Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 144(1): 55-66, 2011 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-21215369

RESUMO

Protein kinase C (PKC) isozymes are the paradigmatic effectors of lipid signaling. PKCs translocate to cell membranes and are allosterically activated upon binding of the lipid diacylglycerol to their C1A and C1B domains. The crystal structure of full-length protein kinase C ßII was determined at 4.0 Å, revealing the conformation of an unexpected intermediate in the activation pathway. Here, the kinase active site is accessible to substrate, yet the conformation of the active site corresponds to a low-activity state because the ATP-binding side chain of Phe629 of the conserved NFD motif is displaced. The C1B domain clamps the NFD helix in a low-activity conformation, which is reversed upon membrane binding. A low-resolution solution structure of the closed conformation of PKCßII was derived from small-angle X-ray scattering. Together, these results show how PKCßII is allosterically regulated in two steps, with the second step defining a novel protein kinase regulatory mechanism.


Assuntos
Proteína Quinase C/química , Regulação Alostérica , Sequência de Aminoácidos , Animais , Catálise , Ativação Enzimática , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Proteína Quinase C/genética , Proteína Quinase C/metabolismo , Proteína Quinase C beta , Ratos , Espalhamento a Baixo Ângulo , Alinhamento de Sequência , Difração de Raios X
2.
Proc Natl Acad Sci U S A ; 120(7): e2212909120, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36745811

RESUMO

Phosphorylation is a ubiquitous mechanism by which signals are transduced in cells. Protein kinases, enzymes that catalyze the phosphotransfer reaction are, themselves, often regulated by phosphorylation. Paradoxically, however, a substantial fraction of more than 500 human protein kinases are capable of catalyzing their own activation loop phosphorylation. Commonly, these kinases perform this autophosphorylation reaction in trans, whereby transient dimerization leads to the mutual phosphorylation of the activation loop of the opposing protomer. In this study, we demonstrate that protein kinase D (PKD) is regulated by the inverse mechanism of dimerization-mediated trans-autoinhibition, followed by activation loop autophosphorylation in cis. We show that PKD forms a stable face-to-face homodimer that is incapable of either autophosphorylation or substrate phosphorylation. Dissociation of this trans-autoinhibited dimer results in activation loop autophosphorylation, which occurs exclusively in cis. Phosphorylation serves to increase PKD activity and prevent trans-autoinhibition, thereby switching PKD on. Our findings not only reveal the mechanism of PKD regulation but also have profound implications for the regulation of many other eukaryotic kinases.


Assuntos
Proteína Quinase C , Humanos , Fosforilação/fisiologia , Proteína Quinase C/metabolismo
3.
Mol Cell ; 65(3): 416-431.e6, 2017 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-28157504

RESUMO

Protein kinase B/Akt regulates cellular metabolism, survival, and proliferation in response to hormones and growth factors. Hyperactivation of Akt is frequently observed in cancer, while Akt inactivation is associated with severe diabetes. Here, we investigated the molecular and cellular mechanisms that maintain Akt activity proportional to the activating stimulus. We show that binding of phosphatidylinositol-3,4,5-trisphosphate (PIP3) or PI(3,4)P2 to the PH domain allosterically activates Akt by promoting high-affinity substrate binding. Conversely, dissociation from PIP3 was rate limiting for Akt dephosphorylation, dependent on the presence of the PH domain. In cells, active Akt associated primarily with cellular membranes. In contrast, a transforming mutation that uncouples kinase activation from PIP3 resulted in the accumulation of hyperphosphorylated, active Akt in the cytosol. Our results suggest that intramolecular allosteric and cellular mechanisms cooperate to restrict Akt activity to cellular membranes, thereby enhancing the fidelity of Akt signaling and the specificity of downstream substrate phosphorylation.


Assuntos
Membrana Celular/metabolismo , Fosfatidilinositóis/metabolismo , Proteínas Proto-Oncogênicas c-akt/química , Proteínas Proto-Oncogênicas c-akt/metabolismo , Regulação Alostérica , Sítios de Ligação , Regulação da Expressão Gênica , Células HeLa , Humanos , Células MCF-7 , Mutação , Fosforilação , Ligação Proteica , Proteínas Proto-Oncogênicas c-akt/genética , Especificidade por Substrato
4.
J Biol Chem ; 299(1): 102764, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36463963

RESUMO

The formation of complexes between Rab11 and its effectors regulates multiple aspects of membrane trafficking, including recycling and ciliogenesis. WD repeat-containing protein 44 (WDR44) is a structurally uncharacterized Rab11 effector that regulates ciliogenesis by competing with prociliogenesis factors for Rab11 binding. Here, we present a detailed biochemical and biophysical characterization of the WDR44-Rab11 complex and define specific residues mediating binding. Using AlphaFold2 modeling and hydrogen/deuterium exchange mass spectrometry, we generated a molecular model of the Rab11-WDR44 complex. The Rab11-binding domain of WDR44 interacts with switch I, switch II, and the interswitch region of Rab11. Extensive mutagenesis of evolutionarily conserved residues in WDR44 at the interface identified numerous complex-disrupting mutations. Using hydrogen/deuterium exchange mass spectrometry, we found that the dynamics of the WDR44-Rab11 interface are distinct from the Rab11 effector FIP3, with WDR44 forming a more extensive interface with the switch II helix of Rab11 compared with FIP3. The WDR44 interaction was specific to Rab11 over evolutionarily similar Rabs, with mutations defining the molecular basis of Rab11 specificity. Finally, WDR44 can be phosphorylated by Sgk3, with this leading to reorganization of the Rab11-binding surface on WDR44. Overall, our results provide molecular detail on how WDR44 interacts with Rab11 and how Rab11 can form distinct effector complexes that regulate membrane trafficking events.


Assuntos
GTP Fosfo-Hidrolases , Quinase I-kappa B , Modelos Moleculares , Proteínas rab de Ligação ao GTP , GTP Fosfo-Hidrolases/química , GTP Fosfo-Hidrolases/metabolismo , Quinase I-kappa B/metabolismo , Ligação Proteica , Proteínas rab de Ligação ao GTP/química , Proteínas rab de Ligação ao GTP/metabolismo , Espectrometria de Massas
5.
Respir Res ; 25(1): 58, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38273290

RESUMO

BACKGROUND: The circulating metabolome, reflecting underlying cellular processes and disease biology, has not been fully characterized in patients with idiopathic pulmonary fibrosis (IPF). We evaluated whether circulating levels of metabolites correlate with the presence of IPF, with the severity of IPF, or with the risk of clinically relevant outcomes among patients with IPF. METHODS: We analyzed enrollment plasma samples from 300 patients with IPF in the IPF-PRO Registry and 100 individuals without known lung disease using a set of targeted metabolomics and clinical analyte modules. Linear regression was used to compare metabolite and clinical analyte levels between patients with IPF and controls and to determine associations between metabolite levels and measures of disease severity in patients with IPF. Unadjusted and adjusted univariable Cox regression models were used to evaluate associations between circulating metabolites and the risk of mortality or disease progression among patients with IPF. RESULTS: Levels of 64 metabolites and 5 clinical analytes were significantly different between patients with IPF and controls. Among analytes with greatest differences were non-esterified fatty acids, multiple long-chain acylcarnitines, and select ceramides, levels of which were higher among patients with IPF versus controls. Levels of the branched-chain amino acids valine and leucine/isoleucine were inversely correlated with measures of disease severity. After adjusting for clinical factors known to influence outcomes, higher levels of the acylcarnitine C:16-OH/C:14-DC were associated with all-cause mortality, lower levels of the acylcarnitine C16:1-OH/C14:1DC were associated with all-cause mortality, respiratory death, and respiratory death or lung transplant, and higher levels of the sphingomyelin d43:2 were associated with the risk of respiratory death or lung transplantation. CONCLUSIONS: IPF has a distinct circulating metabolic profile characterized by increased levels of non-esterified fatty acids, long-chain acylcarnitines, and ceramides, which may suggest a more catabolic environment that enhances lipid mobilization and metabolism. We identified select metabolites that were highly correlated with measures of disease severity or the risk of disease progression and that may be developed further as biomarkers. TRIAL REGISTRATION: ClinicalTrials.gov; No: NCT01915511; URL: www. CLINICALTRIALS: gov .


Assuntos
Carnitina , Fibrose Pulmonar Idiopática , Humanos , Carnitina/análogos & derivados , Ceramidas , Progressão da Doença , Ácidos Graxos , Fibrose Pulmonar Idiopática/metabolismo , Metaboloma , Sistema de Registros
6.
Proc Natl Acad Sci U S A ; 118(33)2021 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-34385319

RESUMO

The protein kinase Akt is one of the primary effectors of growth factor signaling in the cell. Akt responds specifically to the lipid second messengers phosphatidylinositol-3,4,5-trisphosphate [PI(3,4,5)P3] and phosphatidylinositol-3,4-bisphosphate [PI(3,4)P2] via its PH domain, leading to phosphorylation of its activation loop and the hydrophobic motif of its kinase domain, which are critical for activity. We have now determined the crystal structure of Akt1, revealing an autoinhibitory interface between the PH and kinase domains that is often mutated in cancer and overgrowth disorders. This interface persists even after stoichiometric phosphorylation, thereby restricting maximum Akt activity to PI(3,4,5)P3- or PI(3,4)P2-containing membranes. Our work helps to resolve the roles of lipids and phosphorylation in the activation of Akt and has wide implications for the spatiotemporal control of Akt and potentially lipid-activated kinase signaling in general.


Assuntos
Fosfatos de Fosfatidilinositol/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Piruvato Desidrogenase Quinase de Transferência de Acetil/metabolismo , Animais , Sítios de Ligação , Humanos , Insetos , Metabolismo dos Lipídeos , Fosfatos de Fosfatidilinositol/genética , Ligação Proteica , Conformação Proteica , Domínios Proteicos , Proteínas Proto-Oncogênicas c-akt/genética , Piruvato Desidrogenase Quinase de Transferência de Acetil/genética , Células Sf9
7.
Respir Res ; 24(1): 141, 2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37344825

RESUMO

BACKGROUND: Idiopathic pulmonary fibrosis (IPF) is characterized by the accumulation of extracellular matrix in the pulmonary interstitium and progressive functional decline. We hypothesized that integration of multi-omics data would identify clinically meaningful molecular endotypes of IPF. METHODS: The IPF-PRO Registry is a prospective registry of patients with IPF. Proteomic and transcriptomic (including total RNA [toRNA] and microRNA [miRNA]) analyses were performed using blood collected at enrollment. Molecular data were integrated using Similarity Network Fusion, followed by unsupervised spectral clustering to identify molecular subtypes. Cox proportional hazards models tested the relationship between these subtypes and progression-free and transplant-free survival. The molecular subtypes were compared to risk groups based on a previously described 52-gene (toRNA expression) signature. Biological characteristics of the molecular subtypes were evaluated via linear regression differential expression and canonical pathways (Ingenuity Pathway Analysis [IPA]) over-representation analyses. RESULTS: Among 232 subjects, two molecular subtypes were identified. Subtype 1 (n = 105, 45.3%) and Subtype 2 (n = 127, 54.7%) had similar distributions of age (70.1 +/- 8.1 vs. 69.3 +/- 7.6 years; p = 0.31) and sex (79.1% vs. 70.1% males, p = 0.16). Subtype 1 had more severe disease based on composite physiologic index (CPI) (55.8 vs. 51.2; p = 0.002). After adjusting for CPI and antifibrotic treatment at enrollment, subtype 1 experienced shorter progression-free survival (HR 1.79, 95% CI 1.28,2.56; p = 0.0008) and similar transplant-free survival (HR 1.30, 95% CI 0.87,1.96; p = 0.20) as subtype 2. There was little agreement in the distribution of subjects to the molecular subtypes and the risk groups based on 52-gene signature (kappa = 0.04, 95% CI= -0.08, 0.17), and the 52-gene signature risk groups were associated with differences in transplant-free but not progression-free survival. Based on heatmaps and differential expression analyses, proteins and miRNAs (but not toRNA) contributed to classification of subjects to the molecular subtypes. The IPA showed enrichment in pulmonary fibrosis-relevant pathways, including mTOR, VEGF, PDGF, and B-cell receptor signaling. CONCLUSIONS: Integration of transcriptomic and proteomic data from blood enabled identification of clinically meaningful molecular endotypes of IPF. If validated, these endotypes could facilitate identification of individuals likely to experience disease progression and enrichment of clinical trials. TRIAL REGISTRATION: NCT01915511.


Assuntos
Fibrose Pulmonar Idiopática , MicroRNAs , Masculino , Humanos , Feminino , Proteômica , Multiômica , Fibrose Pulmonar Idiopática/diagnóstico , Fibrose Pulmonar Idiopática/genética , Pulmão , Progressão da Doença
8.
J Biol Chem ; 297(2): 100919, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34181950

RESUMO

Serum- and glucocorticoid-regulated kinase 3 (Sgk3) is a serine/threonine protein kinase activated by the phospholipid phosphatidylinositol 3-phosphate (PI3P) downstream of growth factor signaling via class I phosphatidylinositol 3-kinase (PI3K) signaling and by class III PI3K/Vps34-mediated PI3P production on endosomes. Upregulation of Sgk3 activity has recently been linked to a number of human cancers; however, the precise mechanism of activation of Sgk3 is unknown. Here, we use a wide range of cell biological, biochemical, and biophysical techniques, including hydrogen-deuterium exchange mass spectrometry, to investigate the mechanism of activation of Sgk3 by PI3P. We show that Sgk3 is regulated by a combination of phosphorylation and allosteric activation. We demonstrate that binding of Sgk3 to PI3P via its regulatory phox homology (PX) domain induces large conformational changes in Sgk3 associated with its activation and that the PI3P-binding pocket of the PX domain of Sgk3 is sequestered in its inactive conformation. Finally, we reconstitute Sgk3 activation via Vps34-mediated PI3P synthesis on phosphatidylinositol liposomes in vitro. In addition to identifying the mechanism of Sgk3 activation by PI3P, our findings open up potential therapeutic avenues in allosteric inhibitor development to target Sgk3 in cancer.


Assuntos
Classe I de Fosfatidilinositol 3-Quinases/metabolismo , Endossomos/metabolismo , Lipossomos/química , Neoplasias/patologia , Fosfatos de Fosfatidilinositol/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Classe III de Fosfatidilinositol 3-Quinases/metabolismo , Humanos , Técnicas In Vitro , Lipossomos/metabolismo , Espectrometria de Massas/métodos , Neoplasias/enzimologia , Fosfatos de Fosfatidilinositol/química , Proteínas Serina-Treonina Quinases/química , Elementos Estruturais de Proteínas , Transdução de Sinais
9.
Bioessays ; 42(4): e1900222, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31997382

RESUMO

The recent discovery and structure determination of a novel ubiquitin-like dimerization domain in protein kinase D (PKD) has significant implications for its activation. PKD is a serine/threonine kinase activated by the lipid second messenger diacylglycerol (DAG). It is an essential and highly conserved protein that is implicated in plasma membrane directed trafficking processes from the trans-Golgi network. However, many open questions surround its mechanism of activation, its localization, and its role in the biogenesis of cargo transport carriers. In reviewing this field, the focus is primarily on the mechanisms that control the activation of PKD at precise locations in the cell. In light of the new structural findings, the understanding of the mechanisms underlying PKD activation is critically evaluated, with particular emphasis on the role of dimerization in PKD autophosphorylation, and the provenance and recognition of the DAG that activates PKD.


Assuntos
Diglicerídeos/metabolismo , Dimerização , Proteína Quinase C/química , Proteína Quinase C/metabolismo , Transdução de Sinais , Animais , Domínio Catalítico , Membrana Celular/metabolismo , Ativação Enzimática , Humanos , Fosforilação , Filogenia , Ligação Proteica , Domínios Proteicos , Proteína Quinase C/genética , Processamento de Proteína Pós-Traducional , Rede trans-Golgi/metabolismo
10.
Lung ; 200(1): 21-29, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34997268

RESUMO

PURPOSE: To assess the impact of concomitant emphysema on outcomes in patients with idiopathic pulmonary fibrosis (IPF). METHODS: The IPF-PRO Registry is a US registry of patients with IPF. The presence of combined pulmonary fibrosis and emphysema (CPFE) at enrollment was determined by investigators' review of an HRCT scan. Associations between emphysema and clinical outcomes were analyzed using Cox proportional hazards models. RESULTS: Of 934 patients, 119 (12.7%) had CPFE. Compared with patients with IPF alone, patients with CPFE were older (median 72 vs 70 years); higher proportions were current/former smokers (88.2% vs 63.7%), used oxygen with activity (49.6% vs 31.9%) or at rest (30.8% vs 18.4%), had congestive heart failure (13.6% vs 4.8%) and had prior respiratory hospitalization (25.0% vs 16.7%); they had higher FVC (median 71.8 vs 69.4% predicted) and lower DLco (median 35.3 vs 43.6% predicted). In patients with CPFE and IPF alone, respectively, at 1 year, rates of death or lung transplant were 17.5% (95% CI: 11.7, 25.8) and 11.2% (9.2, 13.6) and rates of hospitalization were 21.6% (14.6, 29.6) and 20.6% (17.9, 23.5). There were no significant associations between emphysema and any outcome after adjustment for baseline variables. No baseline variable predicted outcomes better in IPF alone than in CPFE. CONCLUSION: Approximately 13% of patients in the IPF-PRO Registry had CPFE. Physiologic characteristics and comorbidities of patients with CPFE differed from those of patients with IPF alone, but the presence of emphysema did not drive outcomes after adjustment for baseline covariates. TRIAL REGISTRATION: ClinicalTrials.gov, NCT01915511; registered August 5, 2013.


Assuntos
Enfisema , Fibrose Pulmonar Idiopática , Enfisema Pulmonar , Humanos , Fibrose Pulmonar Idiopática/complicações , Fibrose Pulmonar Idiopática/diagnóstico por imagem , Fibrose Pulmonar Idiopática/epidemiologia , Enfisema Pulmonar/complicações , Enfisema Pulmonar/diagnóstico por imagem , Sistema de Registros , Estudos Retrospectivos
11.
Lung ; 200(1): 11-18, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35066606

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a progressive and ultimately fatal disease with a variable clinical course. Biomarkers that predict patient outcomes are needed. We leveraged data from 300 patients in the multicenter IPF-PRO Registry to determine associations between circulating proteins and the composite outcome of respiratory death or lung transplant. Plasma collected at enrollment was analyzed using aptamer-based proteomics (1305 proteins). Over a median follow-up of 30.4 months, there were 76 respiratory deaths and 26 lung transplants. In unadjusted univariable analyses, 61 proteins were significantly associated with the outcome (hazard ratio > 2 or < 0.5, corrected p ≤ 0.05). In multivariable analyses, a set of 4 clinical measures and 47 unique proteins predicted the probability of respiratory death or lung transplant with an optimism-corrected C-index of 0.76. Our results suggest that select circulating proteins strongly associate with the risk of mortality in patients with IPF and confer information independent of clinical measures.


Assuntos
Fibrose Pulmonar Idiopática , Transplante de Pulmão , Estudos de Coortes , Humanos , Proteômica , Sistema de Registros
12.
Proc Natl Acad Sci U S A ; 115(17): E3940-E3949, 2018 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-29632185

RESUMO

The protein kinase Akt controls myriad signaling processes in cells, ranging from growth and proliferation to differentiation and metabolism. Akt is activated by a combination of binding to the lipid second messenger PI(3,4,5)P3 and its subsequent phosphorylation by phosphoinositide-dependent kinase 1 and mechanistic target of rapamycin complex 2. The relative contributions of these mechanisms to Akt activity and signaling have hitherto not been understood. Here, we show that phosphorylation and activation by membrane binding are mutually interdependent. Moreover, the converse is also true: Akt is more rapidly dephosphorylated in the absence of PIP3, an autoinhibitory process driven by the interaction of its PH and kinase domains. We present biophysical evidence for the conformational changes in Akt that accompany its activation on membranes, show that Akt is robustly autoinhibited in the absence of PIP3 irrespective of its phosphorylation, and map the autoinhibitory PH-kinase interface. Finally, we present a model for the activation and inactivation of Akt by an ordered series of membrane binding, phosphorylation, dissociation, and dephosphorylation events.


Assuntos
Modelos Biológicos , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ativação Enzimática , Humanos , Fosfatidilinositol 3-Quinases/química , Fosfatidilinositol 3-Quinases/genética , Fosfatos de Fosfatidilinositol/química , Fosfatos de Fosfatidilinositol/genética , Fosforilação , Domínios Proteicos , Proteínas Proto-Oncogênicas c-akt/química , Proteínas Proto-Oncogênicas c-akt/genética
13.
J Biol Chem ; 294(39): 14422-14441, 2019 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-31406020

RESUMO

Protein kinase D (PKD) is an essential Ser/Thr kinase in animals and controls a variety of diverse cellular functions, including vesicle trafficking and mitogenesis. PKD is activated by recruitment to membranes containing the lipid second messenger diacylglycerol (DAG) and subsequent phosphorylation of its activation loop. Here, we report the crystal structure of the PKD N terminus at 2.2 Å resolution containing a previously unannotated ubiquitin-like domain (ULD), which serves as a dimerization domain. A single point mutation in the dimerization interface of the ULD not only abrogated dimerization in cells but also prevented PKD activation loop phosphorylation upon DAG production. We further show that the kinase domain of PKD dimerizes in a concentration-dependent manner and autophosphorylates on a single residue in its activation loop. We also provide evidence that PKD is expressed at concentrations 2 orders of magnitude below the ULD dissociation constant in mammalian cells. We therefore propose a new model for PKD activation in which the production of DAG leads to the local accumulation of PKD at the membrane, which drives ULD-mediated dimerization and subsequent trans-autophosphorylation of the kinase domain.


Assuntos
Proteínas de Caenorhabditis elegans/química , Proteína Quinase C/química , Multimerização Proteica , Células 3T3 , Animais , Células COS , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Chlorocebus aethiops , Diglicerídeos/metabolismo , Células HEK293 , Humanos , Camundongos , Simulação de Acoplamento Molecular , Fosforilação , Mutação Puntual , Domínios Proteicos , Proteína Quinase C/genética , Proteína Quinase C/metabolismo , Transdução de Sinais
14.
BMC Pulm Med ; 20(1): 64, 2020 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-32171287

RESUMO

BACKGROUND: Matrix metalloproteinases (MMPs) and tissue inhibitors of MMPs (TIMPs) play important roles in the turnover of extracellular matrix and in the pathogenesis of idiopathic pulmonary fibrosis (IPF). This study aimed to determine the utility of circulating MMPs and TIMPs in distinguishing patients with IPF from controls and to explore associations between MMPs/TIMPs and measures of disease severity in patients with IPF. METHODS: The IPF cohort (n = 300) came from the IPF-PRO Registry, an observational multicenter registry of patients with IPF that was diagnosed or confirmed at the enrolling center in the past 6 months. Controls (n = 100) without known lung disease came from a population-based registry. Generalized linear models were used to compare circulating concentrations of MMPs 1, 2, 3, 7, 8, 9, 12, and 13 and TIMPs 1, 2, and 4 between patients with IPF and controls, and to investigate associations between circulating levels of these proteins and measures of IPF severity. Multivariable models were fit to identify the MMP/TIMPs that best distinguished patients with IPF from controls. RESULTS: All the MMP/TIMPs analyzed were present at significantly higher levels in patients with IPF compared with controls except for TIMP2. Multivariable analyses selected MMP8, MMP9 and TIMP1 as top candidates for distinguishing patients with IPF from controls. Higher concentrations of MMP7, MMP12, MMP13 and TIMP4 were significantly associated with lower diffusion capacity of the lung for carbon monoxide (DLCO) % predicted and higher composite physiologic index (worse disease). MMP9 was associated with the composite physiologic index. No MMP/TIMPs were associated with forced vital capacity % predicted. CONCLUSIONS: Circulating MMPs and TIMPs were broadly elevated among patients with IPF. Select MMP/TIMPs strongly associated with measures of disease severity. Our results identify potential MMP/TIMP targets for further development as disease-related biomarkers.


Assuntos
Fibrose Pulmonar Idiopática/sangue , Metaloproteinases da Matriz Secretadas/sangue , Inibidores Teciduais de Metaloproteinases/sangue , Idoso , Biomarcadores/sangue , Estudos de Casos e Controles , Feminino , Humanos , Fibrose Pulmonar Idiopática/patologia , Modelos Lineares , Pulmão/fisiopatologia , Masculino , Pessoa de Meia-Idade , Análise Multivariada , Valor Preditivo dos Testes , Capacidade Vital
15.
Biochem Soc Trans ; 47(3): 897-908, 2019 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-31147387

RESUMO

Akt is an essential protein kinase activated downstream of phosphoinositide 3-kinase and frequently hyperactivated in cancer. Canonically, Akt is activated by phosphoinositide-dependent kinase 1 and mechanistic target of rapamycin complex 2, which phosphorylate it on two regulatory residues in its kinase domain upon targeting of Akt to the plasma membrane by PI(3,4,5)P3 Recent evidence, however, has shown that, in addition to phosphorylation, Akt activity is allosterically coupled to the engagement of PI(3,4,5)P3 or PI(3,4)P2 in cellular membranes. Furthermore, the active membrane-bound conformation of Akt is protected from dephosphorylation, and Akt inactivation by phosphatases is rate-limited by its dissociation. Thus, Akt activity is restricted to membranes containing either PI(3,4,5)P3 or PI(3,4)P2 While PI(3,4,5)P3 has long been associated with signaling at the plasma membrane, PI(3,4)P2 is gaining increasing traction as a signaling lipid and has been implicated in controlling Akt activity throughout the endomembrane system. This has clear implications for the phosphorylation of both freely diffusible substrates and those localized to discrete subcellular compartments.


Assuntos
Metabolismo dos Lipídeos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação , Transdução de Sinais
16.
Respir Res ; 20(1): 227, 2019 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-31640794

RESUMO

BACKGROUND: Idiopathic pulmonary fibrosis (IPF) is a progressive lung disease for which diagnosis and management remain challenging. Defining the circulating proteome in IPF may identify targets for biomarker development. We sought to quantify the circulating proteome in IPF, determine differential protein expression between subjects with IPF and controls, and examine relationships between protein expression and markers of disease severity. METHODS: This study involved 300 patients with IPF from the IPF-PRO Registry and 100 participants without known lung disease. Plasma collected at enrolment was analysed using aptamer-based proteomics (1305 proteins). Linear regression was used to determine differential protein expression between participants with IPF and controls and associations between protein expression and disease severity measures (percent predicted values for forced vital capacity [FVC] and diffusion capacity of the lung for carbon monoxide [DLco]; composite physiologic index [CPI]). Multivariable models were fit to select proteins that best distinguished IPF from controls. RESULTS: Five hundred fifty one proteins had significantly different levels between IPF and controls, of which 47 showed a |log2(fold-change)| > 0.585 (i.e. > 1.5-fold difference). Among the proteins with the greatest difference in levels in patients with IPF versus controls were the glycoproteins thrombospondin 1 and von Willebrand factor and immune-related proteins C-C motif chemokine ligand 17 and bactericidal permeability-increasing protein. Multivariable classification modelling identified nine proteins that, when considered together, distinguished IPF versus control status with high accuracy (area under receiver operating curve = 0.99). Among participants with IPF, 14 proteins were significantly associated with FVC % predicted, 23 with DLco % predicted, 14 with CPI. Four proteins (roundabout homolog-2, spondin-1, polymeric immunoglobulin receptor, intercellular adhesion molecule 5) demonstrated the expected relationship across all three disease severity measures. When considered in pathways analyses, proteins associated with the presence or severity of IPF were enriched in pathways involved in platelet and haemostatic responses, vascular or platelet derived growth factor signalling, immune activation, and extracellular matrix organisation. CONCLUSIONS: Patients with IPF have a distinct circulating proteome and can be distinguished using a nine-protein profile. Several proteins strongly associate with disease severity. The proteins identified may represent biomarker candidates and implicate pathways for further investigation. TRIAL REGISTRATION: ClinicalTrials.gov (NCT01915511).


Assuntos
Fibrose Pulmonar Idiopática/sangue , Fibrose Pulmonar Idiopática/genética , Proteogenômica/métodos , Sistema de Registros , Idoso , Biomarcadores/sangue , Estudos de Coortes , Feminino , Humanos , Fibrose Pulmonar Idiopática/diagnóstico , Masculino , Pessoa de Meia-Idade , Proteômica/métodos
17.
Respir Res ; 20(1): 105, 2019 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-31142314

RESUMO

BACKGROUND: Idiopathic pulmonary fibrosis (IPF) is a progressive disease with a variable clinical course and high mortality. We used data from a large national US registry of patients with IPF to investigate relationships between patient characteristics, including markers of disease severity, and mortality. METHODS: The analysis cohort comprised patients enrolled in the IPF-PRO Registry from its inception on 5 June 2014 to 26 October 2017. The primary criterion for inclusion in this registry is that patients must be diagnosed or confirmed with IPF at the enrolling centre within 6 months. Associations between patient characteristics and markers of disease severity at enrolment and mortality outcomes were investigated using univariable, multivariable and adjustment models. RESULTS: Among 662 patients enrolled, 111 patients died or had a lung transplant over a follow-up period of 30 months. The probability of being free of both events at month 30 was 50.6% (95% CI: 40.0, 60.2). When patient characteristics and markers of disease severity were jointly examined in a multivariable analysis, oxygen use at rest (hazard ratio [HR] 2.44 [95% CI: 1.45, 4.10]), lower forced vital capacity (FVC) % predicted (HR 1.28 [95% CI: 1.10, 1.49] per 10% decrease) and diffusion capacity for carbon monoxide (DLco) % predicted (HR 1.25 [95% CI: 1.04, 1.51] per 10% decrease) were significantly associated with increased risk of death or lung transplant. The risk of death or lung transplant increased with increasing age in patients ≥62 years old (HR 1.18 [95% CI: 0.99, 1.40] per 5-year increase), and decreased with increasing age in patients <62 years old (HR 0.60 [95% CI: 0.39, 0.92] per 5-year increase). CONCLUSIONS: In an observational US registry of patients with IPF, oxygen use at rest, lower FVC % predicted, and lower DLco % predicted were associated with risk of death or lung transplant. An audio podcast of the lead author discussing these data can be downloaded from: http://www.usscicomms.com/respiratory/snyder/IPF-PROsurvival1/ . TRIAL REGISTRATION: ClinicalTrials.gov number: NCT01915511 .


Assuntos
Fibrose Pulmonar Idiopática/mortalidade , Fibrose Pulmonar Idiopática/cirurgia , Transplante de Pulmão/mortalidade , Sistema de Registros , Idoso , Idoso de 80 Anos ou mais , Estudos de Coortes , Feminino , Seguimentos , Humanos , Fibrose Pulmonar Idiopática/diagnóstico , Transplante de Pulmão/tendências , Masculino , Pessoa de Meia-Idade , Mortalidade/tendências , Valor Preditivo dos Testes
18.
Lung ; 197(6): 699-707, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31541276

RESUMO

PURPOSE: In patients with idiopathic pulmonary fibrosis (IPF), hospitalizations are associated with high mortality. We sought to determine in-hospital mortality rates and factors associated with in-hospital mortality in patients with IPF. METHODS: Patients with IPF were identified from the Premier Healthcare Database, a representative administrative dataset that includes > 20% of hospital discharges in the US, using an algorithm based on diagnostic codes and billing data. We used logistic regression to analyze associations between patient-, hospital-, and treatment-related characteristics and a composite primary outcome of death during the index visit, lung transplant during the index visit and > 1 day after admission, or death during a readmission within 90 days. RESULTS: The cohort comprised 6665 patients with IPF hospitalized between October 2011 and October 2014. A total of 963 (14.4%) met the primary outcome. Factors significantly associated with a higher risk of the primary outcome included mechanical ventilation [odds ratio 4.65 (95% CI 3.73, 5.80)], admission to the intensive care unit [1.83 (1.52, 2.21)], treatment with opioids (3.06 [2.57, 3.65]), and a diagnosis of pneumonia [1.44 (1.21, 1.71)]. Factors significantly associated with a lower risk included concurrent chronic obstructive pulmonary disease [0.65 (0.55, 0.77)] and female sex [0.67 (0.57, 0.79)]. CONCLUSIONS: Patients with IPF, particularly those receiving mechanical ventilation or intensive care, are at substantial risk of death or lung transplant during hospitalization or death during a readmission within 90 days.


Assuntos
Mortalidade Hospitalar , Fibrose Pulmonar Idiopática/mortalidade , Transplante de Pulmão/estatística & dados numéricos , Fatores Etários , Idoso , Idoso de 80 Anos ou mais , Analgésicos Opioides/uso terapêutico , Estudos de Coortes , Comorbidade , Feminino , Humanos , Fibrose Pulmonar Idiopática/epidemiologia , Fibrose Pulmonar Idiopática/terapia , Unidades de Terapia Intensiva , Modelos Logísticos , Masculino , Pessoa de Meia-Idade , Readmissão do Paciente/estatística & dados numéricos , Pneumonia/epidemiologia , Fatores de Proteção , Doença Pulmonar Obstrutiva Crônica/epidemiologia , Respiração Artificial , Fatores de Risco , Fatores Sexuais , Estados Unidos/epidemiologia
19.
Bioessays ; 38(9): 903-16, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27492088

RESUMO

Coiled-coils are found in proteins throughout all three kingdoms of life. Coiled-coil domains of some proteins are almost invariant in sequence and length, betraying a structural and functional role for amino acids along the entire length of the coiled-coil. Other coiled-coils are divergent in sequence, but conserved in length, thereby functioning as molecular spacers. In this capacity, coiled-coil proteins influence the architecture of organelles such as centrioles and the Golgi, as well as permit the tethering of transport vesicles. Specialized coiled-coils, such as those found in motor proteins, are capable of propagating conformational changes along their length that regulate cargo binding and motor processivity. Coiled-coil domains have also been identified in enzymes, where they function as molecular rulers, positioning catalytic activities at fixed distances. Finally, while coiled-coils have been extensively discussed for their potential to nucleate and scaffold large macromolecular complexes, structural evidence to substantiate this claim is relatively scarce.


Assuntos
Conformação Proteica , Proteínas/metabolismo , Animais , Bactérias/metabolismo , Eucariotos/metabolismo , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA