Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 845
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 183(5): 1219-1233.e18, 2020 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-33242418

RESUMO

Cancer therapies kill tumors either directly or indirectly by evoking immune responses and have been combined with varying levels of success. Here, we describe a paradigm to control cancer growth that is based on both direct tumor killing and the triggering of protective immunity. Genetic ablation of serine protease inhibitor SerpinB9 (Sb9) results in the death of tumor cells in a granzyme B (GrB)-dependent manner. Sb9-deficient mice exhibited protective T cell-based host immunity to tumors in association with a decline in GrB-expressing immunosuppressive cells within the tumor microenvironment (TME). Maximal protection against tumor development was observed when the tumor and host were deficient in Sb9. The therapeutic utility of Sb9 inhibition was demonstrated by the control of tumor growth, resulting in increased survival times in mice. Our studies describe a molecular target that permits a combination of tumor ablation, interference within the TME, and immunotherapy in one potential modality.


Assuntos
Citotoxicidade Imunológica , Imunoterapia , Proteínas de Membrana/metabolismo , Neoplasias/imunologia , Neoplasias/terapia , Serpinas/metabolismo , Animais , Apoptose/efeitos dos fármacos , Neoplasias da Mama/imunologia , Neoplasias da Mama/patologia , Neoplasias da Mama/terapia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Citotoxicidade Imunológica/efeitos dos fármacos , Progressão da Doença , Feminino , Deleção de Genes , Granzimas/metabolismo , Imunidade/efeitos dos fármacos , Melanoma/patologia , Camundongos Endogâmicos C57BL , Neoplasias/prevenção & controle , Bibliotecas de Moléculas Pequenas/farmacologia , Células Estromais/efeitos dos fármacos , Células Estromais/patologia , Microambiente Tumoral/efeitos dos fármacos
2.
Nat Immunol ; 21(11): 1444-1455, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32958928

RESUMO

Acquisition of a lipid-laden phenotype by immune cells has been defined in infectious diseases and atherosclerosis but remains largely uncharacterized in cancer. Here, in breast cancer models, we found that neutrophils are induced to accumulate neutral lipids upon interaction with resident mesenchymal cells in the premetastatic lung. Lung mesenchymal cells elicit this process through repressing the adipose triglyceride lipase (ATGL) activity in neutrophils in prostaglandin E2-dependent and -independent manners. In vivo, neutrophil-specific deletion of genes encoding ATGL or ATGL inhibitory factors altered neutrophil lipid profiles and breast tumor lung metastasis in mice. Mechanistically, lipids stored in lung neutrophils are transported to metastatic tumor cells through a macropinocytosis-lysosome pathway, endowing tumor cells with augmented survival and proliferative capacities. Pharmacological inhibition of macropinocytosis significantly reduced metastatic colonization by breast tumor cells in vivo. Collectively, our work reveals that neutrophils serve as an energy reservoir to fuel breast cancer lung metastasis.


Assuntos
Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Metabolismo dos Lipídeos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/secundário , Células-Tronco Mesenquimais/metabolismo , Neutrófilos/metabolismo , Animais , Biomarcadores , Proliferação de Células , Progressão da Doença , Endocitose , Feminino , Imunofluorescência , Humanos , Camundongos , Metástase Neoplásica , Neutrófilos/ultraestrutura
3.
Immunity ; 55(8): 1483-1500.e9, 2022 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-35908547

RESUMO

Primary tumors are drivers of pre-metastatic niche formation, but the coordination by the secondary organ toward metastatic dissemination is underappreciated. Here, by single-cell RNA sequencing and immunofluorescence, we identified a population of cyclooxygenase 2 (COX-2)-expressing adventitial fibroblasts that remodeled the lung immune microenvironment. At steady state, fibroblasts in the lungs produced prostaglandin E2 (PGE2), which drove dysfunctional dendritic cells (DCs) and suppressive monocytes. This lung-intrinsic stromal program was propagated by tumor-associated inflammation, particularly the pro-inflammatory cytokine interleukin-1ß, supporting a pre-metastatic niche. Genetic ablation of Ptgs2 (encoding COX-2) in fibroblasts was sufficient to reverse the immune-suppressive phenotypes of lung-resident myeloid cells, resulting in heightened immune activation and diminished lung metastasis in multiple breast cancer models. Moreover, the anti-metastatic activity of DC-based therapy and PD-1 blockade was improved by fibroblast-specific Ptgs2 deletion or dual inhibition of PGE2 receptors EP2 and EP4. Collectively, lung-resident fibroblasts reshape the local immune landscape to facilitate breast cancer metastasis.


Assuntos
Neoplasias Pulmonares , Receptores de Prostaglandina E Subtipo EP2 , Ciclo-Oxigenase 2/genética , Fibroblastos/patologia , Humanos , Pulmão/patologia , Neoplasias Pulmonares/patologia , Receptores de Prostaglandina E Subtipo EP4/genética , Microambiente Tumoral
4.
Cell ; 160(4): 729-744, 2015 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-25679764

RESUMO

Signaling through RAS/MAP kinase pathway is central to biology. ERK has long been perceived as the only substrate for MEK. Here, we report that HSF1, the master regulator of the proteotoxic stress response, is a new MEK substrate. Beyond mediating cell-environment interactions, the MEK-HSF1 regulation impacts malignancy. In tumor cells, MEK blockade inactivates HSF1 and thereby provokes proteomic chaos, presented as protein destabilization, aggregation, and, strikingly, amyloidogenesis. Unlike their non-transformed counterparts, tumor cells are particularly susceptible to proteomic perturbation and amyloid induction. Amyloidogenesis is tumor suppressive, reducing in vivo melanoma growth and contributing to the potent anti-neoplastic effects of proteotoxic stressors. Our findings unveil a key biological function of the oncogenic RAS-MEK signaling in guarding proteostasis and suppressing amyloidogenesis. Thus, proteomic instability is an intrinsic feature of malignant state, and disrupting the fragile tumor proteostasis to promote amyloidogenesis may be a feasible therapeutic strategy.


Assuntos
Amiloide/metabolismo , Proteínas de Ligação a DNA/metabolismo , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Neoplasias/metabolismo , Estabilidade Proteica , Fatores de Transcrição/metabolismo , Animais , Linhagem Celular Tumoral , Feminino , Fatores de Transcrição de Choque Térmico , Humanos , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Transplante de Neoplasias , Fosforilação , Agregados Proteicos , Proteoma/metabolismo , Transplante Heterólogo
5.
Nature ; 624(7992): 621-629, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38049589

RESUMO

Type 2 diabetes mellitus (T2D), a major cause of worldwide morbidity and mortality, is characterized by dysfunction of insulin-producing pancreatic islet ß cells1,2. T2D genome-wide association studies (GWAS) have identified hundreds of signals in non-coding and ß cell regulatory genomic regions, but deciphering their biological mechanisms remains challenging3-5. Here, to identify early disease-driving events, we performed traditional and multiplexed pancreatic tissue imaging, sorted-islet cell transcriptomics and islet functional analysis of early-stage T2D and control donors. By integrating diverse modalities, we show that early-stage T2D is characterized by ß cell-intrinsic defects that can be proportioned into gene regulatory modules with enrichment in signals of genetic risk. After identifying the ß cell hub gene and transcription factor RFX6 within one such module, we demonstrated multiple layers of genetic risk that converge on an RFX6-mediated network to reduce insulin secretion by ß cells. RFX6 perturbation in primary human islet cells alters ß cell chromatin architecture at regions enriched for T2D GWAS signals, and population-scale genetic analyses causally link genetically predicted reduced RFX6 expression with increased T2D risk. Understanding the molecular mechanisms of complex, systemic diseases necessitates integration of signals from multiple molecules, cells, organs and individuals, and thus we anticipate that this approach will be a useful template to identify and validate key regulatory networks and master hub genes for other diseases or traits using GWAS data.


Assuntos
Diabetes Mellitus Tipo 2 , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Predisposição Genética para Doença , Ilhotas Pancreáticas , Humanos , Estudos de Casos e Controles , Separação Celular , Cromatina/metabolismo , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patologia , Diabetes Mellitus Tipo 2/fisiopatologia , Redes Reguladoras de Genes/genética , Estudo de Associação Genômica Ampla , Secreção de Insulina , Ilhotas Pancreáticas/metabolismo , Ilhotas Pancreáticas/patologia , Reprodutibilidade dos Testes
6.
Cell ; 150(1): 88-99, 2012 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-22738725

RESUMO

Transgenerational effects have wide-ranging implications for human health, biological adaptation, and evolution; however, their mechanisms and biology remain poorly understood. Here, we demonstrate that a germline nuclear small RNA/chromatin pathway can maintain stable inheritance for many generations when triggered by a piRNA-dependent foreign RNA response in C. elegans. Using forward genetic screens and candidate approaches, we find that a core set of nuclear RNAi and chromatin factors is required for multigenerational inheritance of environmental RNAi and piRNA silencing. These include a germline-specific nuclear Argonaute HRDE1/WAGO-9, a HP1 ortholog HPL-2, and two putative histone methyltransferases, SET-25 and SET-32. piRNAs can trigger highly stable long-term silencing lasting at least 20 generations. Once established, this long-term memory becomes independent of the piRNA trigger but remains dependent on the nuclear RNAi/chromatin pathway. Our data present a multigenerational epigenetic inheritance mechanism induced by piRNAs.


Assuntos
Caenorhabditis elegans/genética , Epigenômica , Interferência de RNA , RNA de Helmintos/metabolismo , RNA Interferente Pequeno/metabolismo , Animais , Caenorhabditis elegans/metabolismo , Núcleo Celular/genética , Núcleo Celular/metabolismo , Feminino , Células Germinativas/metabolismo , Masculino , Transgenes
7.
Proc Natl Acad Sci U S A ; 121(16): e2307982121, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38593084

RESUMO

A major aspiration of investors is to better forecast stock performance. Interestingly, emerging "neuroforecasting" research suggests that brain activity associated with anticipatory reward relates to market behavior and population-wide preferences, including stock price dynamics. In this study, we extend these findings to professional investors processing comprehensive real-world information on stock investment options while making predictions of long-term stock performance. Using functional MRI, we sampled investors' neural responses to investment cases and assessed whether these responses relate to future performance on the stock market. We found that our sample of investors could not successfully predict future market performance of the investment cases, confirming that stated preferences do not predict the market. Stock metrics of the investment cases were not predictive of future stock performance either. However, as investors processed case information, nucleus accumbens (NAcc) activity was higher for investment cases that ended up overperforming in the market. These findings remained robust, even when controlling for stock metrics and investors' predictions made in the scanner. Cross-validated prediction analysis indicated that NAcc activity could significantly predict future stock performance out-of-sample above chance. Our findings resonate with recent neuroforecasting studies and suggest that brain activity of professional investors may help in forecasting future stock performance.


Assuntos
Fenômenos Fisiológicos do Sistema Nervoso , Núcleo Accumbens , Humanos , Previsões , Investimentos em Saúde
9.
Nature ; 579(7798): 274-278, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32103181

RESUMO

Despite the resounding clinical success in cancer treatment of antibodies that block the interaction of PD1 with its ligand PDL11, the mechanisms involved remain unknown. A major limitation to understanding the origin and fate of T cells in tumour immunity is the lack of quantitative information on the distribution of individual clonotypes of T cells in patients with cancer. Here, by performing deep single-cell sequencing of RNA and T cell receptors in patients with different types of cancer, we survey the profiles of various populations of T cells and T cell receptors in tumours, normal adjacent tissue, and peripheral blood. We find clear evidence of clonotypic expansion of effector-like T cells not only within the tumour but also in normal adjacent tissue. Patients with gene signatures of such clonotypic expansion respond best to anti-PDL1 therapy. Notably, expanded clonotypes found in the tumour and normal adjacent tissue can also typically be detected in peripheral blood, which suggests a convenient approach to patient identification. Analyses of our data together with several external datasets suggest that intratumoural T cells, especially in responsive patients, are replenished with fresh, non-exhausted replacement cells from sites outside the tumour, suggesting continued activity of the cancer immunity cycle in these patients, the acceleration of which may be associated with clinical response.


Assuntos
Linfócitos do Interstício Tumoral/citologia , Linfócitos do Interstício Tumoral/metabolismo , Neoplasias/patologia , Variantes Farmacogenômicos , Receptores de Antígenos de Linfócitos T/genética , Linfócitos T/citologia , Anticorpos Monoclonais Humanizados/uso terapêutico , Antineoplásicos/uso terapêutico , Células Clonais , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/imunologia , Linfócitos T/metabolismo , Transcriptoma
10.
Proc Natl Acad Sci U S A ; 120(31): e2216543120, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37487096

RESUMO

Most phenylpropanoid pathway flux is directed toward the production of monolignols, but this pathway also generates multiple bioactive metabolites. The monolignols coniferyl and sinapyl alcohol polymerize to form guaiacyl (G) and syringyl (S) units in lignin, components that are characteristic of plant secondary cell walls. Lignin negatively impacts the saccharification potential of lignocellulosic biomass. Although manipulation of its content and composition through genetic engineering has reduced biomass recalcitrance, in some cases, these genetic manipulations lead to impaired growth. The reduced-growth phenotype is often attributed to poor water transport due to xylem collapse in low-lignin mutants, but alternative models suggest that it could be caused by the hyper- or hypoaccumulation of phenylpropanoid intermediates. In Arabidopsis thaliana, overexpression of FERULATE 5-HYDROXYLASE (F5H) shifts the normal G/S lignin ratio to nearly pure S lignin and does not result in substantial changes to plant growth. In contrast, when we overexpressed F5H in the low-lignin mutants cinnamyl dehydrogenase c and d (cadc cadd), cinnamoyl-CoA reductase 1, and reduced epidermal fluorescence 3, plant growth was severely compromised. In addition, cadc cadd plants overexpressing F5H exhibited defects in lateral root development. Exogenous coniferyl alcohol (CA) and its dimeric coupling product, pinoresinol, rescue these phenotypes. These data suggest that mutations in the phenylpropanoid pathway limit the biosynthesis of pinoresinol, and this effect is exacerbated by overexpression of F5H, which further draws down cellular pools of its precursor, CA. Overall, these genetic manipulations appear to restrict the synthesis of pinoresinol or a downstream metabolite that is necessary for plant growth.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Oxigenases de Função Mista/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Lignina/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Fenótipo , Regulação da Expressão Gênica de Plantas
11.
Eur J Immunol ; : e2350949, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38778498

RESUMO

Type 1 diabetes (T1D) is characterized by T-cell responses to islet antigens. Investigations in humans and the nonobese diabetic (NOD) mouse model of T1D have revealed that T-cell reactivity to insulin plays a central role in the autoimmune response. As there is no convenient NOD-based model to study human insulin (hIns) or its T-cell epitopes in the context of spontaneous T1D, we developed a NOD mouse strain transgenically expressing hIns in islets under the control of the human regulatory region. Female NOD.hIns mice developed T1D at approximately the same rate and overall incidence as NOD mice. Islet-infiltrating T cells from NOD.hIns mice recognized hIns peptides; both CD8 and CD4 T-cell epitopes were identified. We also demonstrate that islet-infiltrating T cells from HLA-transgenic NOD.hIns mice can be used to identify potentially patient-relevant hIns T-cell epitopes. Besides serving as an antigen, hIns was expressed in the thymus of NOD.hIns mice and could serve as a protector against T1D under certain circumstances, as previously suggested by genetic studies in humans. NOD.hIns mice and related strains facilitate human-relevant epitope discovery efforts and the investigation of fundamental questions that cannot be readily addressed in humans.

12.
Immunity ; 45(2): 280-91, 2016 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-27496730

RESUMO

The effector potential of NK cells is counterbalanced by their sensitivity to inhibition by "self" MHC class I molecules in a process called "education." In humans, interactions between inhibitory killer immunoglobulin-like receptors (KIR) and human MHC (HLA) mediate NK cell education. In HLA-B(∗)27:05(+) transgenic mice and in patients undergoing HLA-mismatched hematopoietic cell transplantation (HCT), NK cells derived from human CD34(+) stem cells were educated by HLA from both donor hematopoietic cells and host stromal cells. Furthermore, mature human KIR3DL1(+) NK cells gained reactivity after adoptive transfer to HLA-B(∗)27:05(+) mice or bone marrow chimeric mice where HLA-B(∗)27:05 was restricted to either the hematopoietic or stromal compartment. Silencing of HLA in primary NK cells diminished NK cell reactivity, while acquisition of HLA from neighboring cells increased NK cell reactivity. Altogether, these findings reveal roles for cell-extrinsic HLA in driving NK cell reactivity upward, and cell-intrinsic HLA in maintaining NK cell education.


Assuntos
Autoantígenos/metabolismo , Transplante de Células-Tronco de Sangue do Cordão Umbilical , Antígeno HLA-B27/metabolismo , Neoplasias Hematológicas/terapia , Células Matadoras Naturais/imunologia , Receptores KIR3DL1/metabolismo , Células Estromais/imunologia , Animais , Antígenos CD34/metabolismo , Diferenciação Celular , Células Cultivadas , Quimerismo , Espaço Extracelular/metabolismo , Antígeno HLA-B27/genética , Neoplasias Hematológicas/imunologia , Humanos , Isoantígenos/imunologia , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , RNA Interferente Pequeno/genética
13.
J Immunol ; 211(9): 1426-1437, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37712758

RESUMO

Allogeneic hematopoietic stem cell transplantation (alloSCT) is, in many clinical settings, the only curative treatment for acute myeloid leukemia (AML). The clinical benefit of alloSCT greatly relies on the graft-versus-leukemia (GVL) effect. However, AML relapse remains the top cause of posttransplant death; this highlights the urgent need to enhance GVL. Studies of human GVL have been hindered by the lack of optimal clinically relevant models. In this article, we report, the successful establishment of a novel (to our knowledge) humanized GVL model system by transplanting clinically paired donor PBMCs and patient AML into MHC class I/II knockout NSG mice. We observed significantly reduced leukemia growth in humanized mice compared with mice that received AML alone, demonstrating a functional GVL effect. Using this model system, we studied human GVL responses against human AML cells in vivo and discovered that AML induced T cell depletion, likely because of increased T cell apoptosis. In addition, AML caused T cell exhaustion manifested by upregulation of inhibitory receptors, increased expression of exhaustion-related transcription factors, and decreased T cell function. Importantly, combined blockade of human T cell-inhibitory pathways effectively reduced leukemia burden and reinvigorated CD8 T cell function in this model system. These data, generated in a highly clinically relevant humanized GVL model, not only demonstrate AML-induced inhibition of alloreactive T cells but also identify promising therapeutic strategies targeting T cell depletion and exhaustion for overcoming GVL failure and treating AML relapse after alloSCT.

14.
Bioinformatics ; 39(12)2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-38113422

RESUMO

MOTIVATION: Cell fate is commonly studied by profiling the gene expression of single cells to infer developmental trajectories based on expression similarity, RNA velocity, or statistical mechanical properties. However, current approaches do not recover microenvironmental signals from the cellular niche that drive a differentiation trajectory. RESULTS: We resolve this with environment-aware trajectory inference (ENTRAIN), a computational method that integrates trajectory inference methods with ligand-receptor pair gene regulatory networks to identify extracellular signals and evaluate their relative contribution towards a differentiation trajectory. The output from ENTRAIN can be superimposed on spatial data to co-localize cells and molecules in space and time to map cell fate potentials to cell-cell interactions. We validate and benchmark our approach on single-cell bone marrow and spatially resolved embryonic neurogenesis datasets to identify known and novel environmental drivers of cellular differentiation. AVAILABILITY AND IMPLEMENTATION: ENTRAIN is available as a public package at https://github.com/theimagelab/entrain and can be used on both single-cell and spatially resolved datasets.


Assuntos
Redes Reguladoras de Genes , Análise de Célula Única , Ligantes , Diferenciação Celular/genética , Análise de Célula Única/métodos , Perfilação da Expressão Gênica/métodos
15.
FASEB J ; 37(6): e22995, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37219526

RESUMO

Immuno-oncology (IO)-based therapies such as checkpoint inhibitors, bi-specific antibodies, and CAR-T-cell therapies have shown significant success in the treatment of several cancer indications. However, these therapies can result in the development of severe adverse events, including cytokine release syndrome (CRS). Currently, there is a paucity of in vivo models that can evaluate dose-response relationships for both tumor control and CRS-related safety issues. We tested an in vivo PBMC humanized mouse model to assess both treatment efficacy against specific tumors and the concurrent cytokine release profiles for individual human donors after treatment with a CD19xCD3 bispecific T-cell engager (BiTE). Using this model, we evaluated tumor burden, T-cell activation, and cytokine release in response to bispecific T-cell-engaging antibody in humanized mice generated with different PBMC donors. The results show that PBMC engrafted NOD-scid Il2rgnull mice lacking expression of mouse MHC class I and II (NSG-MHC-DKO mice) and implanted with a tumor xenograft predict both efficacy for tumor control by CD19xCD3 BiTE and stimulated cytokine release. Moreover, our findings indicate that this PBMC-engrafted model captures variability among donors for tumor control and cytokine release following treatment. Tumor control and cytokine release were reproducible for the same PBMC donor in separate experiments. The PBMC humanized mouse model described here is a sensitive and reproducible platform that identifies specific patient/cancer/therapy combinations for treatment efficacy and development of complications.


Assuntos
Leucócitos Mononucleares , Linfócitos T , Humanos , Animais , Camundongos , Camundongos Endogâmicos NOD , Resultado do Tratamento , Síndrome da Liberação de Citocina , Citocinas , Modelos Animais de Doenças , Camundongos Knockout , Camundongos SCID
16.
Pain Med ; 25(6): 380-386, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38407391

RESUMO

OBJECTIVE: In this study, we explored key prescription drug monitoring program-related outcomes among clinicians from a broad cohort of Massachusetts healthcare facilities following prescription drug monitoring program (PDMP) and electronic health record (EHR) data integration. METHODS: Outcomes included seven-day rolling averages of opioids prescribed, morphine milligram equivalents (MMEs) prescribed, and PDMP queries. We employed a longitudinal study design to analyze PDMP data over a 15-month study period which allowed for six and a half months of pre- and post-integration observations surrounding a two-month integration period. We used longitudinal mixed effects models to examine the effect of EHR integration on each of the key outcomes. RESULTS: Following EHR integration, PDMP queries increased both through the web-based portal and in total (0.037, [95% CI = 0.017, 0.057] and 0.056, [95% CI = 0.035, 0.077]). Both measures of clinician opioid prescribing declined throughout the study period; however, no significant effect following EHR integration was observed. These results were consistent when our analysis was applied to a subset consisting only of continuous PDMP users. CONCLUSIONS: Our results support EHR integration contributing to PDMP utilization by clinicians but do not support changes in opioid prescribing behavior.


Assuntos
Analgésicos Opioides , Registros Eletrônicos de Saúde , Padrões de Prática Médica , Programas de Monitoramento de Prescrição de Medicamentos , Humanos , Analgésicos Opioides/uso terapêutico , Massachusetts , Padrões de Prática Médica/estatística & dados numéricos , Estudos Longitudinais , Prescrições de Medicamentos/estatística & dados numéricos
17.
Tech Coloproctol ; 28(1): 77, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38954131

RESUMO

BACKGROUND: Bladder drainage is systematically used in rectal cancer surgery; however, the optimal type of drainage, transurethral catheterization (TUC) or suprapubic catheterization (SPC), is still controversial. The aim was to compare the rates of urinary tract infection on the fourth postoperative day (POD4) between TUC and SPC, after rectal cancer surgery regardless of the day of removal of the urinary drain. METHODS: This randomized clinical trial in 19 expert colorectal surgery centers in France and Belgium was performed between October 2016 and October 2019 and included 240 men (with normal or subnormal voiding function) undergoing mesorectal excision with low anastomosis for rectal cancer. Patients were followed at postoperative days 4, 30, and 180. RESULTS: In 208 patients (median age 66 years [IQR 58-71]) randomized to TUC (n = 99) or SPC (n = 109), the rate of urinary infection at POD4 was not significantly different whatever the type of drainage (11/99 (11.1%) vs. 8/109 (7.3%), 95% CI, - 4.2% to 11.7%; p = 0.35). There was significantly more pyuria in the TUC group (79/99 (79.0%) vs. (60/109 (60.9%), 95% CI, 5.7-30.0%; p = 0.004). No difference in bacteriuria was observed between the groups. Patients in the TUC group had a shorter duration of catheterization (median 4 [2-5] vs. 4 [3-5] days; p = 0.002). Drainage complications were more frequent in the SPC group at all followup visits. CONCLUSIONS: TUC should be preferred over SPC in male patients undergoing surgery for mid and/or lower rectal cancers, owing to the lower rate of complications and shorter duration of catheterization. TRIAL REGISTRATION: ClinicalTrials.gov identifier NCT02922647.


Assuntos
Drenagem , Complicações Pós-Operatórias , Neoplasias Retais , Cateterismo Urinário , Infecções Urinárias , Humanos , Masculino , Neoplasias Retais/cirurgia , Pessoa de Meia-Idade , Idoso , Cateterismo Urinário/métodos , Cateterismo Urinário/efeitos adversos , Drenagem/métodos , Infecções Urinárias/etiologia , Infecções Urinárias/prevenção & controle , Infecções Urinárias/epidemiologia , Complicações Pós-Operatórias/etiologia , Complicações Pós-Operatórias/epidemiologia , Bexiga Urinária/cirurgia , Bélgica
18.
Phytochem Anal ; 35(3): 552-566, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38191126

RESUMO

INTRODUCTION: In Brazil, the plant group popularly known as "pedra-ume-caá" is used in folk medicine for the treatment of diabetes, and its raw material is commonly sold. OBJECTIVE: The aim of the study was to apply a method for chemical identification of extracts of dry pedra-ume-caá leaves using HPLC-high-resolution mass spectrometry (HRMS) and NMR and develop a multivariate model with NMR data to authenticate commercial samples. In addition, to evaluate the biological activities of the extracts. MATERIALS AND METHODS: Dry extracts of Myrcia multiflora, Myrcia amazonica, Myrcia guianensis, Myrcia sylvatica, Eugenia punicifolia leaves, and 15 commercial samples (sold in Manaus and Belém, Brazil) were prepared by infusion. All the extracts were analysed using HPLC-high-resolution mass spectrometry (HRMS), NMR, principal component analysis (PCA), and hierarchical cluster analysis (HCA). The antidiabetic effect of extracts was evaluated according to enzymatic inhibition. Their content of total phenols, cell viability, and antioxidant and antiglycation activities were also determined. RESULTS: HPLC-HRMS and NMR analysis of these extracts permitted the identification of 17 compounds. 1H NMR data combined with multivariate analyses allowed us to conclude that catechin, myricitrin, quercitrin, and gallic and quinic acids are the main chemical markers of pedra-ume-caá species. These markers were identified in 15 commercial samples of pedra-ume-caá. Additionally, only the extracts of M. multiflora and E. punicifolia inhibited α-glucosidase. All the extracts inhibited the formation of advanced glycation end products (AGEs) and showed free-radical-scavenging activity. These extracts did not present cytotoxicity. CONCLUSION: This study revealed the chemical markers of matrices, and it was possible to differentiate the materials marketed as pedra-ume-caá. Moreover, this study corroborates the potential of these species for treating diabetes.


Assuntos
Diabetes Mellitus , Myrtaceae , Antioxidantes/química , Extratos Vegetais/química , Myrtaceae/química , Espectroscopia de Ressonância Magnética , Folhas de Planta/química
19.
Int J Cosmet Sci ; 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38229481

RESUMO

OBJECTIVE: The Amazon has a rich biodiversity where many different plant species can be found. This diversity is an important source of bioactive substances, mainly due to the different structural components of their phytometabolites. Research for natural products is a strategy for the development of new agents in therapeutic applications, especially cosmetic applications, that have better pharmacological potential. Within this perspective, the objective of the study was to investigate the cosmetic application (anti-aging potential) of the stem-bark extract of Bertholletia excelsa H.B.K - (SBEBE), popularly known as the Brazil nut tree, here called SBEBE, a noble plant species of the Amazon that is rich in selenium. METHODS: Enzymatic, glycation, proliferation, cell-healing, collagen quantification, toxicity and genotoxicity assays were used. RESULTS: Among the enzymes involved in the extracellular matrix of the skin, SBEBE was able to inhibit only elastase (62.67 ± 3.75) when compared to the standard sivelestat (89.04 ± 0.53), and the extract was also able to inhibit both the oxidative and the non-oxidative pathway. When cell toxicity in fibroblasts (MRC-5) and keratinocytes (HACAT) was evaluated, SBEBE did not present toxicity in 24 h of incubation. After this period, the extract showed average cytotoxicity in 48 and 72 h, but not enough to reach the concentration of 50% of MRC-5 fibroblasts. In the trypan blue assay, the extract promoted fibroblast proliferation in 24, 48 and 72 h of incubation, which was evaluated through exponential cell growth, with emphasis mainly on the lowest concentration with results higher than the standard. When the cell healing capacity was evaluated, in 48 h of exposure to fibroblast, SBEBE was able to induce a cell carpet (cell film) in the cell monolayer scratch assay. CONCLUSIONS: SBEBE stimulated collagen production at all concentrations tested. In the alkaline comet assay, at the lowest concentration, the extract did not induce DNA damage when compared to the reference drug doxorubicin. This study proved that SBEBE extract can be considered an ally in the treatment of skin anti-ageing as a possible biotechnological, phytocosmetic product.


OBJECTIF: L'Amazonie possède une riche biodiversité ou l'on trouve de nombreuses espèces végétales différentes. Cette diversité constitue une source importante de substances bioactives, principalement en raison des différents composants structurels de leurs phytométabolites. La recherche de produits naturels est une stratégie de développement de nouveaux agents à applications thérapeutiques, notamment cosmétiques, présentant un meilleur potentiel pharmacologique. Dans cette perspective, l'objectif de l'étude était d'étudier l'application cosmétique (potentiel anti-âge) de l'extrait d'écorce de tige de Bertholletia excelsa H.B.K - (SBEBE), communément connu sous le nom de noix du Brésil, ici appelé SBEBE, un arbre noble, espèce végétale d'Amazonie riche en sélénium. MÉTHODES: Des tests enzymatiques, de glycation, de prolifération, de guérison cellulaire, de quantification du collagène, de toxicité et de génotoxicité ont été utilisés. RÉSULTATS: Parmi les enzymes impliquées dans la matrice extracellulaire de la peau, le SBEBE était capable d'inhiber uniquement l'élastase (62,67 +- 3,75) par rapport au sivelestat standard (89,04 +- 0,53), et l'extrait était également capable d'inhiber à la fois la voie oxydative et non-oxydative. Lorsque la toxicité cellulaire dans les fibroblastes (MRC-5) et les kératinocytes (HACAT) a été évaluée, SBEBE n'a présenté aucune toxicité en 24 heures d'incubation. Après cette période, l'extrait a montré une cytotoxicité moyenne en 48 et 72 h, mais pas suffisamment pour atteindre la concentration de 50 % de fibroblastes MRC-5. Dans le test au bleu trypan, l'extrait a favorisé la prolifération des fibroblastes en 24, 48 et 72 heures d'incubation, qui a été évaluée par une croissance cellulaire exponentielle, en mettant l'accent principalement sur la concentration la plus faible avec des résultats supérieurs à la norme. Lorsque la capacité de guérison cellulaire a été évaluée, en 48 heures d'exposition aux fibroblastes, SBEBE a pu induire un tapis cellulaire (film cellulaire) dans le test de grattage de la monocouche cellulaire. CONCLUSIONS: SBEBE a stimulé la production de collagène à toutes les concentrations testées. Dans le test alcalin des comètes, à la concentration la plus faible, l'extrait n'a pas induit de dommages à l'ADN par rapport au médicament de référence, la doxorubicine. Cette étude a prouvé que l'extrait de SBEBE peut être considéré comme un allié dans le traitement anti-âge cutané en tant que possible produit biotechnologique et phytocosmétique.

20.
Phys Rev Lett ; 131(20): 201802, 2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-38039466

RESUMO

We search for energetic electron recoil signals induced by boosted dark matter (BDM) from the galactic center using the COSINE-100 array of NaI(Tl) crystal detectors at the Yangyang Underground Laboratory. The signal would be an excess of events with energies above 4 MeV over the well-understood background. Because no excess of events are observed in a 97.7 kg·yr exposure, we set limits on BDM interactions under a variety of hypotheses. Notably, we explored the dark photon parameter space, leading to competitive limits compared to direct dark photon search experiments, particularly for dark photon masses below 4 MeV and considering the invisible decay mode. Furthermore, by comparing our results with a previous BDM search conducted by the Super-Kamionkande experiment, we found that the COSINE-100 detector has advantages in searching for low-mass dark matter. This analysis demonstrates the potential of the COSINE-100 detector to search for MeV electron recoil signals produced by the dark sector particle interactions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA