , Glifosato
8.
Phys Chem Chem Phys ; 21(8): 4421-4434, 2019 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-30729971

RESUMO

The interaction between phosphates and soil mineral surfaces, such as Fe- and Al-(oxyhydr)oxides, plays a crucial role in the immobilization of P and thus its availability for plants. The reactions of phosphates with Fe-hydroxides and especially goethite have been studied extensively. But a molecular-level picture of the phosphate binding mechanisms at the goethite-water interface is still lacking. Therefore, in the current contribution we have explored the molecular binding mechanisms for the adsorbed phosphate at the goethite-water interface by performing sorption kinetics experiments for orthophosphate and characterizing the adsorbed species by FT-IR spectroscopy. In parallel, periodic DFT calculations have been performed to explore the interaction mechanisms and to assign the IR spectra for monodentate (M) and bidentate (B) orthophosphate complexes at two different goethite surface planes (010 and 100) in the presence of water. In general, our interaction energy results give evidence that the mono-protonated B phosphate complex is favored to be formed at the goethite-water interface, although the M motif could exist as a minor fraction. Moreover, it was found that water plays an important role in controlling the phosphate adsorption process at the goethite surfaces. The interfacial water molecules form H-bonds (HBs) with the phosphate as well as with the goethite surface atoms. Furthermore, some water molecules form covalent bonds with goethite's Fe atoms while others dissociate at the surface to protons and hydroxyl groups. The present theoretical assignment of IR spectra introduces a benchmark for characterizing experimental IR data for the adsorbed KH2PO4 species at the goethite-water interface. In particular, the IR spectra of the mono-protonated (2O + 1Fe) B complex at the 010 goethite surface plane and the M complex at the 100 goethite surface plane were found to be consistent with the experimental data. In order to explore the role of different abundances of surface planes and binding motifs, IR spectra obtained from weighted averages have been analyzed. The results confirmed the conclusions drawn from interaction energy calculations.

9.
J Phycol ; 55(6): 1306-1318, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31378942

RESUMO

In the Atacama Desert, cyanobacteria grow on various substrates such as soils (edaphic) and quartz or granitoid stones (lithic). Both edaphic and lithic cyanobacterial communities have been described but no comparison between both communities of the same locality has yet been undertaken. In the present study, we compared both cyanobacterial communities along a precipitation gradient ranging from the arid National Park Pan de Azúcar (PA), which resembles a large fog oasis in the Atacama Desert extending to the semiarid Santa Gracia Natural Reserve (SG) further south, as well as along a precipitation gradient within PA. Various microscopic techniques, as well as culturing and partial 16S rRNA sequencing, were applied to identify 21 cyanobacterial species; the diversity was found to decline as precipitation levels decreased. Additionally, under increasing xeric stress, lithic community species composition showed higher divergence from the surrounding edaphic community, resulting in indigenous hypolithic and chasmoendolithic cyanobacterial communities. We conclude that rain and fog water, respectively, cause contrasting trends regarding cyanobacterial species richness in the edaphic and lithic microhabitats.


Assuntos
Cianobactérias , Clima Desértico , Lítio , RNA Ribossômico 16S , Microbiologia do Solo , Água
10.
Environ Monit Assess ; 191(4): 244, 2019 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-30915586

RESUMO

Glyphosate (GLP, N-(phosphonomethyl)glycine) is the most important broadband herbicide in the world, but discussions are controversial regarding its environmental behaviour and distribution. Residue analyses in a variety of environmental samples are commonly conducted by HPLC-MS where GLP needs to be derivatised with 9-fluoromethoxycarnonyl chloride (FMOC-Cl). Since this derivatisation reaction was suspected to be inhibited by metal ions in the sample matrix, the present study provides a comprehensive experimental study of the effect of metal ions (Al3+, Ca2+, Cd2+, Co2+, Cu2+, Fe2+, Fe3+, Mg2+, Mn2+, Zn2+) on derivatisation and GLP recovery. Results show that some metals (Cd2+, Co2+, Cu2+, Mn2+ and Zn2+) decreased the GLP recovery down to 19 to 59%. Complementary, quantum chemical modelling of 1:1 GLP-metal complexes as well as their reactivity with respect to FMOC-Cl was performed. Here, a decrease in reactivity of FMOC-Cl towards GLP-metal complexes is observed; i.e. the reaction is non-spontaneous in contrast to the free GLP case. The present results are in accord with previous studies and provide an explanation that full GLP recovery in different matrices was never reached. Remedy strategies to compensate for the inhibition effect are explored such as pH adjustment to acidic or alkaline conditions or addition of ethylenediaminetetraacetic acid (EDTA). In general, our results question the use of internal isotopic labelled standards (ILS) since this presupposes the presence of the analyte and the ILS in the same (free) form.


Assuntos
Monitoramento Ambiental/métodos , Glicina/análogos & derivados , Herbicidas/análise , Metais/química , Ácido Edético/química , Fluorenos/química , Glicina/análise , Íons , Modelos Químicos , Glifosato
11.
Phys Chem Chem Phys ; 20(3): 1531-1539, 2018 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-29260152

RESUMO

Investigation of the interaction between glyphosate (GLP) and soil minerals is essential for understanding GLP's fate in the environment. Whereas GLP-goethite binding has been discussed extensively, the impact of water as well as of different goethite surface planes has not been studied yet. In this contribution, periodic density functional theory-based molecular dynamics simulations are applied to explore possible binding mechanisms for GLP with three goethite surface planes (010, 001, and 100) in the presence of water. The investigation included several binding motifs of monodentate (M) and bidentate (B) type. It was found that the binding stability increases in the order M@001 < M@010 < (2O + 2Fe) B@100 < M@100 < (1O + 2Fe) B@001 < (2O + 1Fe) B@010. This behavior has been traced to the presence of intramolecular H-bonds (HBs) in GLP as well as intermolecular HBs between GLP and water, GLP and goethite, and water and goethite. These interactions are accompanied by proton transfer from GLP to water and to goethite, and from water to goethite as well as water dissociation at the goethite surface. Further, it was observed that the OH- species can replace the adsorbed GLP at the goethite surface, which could explain the well-known drastic drop in GLP adsorption at high pH. The present results highlight the role of water in the GLP-goethite interaction and provide a molecular level perspective on available experimental data.

12.
J Synchrotron Radiat ; 24(Pt 1): 333-337, 2017 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-28009575

RESUMO

Micro-XAFS and chemical imaging techniques have been widely applied for studies of heterogeneously distributed systems, mostly in hard X-ray (>5 keV) or in soft X-ray (<1.5 keV) energies. The microprobe endstation of the SXRMB (soft X-ray microcharacterization beamline) at the Canadian Light Source is optimized at the medium energy (1.7-5 keV), and it has been recently commissioned and is available for general users. The technical design and the performance (energy range, beam size and flux) of the SXRMB microprobe are presented. Examples in chemical imaging and micro-XAFS in the medium energy for important elements such as P, S and Ca for soil and biological samples are highlighted.


Assuntos
Síncrotrons , Raios X , Canadá
13.
Microb Ecol ; 71(1): 178-93, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26507846

RESUMO

Biological soil crusts (BSCs) are known as "ecosystem-engineers" that have important, multifunctional ecological roles in primary production, in nutrient and hydrological cycles, and in stabilization of soils. These communities, however, are almost unstudied in coastal dunes of the temperate zone. Hence, for the first time, the biodiversity of cyanobacterial and algal dominated BSCs collected in five dunes from the southern Baltic Sea coast on the islands Rügen and Usedom (Germany) was investigated in connection with physicochemical soil parameters. The species composition of cyanobacteria and algae was identified with direct determination of crust subsamples, cultural methods, and diatom slides. To investigate the influence of soil properties on species composition, the texture, pH, electrical conductivity, carbonate content, total contents of carbon, nitrogen, phosphorus, and the bioavailable phosphorus-fraction (PO4 (3-)) were analyzed in adjacent BSC-free surface soils at each study site. The data indicate that BSCs in coastal dunes of the southern Baltic Sea represent an ecologically important vegetation form with a surprisingly high site-specific diversity of 19 cyanobacteria, 51 non-diatom algae, and 55 diatoms. All dominant species of the genera Coleofasciculus, Lyngbya, Microcoleus, Nostoc, Hydrocoryne, Leptolyngbya, Klebsormidium, and Lobochlamys are typical aero-terrestrial cyanobacteria and algae, respectively. This first study of coastal sand dunes in the Baltic region provides compelling evidence that here the BSCs were dominated by cyanobacteria, algae, or a mixture of both. Among the physicochemical soil properties, the total phosphorus content of the BSC-free sand was the only factor that significantly influenced the cyanobacterial and algal community structure of BSCs in coastal dunes.


Assuntos
Biodiversidade , Clorófitas/classificação , Cianobactérias/isolamento & purificação , Microbiologia do Solo , Países Bálticos , Clorófitas/genética , Cianobactérias/classificação , Cianobactérias/genética , Diatomáceas/classificação , Diatomáceas/genética , Diatomáceas/isolamento & purificação , Solo/química
14.
Artigo em Inglês | MEDLINE | ID: mdl-26305901

RESUMO

The addition of wood chips as a co-substrate can promote the degradation of oil in soil. Therefore, in the present study, the tree species-specific impact of wood chips of Scots pine (Pinus sylvestris L.), Norway spruce (Picea abies L.) and Western balsam poplar (Populus trichocarpa L.) on the degradation of crude oil was tested in beach sand in a 4-week incubation experiment. The CO2-C release increased in the order of control without wood chips < +spruce < +pine < +poplar. Initial and final hydrocarbon concentrations (C10 to C40), as indicators for the oil degradation, were determined with gas chromatography-flame ionization detection (GC-FID). The degradation increased for the light fraction (C10 to C22), the heavy fraction (C23 to C40) as well as the whole range (C10 to C40) in the order of control without wood chips (f(degrad.) = 23% vs. 0% vs. 12%) < +poplar (f(degrad.) = 49% vs. 19% vs. 36%) < +spruce (f(degrad.) = 55% vs. 34% vs. 46%) < +pine (f(degrad.) = 60% vs. 44% vs. 53%), whereas the heavy fraction was less degraded in comparison to the light fraction. It can be concluded, that the tree species-specific wood quality is a significant control of the impact on the degradation of hydrocarbons, and pine wood chips might be promising, possibly caused by their lower decomposability and lower substrate replacement than the other wood species.


Assuntos
Petróleo/metabolismo , Árvores/classificação , Madeira/química , Carbono/análise , Hidrocarbonetos/análise , Nitrogênio/análise , Picea/metabolismo , Pinus sylvestris/metabolismo , Solo/química , Enxofre/análise
15.
Sci Total Environ ; 940: 173510, 2024 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-38806124

RESUMO

The adsorption of phosphorus (P) onto active soil surfaces plays a pivotal role in immobilizing P, thereby influencing soil fertility and the filter function of soil to protect freshwater systems from eutrophication. Competitive anions, such as organic matter (OM), significantly affect the strength of this P-binding, eventually controlling P mobility and release, but surprisingly, these processes are insufficiently understood at the molecular level. In this study, we provide a molecular-level perspective on the influence of OM on P binding at the goethite-water interface using a combined experimental-theoretical approach. By examining the impact of citric acid (CIT) and histidine (HIS) on the adsorption of orthophosphate (OP), glycerol phosphate (GP), and inositol hexaphosphate (IHP) through adsorption experiments and molecular dynamics simulations, we address fundamental questions regarding P binding trends, OM interaction with the goethite surface, and the effect of OM on P adsorption. Our findings reveal the complex nature of P adsorption on goethite surfaces, where the specific OM, treatment conditions (covering the surface with OM or simultaneous co-adsorption), and initial concentrations collectively shape these interactions. P adsorption on goethite exhibits a binding strength increasing in the order of GP < OP < IHP. Crucially, this trend remains consistent across all adsorption experiments, regardless of the presence or absence of OM, CIT, or HIS, and irrespective of the specific treatment method. Notably, OP is particularly susceptible to inhibition by OM, while adsorption of GP depends on specific OM treatments. Despite being less sensitive to OM, IHP shows reduced adsorption, especially at higher initial P concentrations. Of significance is the strong inhibitory effect of CIT, particularly evident when the surface is pre-covered, resulting in a substantial 70 % reduction in OP adsorption compared to bare goethite. The sequence of goethite binding affinity to P and OM underscores a higher affinity of CIT and HIS compared to OP and GP, suggesting that OM can effectively compete with both OP and GP and replace them at the surface. In contrast, the impact of OM on IHP adsorption appears insignificant, as IHP exhibits a higher affinity than both CIT and HIS towards the goethite surface. The coverage of goethite surfaces with OM results in the blocking of active sites and the generation of an unfavorable electric potential and field, inhibiting anion adsorption and consequently reducing P binding. It is noteworthy that electrostatic interactions predominantly contribute more to the binding of P and OM to the surface compared to dispersion interactions.

16.
Mycologia ; 116(1): 44-58, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37955984

RESUMO

Over the decades our understanding of lichens has shifted to the fact that they are multiorganismic, symbiotic microecosystems, with their complex interactions coming to the fore due to recent advances in microbiomics. Here, we present a mutualistic-parasitic continuum dynamics scenario between an orange lichen and a lichenicolous fungus from the Atacama Desert leading to the decay of the lichen's photobiont and leaving behind a black lichen thallus. Based on isolation, sequencing, and ecophysiological approaches including metabolic screenings of the symbionts, we depict consequences upon infection with the lichenicolous fungus. This spans from a loss of the lichen's photosynthetic activity and an increased roughness of its surface to an inhibition of the parietin synthesis as a shared pathway between the photobiont and the mycobiont, including a shift of secondary metabolism products. This degree of relations has rarely been documented before, although lichenicolous fungi have been studied for over 200 years, adding an additional level to the view of interactions within lichens.


Assuntos
Clorófitas , Líquens , Líquens/microbiologia , Filogenia , Fungos , Simbiose
17.
J Environ Qual ; 42(2): 405-11, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23673832

RESUMO

Soil contamination with Cd from P fertilizer and other anthropogenic and geogenic sources is a serious problem. In situ immobilization by P application to soil is known as an applicable remediation technique leading to reduced Cd uptake by plants, and use of a Cd-free P fertilizer from renewable sources would be most favorable. Bone char (BC) (15% P, 28% Ca, 0.7% Mg) may be used as such a quality P fertilizer, but it is unknown if its dissolution in soil provides sufficient P and immobilizes Cd in moderately contaminated soils. We incubated BC and triple superphosphate (TSP) in 11 soils that contained between 0.3 to 19.6 mg Cd kg and determined the kinetics of P dissolution during a time period of 145 d. The concomitant Cd immobilization was determined by extracting the mobile Cd with 1 mol L NHNO solution. For most soils, BC increased the concentration of labile P immediately after application, reaching a maximum after 34 d, although the solubility was below that of TSP (2.9-19.3 vs. 4.1-24.0%). Among five kinetic models, the Langmuir-type equation provided the best description of P dissolution from BC and TSP. The Cd immobilization resulting from BC dissolution exceeded that of TSP by a factor of 1.4 to 2.7. The P dissolution from BC was negatively correlated with pH and positively with P sorption capacity, whereas Cd immobilization was positively correlated with soil pH. These causal relationships were expressed in multiple equations that enable predictions of P dissolution and Cd immobilization and thus may help to introduce BC as sustainable P fertilizer and useful soil amendment.


Assuntos
Cádmio , Fertilizantes , Fósforo , Solo , Poluentes do Solo
18.
J Environ Qual ; 42(1): 199-207, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23673755

RESUMO

Hydrochars, technically manufactured by hydrothermal carbonization (HTC) of biomass residues, are recently tested in high numbers for their suitability as feedstock for bioenergy production, the bioproduct industry, and as long-term carbon storage in soil, but ecological effects in the soil-plant system are not sufficiently known. Therefore, we investigated the influence of different biomass residues and process duration on the molecular composition of hydrochars, and how hydrochar addition to soils affected the germination of spring barley ( L.) seeds. Samples from biomass residues and the corresponding hydrochars were analyzed by pyrolysis-field ionization mass spectrometry (Py-FIMS) and gaseous emissions from the germination experiments with different soil-hydrochar mixtures by gas chromatography/mass spectrometry (GC/MS). The molecular-level characterization of various hydrochars by Py-FIMS clearly showed that the kind of biomass residue influenced the chemical composition of the corresponding hydrochars more strongly than the process duration. In addition to various detected possible toxic substances, two independent mass spectrometric methods (Py-FIMS and GC/MS) indicated long C-chain aliphatic compounds which are typically degraded to the C-unit ethylene that can evoke phytotoxic effects in high concentrations. This showed for the first time possible chemical compounds to explain toxic effects of hydrochars on plant growth. It is concluded that the HTC process did not result in a consistent product with defined chemical composition. Furthermore, possible toxic effects urgently need to be investigated for each individual hydrochar to assess effects on the soil organic matter composition and the soil biota before hydrochar applications as an amendment on agricultural soils.


Assuntos
Carbono , Solo , Biomassa , Carbono/química , Carvão Vegetal/química , Espectrometria de Massas , Solo/química , Poluentes do Solo/química
19.
Waste Manag ; 172: 358-367, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37952467

RESUMO

Land application of biomass materials and their products of thermal treatment (biochars and ashes) can offset the unsustainable use of soluble P fertilisers. However, few evaluations of P fertiliser potential have systematically addressed diverse biomass types with contrasting P contents. This paper evaluates the relative P fertiliser potential of four P-rich biowastes (animal bone, poultry manure, pig slurry, and a municipal sewage sludge) and three low-P, plant-based materials (reeds [Phragmites australis L.], rice husks [Oryza sativa L.] and cocoa prunings [Theobroma cacao L.]) and their biochars and ashes. We utilised three complementary approaches: P extractability in single solvents (2% formic and citric acids, and 1 M neutral ammonium citrate); sequential chemical P fractionation, and P dissolution/desorption kinetics. In most cases, pyrolysis and incineration of the P-rich biowastes increased P extractability (% TP) in the single solvents, whilst decreasing water-soluble P. For pig slurry, for example, pyrolysis reduced water-soluble P 20-fold, with corresponding increases observed not only in the solvent-extractable P but also in the pool of potentially plant available, NaHCO3-Pi fraction (e.g., 17 to 35% TP). These complementary datasets were also evident for the low-P feedstocks and thermal products; e.g., pyrolysis increased the NaHCO3-Pi fraction in reed feedstock from 6 to 15% TP. For all biomass feedstocks, biochars and ashes, pseudo-second order P-release kinetics provided the best fit with the experimental data. The data demonstrate scope for using pyrolysis to upgrade the P fertiliser value of a wide range of biomass materials whilst reducing their environmental impact.


Assuntos
Fertilizantes , Fósforo , Animais , Suínos , Fósforo/química , Incineração , Pirólise , Carvão Vegetal/química , Esgotos/química , Água , Solventes
20.
Sci Total Environ ; 887: 163692, 2023 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-37156390

RESUMO

Phosphorus (P) is an indispensable element to all forms of life and its efficient use in fertilizers is one of the conditions for food security. The efficiency of P fertilizers is affected by P mobilization and P fixation, both depending on the P binding strength to soil constituents. This review provides an overview of the P binding to soil constituents, especially to P-fixing mineral surfaces and its investigation using state-of-the-art Computational Chemistry (CC). A particular focus will be on goethite (α-FeOOH), which is highly significant in the context of P fixation in soils, given its prevalence, high susceptibility to P, and wide distribution across both oxic and anoxic environments. First, a brief overview will be given on experimental efforts related to the P adsorption at mineral surfaces and the factors affecting this process. Here, we will discuss the process of P adsorption, with a focus on important factors that influence this process, such as pH, surface crystallinity and morphology, competing anions, and electrolyte solutions. We will also explore the various techniques used to study this process and investigate the resulting binding motifs. Next, a brief introduction into common CC methods, techniques, and applications is presented, highlighting the advantages and limitations of each approach. Then, a comprehensive discussion of a wide range of the most relevant computational studies related to the phosphate binding issue will be provided. This will be followed by the main part of this review which is focusing on a possible strategy to cope with the soil heterogeneity by breaking down the complexity of P behavior in soil into well-defined models that can be discussed in terms of particular key factors. Hence, different molecular model systems and molecular simulations are introduced to reveal the P binding to soil organic matter (SOM), metal ions, and mineral surfaces. Simulation results provided an in-depth understanding of the P binding problem and explained at a molecular level the effects of surface plane, binding motif, kind and valency of metal ions, SOM composition, water, pH, and redox potential on the P binding in soil. On this basis, an overall molecular picture of P binding in soil can be then obtained by combining results for the different models. Eventually, challenges and further modifications of the existing molecular modeling approaches are discussed, such as steps necessary to bridge the molecular with the mesoscale.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA