Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Virol ; 96(6): e0214121, 2022 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-35044216

RESUMO

Due to the high mutation rate of influenza virus and the rapid increase of drug resistance, it is imperative to discover host-targeting antiviral agents with broad-spectrum antiviral activity. Considering the discrepancy between the urgent demand of antiviral drugs during an influenza pandemic and the long-term process of drug discovery and development, it is feasible to explore host-based antiviral agents and strategies from antiviral drugs on the market. In the current study, the antiviral mechanism of arbidol (ARB), a broad-spectrum antiviral drug with potent activity at early stages of viral replication, was investigated from the aspect of hemagglutinin (HA) receptors of host cells. N-glycans that act as the potential binding receptors of HA on 16-human bronchial epithelial (16-HBE) cells were comprehensively profiled for the first time by using an in-depth glycomic approach based on TiO2-PGC chip-Q-TOF MS. Their relative levels upon the treatment of ARB and virus were carefully examined by employing an ultra-high sensitive qualitative method based on Chip LC-QQQ MS, showing that ARB treatment led to significant and extensive decrease of sialic acid (SA)-linked N-glycans (SA receptors), and thereby impaired the virus utilization on SA receptors for rolling and entry. The SA-decreasing effect of ARB was demonstrated to result from its inhibitory effect on sialyltransferases (ST), ST3GAL4 and ST6GAL1 of 16-HBE cells. Silence of STs, natural ST inhibitors, as well as sialidase treatment of 16-HBE cells, resulted in similar potent antiviral activity, whereas ST-inducing agent led to the diminished antiviral effect of ARB. These observations collectively suggesting the involvement of ST inhibition in the antiviral effect of ARB. IMPORTANCE This study revealed, for the first time, that ST inhibition and the resulted destruction of SA receptors of host cells may be an underlying mechanism for the antiviral activity of ARB. ST inhibition has been proposed as a novel host-targeting antiviral approach recently and several compounds are currently under exploration. ARB is the first antiviral drug on the market that was found to possess ST inhibiting function. This will provide crucial evidence for the clinical usages of ARB, such as in combination with neuraminidase (NA) inhibitors to exert optimized antiviral effect, etc. More importantly, as an agent that can inhibit the expression of STs, ARB can serve as a novel lead compound for the discovery and development of host-targeting antiviral drugs.


Assuntos
Indóis , Sialiltransferases , Sulfetos , Antivirais/farmacologia , Antivirais/uso terapêutico , Linhagem Celular , Ativação Enzimática/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/uso terapêutico , Células Epiteliais , Glicômica , Hemaglutininas , Humanos , Indóis/farmacologia , Indóis/uso terapêutico , Neuraminidase/farmacologia , Polissacarídeos/metabolismo , Sialiltransferases/antagonistas & inibidores , Sulfetos/farmacologia , Sulfetos/uso terapêutico
2.
Pharm Biol ; 61(1): 1186-1210, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37605622

RESUMO

CONTEXT: Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is still ongoing and currently the most striking epidemic disease. With the rapid global spread of SARS-CoV-2 variants, new antivirals are urgently needed to avert a more serious crisis. Inhibitors from traditional medicines or natural plants have shown promising results to fight COVID-19 with different mechanisms of action. OBJECTIVES: To provide comprehensive and promising approaches to the medical community in the fight against this epidemic by reviewing potential plant-derived anti-SARS-CoV-2 inhibitors. METHODS: Structural databases such as TCMSP (http://lsp.nwu.edu.cn/tcmsp.php), TCM Database @ Taiwan (http://tcm.cmu.edu.tw/), BATMAN-TCM (http://bionet.ncpsb.org/batman-tcm/) and TCMID (http://www.megabionet.org/tcmid/), as well as PubMed, Sci Finder, Research Gate, Science Direct, CNKI, Web of Science and Google Scholar were searched for relevant articles on TCMs and natural products against SARS-CoV-2. RESULTS: Seven traditional Chinese medicines formulas have unique advantages in regulating the immune system for treating COVID-19. The plant-derived natural compounds as anti-SARS-CoV-2 inhibitors were identified based on 5 SARS-CoV-2 key proteins, namely, angiotensin-converting enzyme 2 (ACE2), 3 C-like protease (3CLpro), papain-like protease (PLpro), spike (S) protein, and nucleocapsid (N) protein. CONCLUSIONS: A variety of natural products, such as flavonoids, terpenoids, phenols, and alkaloids, were identified, which could be used as potential SASR-Cov-2 inhibitors. These shed new light on the efficient discovery of SASR-Cov-2 inhibitors from natural products.


Assuntos
Produtos Biológicos , COVID-19 , Humanos , SARS-CoV-2 , Peptídeo Hidrolases , Produtos Biológicos/farmacologia , Produtos Biológicos/uso terapêutico
3.
J Med Virol ; 94(7): 3032-3042, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35285034

RESUMO

Numerous viral pneumonia cases have been reported in Wuhan, Hubei in December 2019. The pathogen has been identified as a novel coronavirus, which was named severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The biological characteristics and pathogenesis mechanism of SARS-CoV-2 are unclear and under progress. At present, no specific preventive and therapeutic drugs are available. Animal models can reproduce the viral replication cycle and the significant functions of respiratory coronavirus infection and are urgently needed to evaluate the efficacy of drugs and vaccines, the transmission route of respiratory coronavirus, clinical features, and so on. We reviewed the current animal models of respiratory coronavirus (SARS-CoV, MERS-CoV, and SARS-CoV-2) infection and made a comparative analysis of the route of inoculation, virus replication, clinical signs, histopathology, application, advantages, and disadvantages. Animal models of respiratory coronavirus include susceptible animal models, genetically modified models, and various animal models of infected virus adaptation strains, such as nonhuman primates, mice, hamsters, ferrets, New Zealand rabbits, cats, and other animal models, all of which have distinct advantages and limitations. This review will provide relevant information and important insights for disease management and control.


Assuntos
Tratamento Farmacológico da COVID-19 , Coronavírus da Síndrome Respiratória do Oriente Médio , Animais , Cricetinae , Modelos Animais de Doenças , Furões , Humanos , Camundongos , Coelhos , SARS-CoV-2
4.
Pharmacol Res ; 172: 105820, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34403732

RESUMO

Coronavirus Disease 2019 (COVID-19) is caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), which enter the host cells through the interaction between its receptor binding domain (RBD) of spike glycoprotein with angiotensin-converting enzyme 2 (ACE2) receptor on the plasma membrane of host cell. Neutralizing antibodies and peptide binders of RBD can block viral infection, however, the concern of accessibility and affordability of viral infection inhibitors has been raised. Here, we report the identification of natural compounds as potential SARS-CoV-2 entry inhibitors using the molecular docking-based virtual screening coupled with bilayer interferometry (BLI). From a library of 1871 natural compounds, epigallocatechin gallate (EGCG), 20(R)-ginsenoside Rg3 (RRg3), 20(S)-ginsenoside Rg3 (SRg3), isobavachalcone (Ibvc), isochlorogenic A (IscA) and bakuchiol (Bkc) effectively inhibited pseudovirus entry at concentrations up to 100 µM. Among these compounds, four compounds, EGCG, Ibvc, salvianolic acid A (SalA), and isoliensinine (Isl), were effective in inhibiting SARS-CoV-2-induced cytopathic effect and plaque formation in Vero E6 cells. The EGCG was further validated with no observable animal toxicity and certain antiviral effect against SARS-CoV-2 pseudovirus mutants (D614G, N501Y, N439K & Y453F). Interestingly, EGCG, Bkc and Ibvc bind to ACE2 receptor in BLI assay, suggesting a dual binding to RBD and ACE2. Current findings shed some insight into identifications and validations of SARS-CoV-2 entry inhibitors from natural compounds.


Assuntos
Enzima de Conversão de Angiotensina 2/antagonistas & inibidores , Antivirais/química , Produtos Biológicos/química , Tratamento Farmacológico da COVID-19 , Inibidores Enzimáticos/química , SARS-CoV-2/enzimologia , Glicoproteína da Espícula de Coronavírus/metabolismo , Animais , Antivirais/farmacologia , Ligação Competitiva , Produtos Biológicos/farmacologia , Catequina/análogos & derivados , Catequina/farmacologia , Membrana Celular/metabolismo , Membrana Celular/ultraestrutura , Chalconas/farmacologia , Ácido Clorogênico/análogos & derivados , Ácido Clorogênico/farmacologia , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos , Inibidores Enzimáticos/farmacologia , Ginsenosídeos/farmacologia , Humanos , Interferometria , Camundongos Endogâmicos C57BL , Simulação de Dinâmica Molecular , Fenóis/farmacologia , Ligação Proteica
5.
Pharmacol Res ; 158: 104850, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32360580

RESUMO

Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has spread worldwide through person-to-person contact, causing a public health emergency of international concern. At present, there is no specific antiviral treatment recommended for SARS-CoV-2 infection. Liu Shen capsule (LS), a traditional Chinese medicine, has been proven to have a wide spectrum of pharmacological properties, such as anti-inflammatory, antiviral and immunomodulatory activities. However, little is known about the antiviral effect of LS against SARS-CoV-2. Herein, the study was designed to investigate the antiviral activity of SARS-CoV-2 and its potential effect in regulating the host's immune response. The inhibitory effect of LS against SARS-CoV-2 replication in Vero E6 cells was evaluated by using the cytopathic effect (CPE) and plaque reduction assay. The number of virions of SARS-CoV-2 was observed under transmission electron microscope after treatment with LS. Proinflammatory cytokine expression levels upon SARS-CoV-2 infection in Huh-7 cells were measured by real-time quantitative PCR assays. The results showed that LS could significantly inhibit SARS-CoV-2 replication in Vero E6 cells, and reduce the number of virus particles and it could markedly reduce pro-inflammatory cytokines (TNF-α, IL-6, IL-1ß, IL-8, CCL-2/MCP-1 and CXCL-10/IP-10) production at the mRNA levels. Moreover, the expression of the key proteins in the NF-κB/MAPK signaling pathway was detected by western blot and it was found that LS could inhibit the expression of p-NF-κB p65, p-IκBα and p-p38 MAPK, while increasing the expression of IκBα. These findings indicate that LS could inhibit SARS-CoV-2 virus infection via downregulating the expression of inflammatory cytokines induced virus and regulating the activity of NF-κB/MAPK signaling pathway in vitro, making its promising candidate treatment for controlling COVID-19 disease.


Assuntos
Betacoronavirus/efeitos dos fármacos , Misturas Complexas/farmacologia , NF-kappa B/antagonistas & inibidores , NF-kappa B/metabolismo , Transdução de Sinais/efeitos dos fármacos , Monofosfato de Adenosina/análogos & derivados , Monofosfato de Adenosina/farmacologia , Alanina/análogos & derivados , Alanina/farmacologia , Animais , Anti-Inflamatórios/farmacologia , Antivirais/farmacologia , COVID-19 , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Chlorocebus aethiops , Infecções por Coronavirus/virologia , Humanos , Mediadores da Inflamação/metabolismo , Pandemias , Pneumonia Viral/virologia , SARS-CoV-2 , Vírion/efeitos dos fármacos
6.
Virol J ; 16(1): 77, 2019 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-31174549

RESUMO

BACKGROUND: Influenza B virus is a main causative pathogen of annual influenza epidemics, however, research on influenza B virus in general lags behind that on influenza A viruses, one of the important reasons is studies on influenza B viruses in animal models are limited. Here we investigated the tree shrew as a potential model for influenza B virus studies. METHODS: Tree shrews and ferrets were inoculated with either a Yamagata or Victoria lineage influenza B virus. Symptoms including nasal discharge and weight loss were observed. Nasal wash and respiratory tissues were collected at 2, 4 and 6 days post inoculation (DPI). Viral titers were measured in nasal washes and tissues were used for pathological examination and extraction of mRNA for measurement of cytokine expression. RESULTS: Clinical signs and pathological changes were also evident in the respiratory tracts of tree shrews and ferrets. Although nasal symptoms including sneezing and rhinorrhea were evident in ferrets infected with influenza B virus, tree shrews showed no significant respiratory symptoms, only milder nasal secretions appeared. Weight loss was observed in tree shrews but not ferrets. V0215 and Y12 replicated in all three animal (ferrets, tree shrews and mice) models with peak titers evident on 2DPI. There were no significant differences in peak viral titers in ferrets and tree shrews inoculated with Y12 at 2 and 4DPI, but viral titers were detected at 6DPI in tree shrews. Tree shrews infected with influenza B virus showed similar seroconversion and respiratory tract pathology to ferrets. Elevated levels of cytokines were detected in the tissues isolated from the respiratory tract after infection with either V0215 or Y12 compared to the levels in the uninfected control in both animals. Overall, the tree shrew was sensitive to infection and disease by influenza B virus. CONCLUSION: The tree shrew to be a promising model for influenza B virus research.


Assuntos
Anticorpos Antivirais/sangue , Modelos Animais de Doenças , Vírus da Influenza B/imunologia , Infecções por Orthomyxoviridae/imunologia , Tupaiidae/virologia , Animais , Citocinas/imunologia , Feminino , Furões , Vírus da Influenza B/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Nariz/virologia , Sistema Respiratório/imunologia , Sistema Respiratório/virologia , Árvores , Carga Viral , Replicação Viral
7.
Eur Respir J ; 49(3)2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28275173

RESUMO

Since their first isolation in 2013, influenza A/H5N6 viruses have spread amongst poultry across multiple provinces in China and to Laos, Vietnam and Myanmar. So far, there have been 14 human H5N6 infections with 10 fatalities.We investigated the tropism, replication competence and cytokine induction of one human and two avian H5N6 isolates in ex vivo and in vitro cultures derived from the human respiratory tract. Virus tropism and replication were studied in ex vivo cultures of human nasopharynx, bronchus and lung. Induction of cytokines and chemokines was measured in vitro in virus-infected primary human alveolar epithelial cells.Human H5N6 virus replicated more efficiently than highly pathogenic avian influenza (HPAI) H5N1 virus and as efficiently as H1N1pdm in ex vivo human bronchus and lung and was also able to replicate in ex vivo cultures of human nasopharynx. Avian H5N6 viruses replicated less efficiently than H1N1pdm in human bronchial tissues and to similar titres as HPAI H5N1 in the lung. While the human H5N6 virus had affinity for avian-like receptors, the two avian isolates had binding affinity for both avian- and human-like receptors. All three H5N6 viruses were less potent inducers of pro-inflammatory cytokines compared with H5N1 virus.Human H5N6 virus appears better adapted to infect the human airways than H5N1 virus and may pose a significant public health threat.


Assuntos
Vírus da Influenza A/fisiologia , Influenza Humana/imunologia , Sistema Respiratório/virologia , Tropismo Viral , Replicação Viral , Células Epiteliais Alveolares/virologia , Animais , Aves , Células Cultivadas , Quimiocinas/imunologia , Citocinas/imunologia , Humanos , Imunidade Inata , Vírus da Influenza A/patogenicidade , Influenza Aviária/imunologia , Masculino , Pessoa de Meia-Idade , Sistema Respiratório/patologia , Técnicas de Cultura de Tecidos
8.
Opt Lett ; 42(7): 1225-1228, 2017 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-28362735

RESUMO

This work reports the plasmonically enhanced refractive index sensor consisting of silicon nanowire array (Si-NWA) coated by a conformal gold (Au) nanoshell. Compared to the pure Si or Au NWA system, the Si-Au core-shell setup leads to substantially enhanced optical in-coupling to excite strong surface plasmon resonance (SPR) for highly sensitive sensors. Results indicate that the SPR wavelength can be subtly tuned by manipulating the nanowire radius, and it shows a strong shift with very small variation of the refractive index of the analyte. Furthermore, we configure the system into the Schottky junction, which can separate the photogenerated hot electrons so that the electrical outputs under various incident wavelengths can be measured. The capabilities of optical and electrical measurements ensure a high flexibility of the sensing system. Through our optoelectronic evaluation, the optimally designed system shows a sensitivity up to 1008 nm per refractive index unit and a full width at half-maximum of 9.89 nm; moreover, the high sensing performance can be sustained in a relatively large range of the incident angle.

9.
Biol Pharm Bull ; 40(7): 954-959, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28674259

RESUMO

Influenza A viruses with the presence of mutations in M2 still circulate and threaten to avian species and human in China. A novel M2 inhibitor pinanamine was previously identified as an antiviral agent by an in vitro assay. In this study, we monitored the activity of pinanamine against influenza A/FM1/47 (H1N1) virus infection in cell culture and mice. Pinanamine showed more potent antiviral effect than ribavirin, and was as effective as oseltamivir carboxylate and amantadine in Madin-Darby canine kidney (MDCK) cells. Pinanamine at dose of 50 mg/kg/d administrated once a day for 6 d starting 24 h prior to virus exposure promoted survival rate of infected mice to 100% (p<0.001) and produced significant reduction (p<0.001) in lung virus yields and lung index. Even lower the dose of 3.1 mg/kg/d, pinanamine was 60% protective (p<0.05), which was equivalent to treatment with amantadine at 50 mg/kg/d. Our finding highlights the potential of pinanamine as a promising lead compound for influenza A virus.


Assuntos
Amantadina/farmacologia , Antivirais/farmacologia , Imidazóis/farmacologia , Vírus da Influenza A Subtipo H1N1/efeitos dos fármacos , Animais , Cães , Feminino , Técnicas In Vitro , Células Madin Darby de Rim Canino , Camundongos , Camundongos Endogâmicos BALB C
10.
BMC Complement Altern Med ; 17(1): 130, 2017 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-28235408

RESUMO

BACKGROUND: Lianhuaqingwen Capsule (LH-C) is a traditional Chinese medicine (TCM) formula used to treat respiratory tract infectious diseases in Chinese. The aim of this study was to determine the antiviral activity of LH-C and its immunomodulatory effects on viral infection. METHOD: The in vitro cytotoxicity and antiviral activity of LH-C was determined by MTT and Plaque reduction assays. Time course study under single-cycle virus growth conditions were used to determine which stage of viral replication was blocked. The effect of LH-C on the nuclear export of the viral nucleoprotein was examined using an indirect immunofluorescence assay. The regulation to different signaling transduction events and cytokine/chemokine expression of LH-C was evaluated using Western blotting and real-time RT-PCR. After virus inoculation, BALB/c mice were administered with LH-C of different concentrations for 5 days. Body-weight, viral titers and lung pathology of the mice were measured, the level of inflammatory cytokines were also examined using real-time RT-PCR. RESULTS: LH-C inhibited the proliferation of influenza viruses of various strain in vitro, with the 50% inhibitory concentration (IC50) ranging from 0.35 to 2 mg/mL. LH-C blocked the early stages (0-2 h) of virus infection, it also suppressed virus-induced NF-kB activation and alleviated virus-induced gene expression of IL-6, IL-8, TNF-a, IP-10, and MCP-1 in a dose-dependent manner. LH-C treatment efficiently impaired the nuclear export of the viral RNP. A decrease of the viral titers in the lungs of mice were observed in groups administered with LH-C. The level of inflammatory cytokines were also decreased in the early stages of infection. CONCLUSIONS: LH-C, as a TCM prescription, exerts broad-spectrum effects on a series of influenza viruses, including the newly emerged H7N9, and particularly regulates the immune response of virus infection. Thus, LH-C might be a promising option for treating influenza virus infection.


Assuntos
Anti-Inflamatórios/farmacologia , Medicamentos de Ervas Chinesas/farmacologia , Infecções por Orthomyxoviridae/tratamento farmacológico , Orthomyxoviridae/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos , Células A549 , Animais , Anti-Inflamatórios/uso terapêutico , Citocinas/metabolismo , Medicamentos de Ervas Chinesas/uso terapêutico , Feminino , Humanos , Inflamação/tratamento farmacológico , Pulmão/efeitos dos fármacos , Camundongos Endogâmicos BALB C , Testes de Sensibilidade Microbiana , NF-kappa B/metabolismo , Proteínas do Nucleocapsídeo/metabolismo , Fitoterapia
11.
BMC Infect Dis ; 16: 325, 2016 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-27392915

RESUMO

BACKGROUND: China-made Peramivir, an anti-influenza neuraminidase inhibitor drug, is manufactured and widely used in China. Although effective if initiated within 48 h of the onset of symptoms, yet we observed that this drug shows an inconclusive efficacy if treatment is delayed in clinical. Thus we evaluated the efficacy of delayed treatment of China-made Peramivir in a mouse model. METHODS: The mouse model of influenza infection was made and Peramivir was administered intravenously for 5 days following infection, and weight loss, lung index, viral shedding and survival rates were monitored. RESULTS: Peramivir (60 mg/kg · d, repeated intravenous injections, quaque die (QD) × 5 days) enhanced survival rate and suppressed weight loss when treatment was initiated 24, 36, 48, or even 60 h post-infection (p.i.) (p < 0.01), compared with the virus-untreated group, and efficacy was abolished at 72 h p.i.. However the efficacy of delayed treatment was dose dependent, with the highest dose (90 mg/kg · d) even showing efficacy at 72 h p.i.. Furthermore, Peramivir (60 mg/kg · d, repeated intravenous injections, QD × 5 days) also reduced the lung virus titer 24 and 36 h p.i. on day 5, and even at 48 and 60 h p.i. on day 7 after infection, and the lung index was also improved. What is interesting that the concentration of the drug was maintained in blood after infected. CONCLUSIONS: Delayed treatment with China-made Peramivir can reduce the severity of influenza disease, accelerate viral clearance and enhance the survival rate. This drug therefore shows good efficacy and is a promising candidate to control the influenza epidemic in China.


Assuntos
Antivirais/administração & dosagem , Ciclopentanos/administração & dosagem , Guanidinas/administração & dosagem , Vírus da Influenza A Subtipo H1N1/efeitos dos fármacos , Infecções por Orthomyxoviridae/tratamento farmacológico , Ácidos Carbocíclicos , Administração Intravenosa , Animais , China , Modelos Animais de Doenças , Esquema de Medicação , Feminino , Injeções Intravenosas , Pulmão/virologia , Masculino , Camundongos , Carga Viral/efeitos dos fármacos , Eliminação de Partículas Virais/efeitos dos fármacos
12.
BMC Microbiol ; 14: 78, 2014 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-24670114

RESUMO

BACKGROUND: Human influenza virus hemagglutinin prefers to use sialic acid (SA) receptors via α-2,6 linkages. The ß-galactoside α-2,6-sialyltransferase I (ST6Gal I) protein is encoded by the ST6GAL1 gene and is responsible for the addition of α-2,6 linked SA to the Galß1-4GlcNAc disaccharide of glycans and glycoproteins found on the cellular surface. Therefore, ST6GAL1 could be a potential target for anti-influenza therapeutics. We used specific small interfering RNAs (siRNAs) to block expression of ST6GAL1 and limit distribution of SA receptors on the surface of airway epithelial cells. RESULTS: The siRNA duplexes we used inhibited ST6GAL1 mRNA expression and subsequent expression of the encoding protein. As a result, synthesis of α-2,6 SA galactose was inhibited. Adsorption of influenza virus particles to the surface of cells transfected with appropriate specific siRNAs was significantly reduced. Intracellular viral genome copy number and virus titer within the supernatant of cells transfected with siRNAs was significantly reduced in a dose-dependent manner compared with those for untransfected cells and cells transfected with non-specific siRNAs. CONCLUSIONS: We used siRNAs targeting ST6GAL1 to inhibit the expression of certain cell surface receptors, thereby preventing virus adsorption. This resulted in the inhibition of human influenza virus infection. Our findings are a significant development in the identification of potential new anti-influenza drug targets.


Assuntos
Antígenos CD/metabolismo , Células Epiteliais/enzimologia , Células Epiteliais/virologia , Orthomyxoviridae/fisiologia , Sialiltransferases/metabolismo , Internalização do Vírus , Linhagem Celular , Inativação Gênica , Humanos , RNA Interferente Pequeno/metabolismo , Sialiltransferases/antagonistas & inibidores , Carga Viral
13.
Int J Biol Macromol ; 276(Pt 2): 133803, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38996890

RESUMO

Starch retrogradation is a mechanism that is associated with the quality of starch-based food products. A thorough understanding of chestnut starch retrogradation behavior plays an important role in maintaining the quality of chestnut foods during processing and storage. In this study, we investigated the effects of storage time on the structural properties and in vitro digestibility of gelatinized chestnut starch by using X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, and solid-state 13C nuclear magnetic resonance (NMR). The results showed that the long-range crystallinity and short-range molecular order of retrograded chestnut starch first rapidly increased from 3 h to 3 d and then decreased from 3 d to 7 d, followed by a slight increase from 7 d to 14 d with retrogradation. With the extension of storage time at 4 °C, there were generally obvious increases in single and double helical structures, which were stacked into long-term ordered structure, resulting in increased enthalpy changes as detected by differential scanning calorimetry spectroscopy (DSC) and reduction of the digestion rate of retrograded chestnut starch. Overall, this study may provide important implications for manipulating and improving the quality of chestnut foods.


Assuntos
Digestão , Amido , Amido/química , Difração de Raios X , Espectroscopia de Infravermelho com Transformada de Fourier , Varredura Diferencial de Calorimetria , Fagaceae/química
14.
Phytomedicine ; 129: 155680, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38728923

RESUMO

OBJECTIVE: Influenza, a viral respiratory illness, leads to seasonal epidemics and occasional pandemics. Given the rising resistance and adverse reactions associated with anti-influenza drugs, Traditional Chinese Medicine (TCM) emerges as a promising approach to counteract the influenza virus. Specifically, Haoqin Qingdan Tang (HQQDT), a TCM formula, has been employed as an adjuvant treatment for influenza in China. However, the active compounds and underlying mechanisms of HQQDT remain unknown. AIM: The aim of this study was to investigate HQQDT's antiviral and anti-inflammatory activities in both in vivo and in vitro, and further reveal its active ingredients and mechanism. METHODS: In vivo and in vitro experiments were conducted to verify the antiviral and anti-inflammatory activities of HQQDT. Subsequently, the active ingredients and mechanism of HQQDT were explored through combining high performance liquid chromatography-quadrupole time-of-flight tandem mass spectrometry (HPLC-Q-TOF-MS) analysis and network pharmacology. Finally, the examinations of cell cytokines and signaling pathways aimed to elucidate the predicted mechanisms. RESULTS: The results indicated that HQQDT exhibited inhibitory effects on influenza viruses A/PR/8/34 (H1N1), A/HK/1/68 (H3N2), and A/California/4/2009 (H1N1) in vitro. Furthermore, HQQDT enhanced the survival rate of influenza-infected mice, reduced the lung index and lung virus titer, and mitigated lung tissue damage in vivo. The proinflammatory cytokine expression levels upon influenza virus infection in PR8-induced A549 cells or mice were suppressed by HQQDT, including IL-6, IL-1ß, CCL2, CCL4, IP-10, interferon ß1 (IFN-ß1), the interferon regulatory factor 3 (IRF3), and hemagglutinin (HA). Twenty-two active components of HQQDT against influenza were identified using HPLC-Q-TOF-MS analysis. Based on network pharmacological predictions, the JAK/STAT signaling pathway is considered the most relevant for HQQDT's action against influenza. Finally, western blot assays revealed that HQQDT regulated the protein level of the JAK/STAT signaling pathway in PR8-infected A549 cells and lung tissue. CONCLUSION: These findings verified the antiviral and anti-inflammatory effects of HQQDT through JAK-STAT signaling pathway in influenza infections, laying the foundation for its further development.


Assuntos
Antivirais , Medicamentos de Ervas Chinesas , Vírus da Influenza A , Janus Quinases , Infecções por Orthomyxoviridae , Transdução de Sinais , Animais , Cães , Feminino , Humanos , Camundongos , Células A549 , Anti-Inflamatórios/farmacologia , Antivirais/farmacologia , Cromatografia Líquida de Alta Pressão , Citocinas/metabolismo , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/química , Vírus da Influenza A/efeitos dos fármacos , Vírus da Influenza A Subtipo H1N1/efeitos dos fármacos , Janus Quinases/metabolismo , Pulmão/efeitos dos fármacos , Pulmão/virologia , Células Madin Darby de Rim Canino , Camundongos Endogâmicos BALB C , Farmacologia em Rede , Infecções por Orthomyxoviridae/tratamento farmacológico , Transdução de Sinais/efeitos dos fármacos , Fatores de Transcrição STAT/metabolismo
15.
Br J Pharmacol ; 181(13): 2053-2069, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38500396

RESUMO

BACKGROUND AND PURPOSE: Severe influenza virus-infected patients have high systemic levels of Th1 cytokines (including IFN-γ). Intrapulmonary IFN-γ increases pulmonary IFN-γ-producing T lymphocytes through the CXCR3 pathway. Virus-infected mice lacking IP-10/CXCR3 demonstrate lower pulmonary neutrophilic inflammation. AMG487, an IP-10/CXCR3 antagonist, ameliorates virus-induced lung injury in vivo through decreasing viral loads. This study examined whether AMG487 could treat H1N1 virus-induced mouse illness through reducing viral loads or decreasing the number of lymphocytes or neutrophils. EXPERIMENTAL APPROACH: Here, we studied the above-mentioned effects and underlying mechanisms in vivo. KEY RESULTS: H1N1 virus infection caused bad overall condition and pulmonary inflammation characterized by the infiltration of lymphocytes and neutrophils. From Day-5 to Day-10 post-virus infection, bad overall condition, pulmonary lymphocytes, and IFN-γ concentrations increased, while pulmonary H1N1 viral titres and neutrophils decreased. Both anti-IFN-γ and AMG487 alleviated virus infection-induced bad overall condition and pulmonary lymphocytic inflammation. Pulmonary neutrophilic inflammation was mitigated by AMG487 on Day-5 post-infection, but was not mitigated by AMG487 on Day-10 post-infection. H1N1 virus induced increases of IFN-γ, IP-10, and IFN-γ-producing lymphocytes and activation of the Jak2-Stat1 pathways in mouse lungs, which were inhibited by AMG487. Anti-IFN-γ decreased IFN-γ and IFN-γ-producing lymphocytes on Day-5 post-infection. AMG487 but not anti-IFN-γ decreased viral titres in mouse lung homogenates or BALF. Higher virus load did not increase pulmonary inflammation and IFN-γ concentrations when mice were treated with AMG487. CONCLUSION AND IMPLICATIONS: AMG487 may ameliorate H1N1 virus-induced pulmonary inflammation through decreasing IFN-γ-producing lymphocytes rather than reducing viral loads or neutrophils.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Interferon gama , Linfócitos , Infecções por Orthomyxoviridae , Animais , Interferon gama/metabolismo , Camundongos , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/tratamento farmacológico , Linfócitos/imunologia , Linfócitos/efeitos dos fármacos , Linfócitos/metabolismo , Camundongos Endogâmicos C57BL , Pneumonia/tratamento farmacológico , Pneumonia/virologia , Pneumonia/imunologia , Pneumonia/metabolismo , Feminino , Pulmão/imunologia , Pulmão/virologia , Pulmão/patologia , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Masculino , Antivirais/farmacologia
16.
Virol J ; 10: 111, 2013 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-23575279

RESUMO

BACKGROUND: The influenza pandemics have resulted in significant morbidity and mortality worldwide. Animal models are useful in the study of influenza virus pathogenesis. Because of various limitations in current laboratory animal models, it is essential to develop new alternative animal models for influenza virus research aimed at understanding the viral and host factors that contribute to virus infection in human. METHOD: We investigated the replicative efficiency of influenza H1N1 virus (classic strain (Influenza A/PR/8/34), seasonal influenza isolate (A/Guangzhou/GIRD/02/09) and swine-origin human influenza virus (A/Guangzhou/GIRD/07/09)) at Day1,2,4,6 and 9 p.i. using TCID50 and qPCR assay in tree shrew model. Body temperature was monitored in the morning and evening for 3 days before infection and for 14 days. Seroconversion was detected by determining the neutralizing antibody titers against the challenge viruses in the pre- and exposure serum samples collected before infection and at 14 days p.i., respectively. Lungs and tracheas of tree shews were collected at day 14 post p.i. for histopathological analysis. Lectinhistochemistry analysis was conducted to identify the distribution of SAα2,3 Gal and SAα2,6 Gal receptors in the lung and trachea. RESULTS: The infected tree shrew displayed mild or moderate systemic and respiratory symptoms and pathological changes in respiratory tracts. The human H1N1 influenza virus may replicate in the upper respiratory tract of tree shrews. Analysis of the receptors distribution in the respiratory tract of tree shrews by lectinhistochemistry showed that sialic acid (SA)α2,6-Gal receptors were widely distributed in the trachea and nasal mucosa, whereas (SA)α2,3-Gal receptor was the main receptor in the lung tissue. CONCLUSIONS: Based on these findings, tree shrew seemed to mimic well influenza virus infection in humans. We propose that tree shrews could be a useful alternative mammalian model to study pathogenesis of influenza H1N1 virus.


Assuntos
Modelos Animais de Doenças , Vírus da Influenza A Subtipo H1N1/fisiologia , Vírus da Influenza A Subtipo H1N1/patogenicidade , Tupaiidae/virologia , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Temperatura Corporal , Histocitoquímica , Humanos , Pulmão/patologia , Pulmão/virologia , Soro/imunologia , Traqueia/patologia , Traqueia/virologia , Replicação Viral
17.
Appl Spectrosc ; 77(3): 303-307, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36241612

RESUMO

Coherent anti-Stokes Raman scattering (CARS) spectroscopy plays an important role in chemical analysis for transient flow dynamics. Due to the turbulent ambient conditions, the CARS spectrum often suffers from a poor signal-to-noise ratio (SNR) and cannot provide a convincing measurement. Here, we report on a CARS spectroscopic method using a Bessel beam to enhance the spectral fidelity and SNR in a quasi-turbulent environment. Compared with traditional CARS, the measurement accuracy is significantly improved by taking advantage of the anti-scattering and self-healing characteristics of the Bessel beam. Our preliminary results indicate that Bessel beam CARS could be a promising method for high precision turbulent flow measurement fields.

18.
Artigo em Inglês | MEDLINE | ID: mdl-38083858

RESUMO

Deep Anterior Lamellar Keratoplasty (DALK) is a surgical procedure used to restore sight and manage corneal diseases by replacing cloudy corneal tissue with allogeneic normal corneal tissue or artificial corneal material. However, the limited availability and mechanical defects of artificial corneal materials pose challenges in DALK. To predicting postoperative mechanical behavior of Deep Anterior Lamellar Keratoplasty (DALK), a three-dimensional finite element model of the postoperative DALK cornea with suture holes was developed. The postoperative corneal displacement and von Mises (VM) stress changes were also simulated under varying depths of cut (DOC: 0.16-0.26 µm), intraocular pressure (IOP: 12, 15, 18 mmHg), and central corneal thickness (CCT: 420-620 µm). The model indicated that higher IOP and CCT were associated with improved postoperative corneal stability. The postoperative corneal displacement increased from the edge to the center, while the maximum VM stress value occurs at the corneal suture hole. Corneal displacement and VM stress decrease with increasing CCT and decreasing IOP. DOC has a slight effect on corneal displacement and VM stress, with an overall positive relationship. The model has potential application in the preoperative assessment of risk in keratoplasty.

19.
Polymers (Basel) ; 15(2)2023 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-36679307

RESUMO

Concrete cracking has a negative impact on the durability of the structure. Pre-implanting microcapsules containing healing agents into the concrete are expected to induce the cracks to self-heal. However, the self-healing effect can potentially be influenced by several environmental conditions, thus limiting its applications. To address these challenges, we developed a new type of water-absorbing microcapsules, using calcium alginate hydrogel as the wall material and an adhesive epoxy polymer as the core material, to improve the self-healing adaptability in complex and changing environments. We explored the healing properties and mechanism of cementitious materials containing microcapsules under various environmental conditions. The experimental results showed that the water-absorbent microcapsules exhibit multiple self-healing effects under different external conditions: (1) in an anhydrous environment, fissures prompted the activation of microcapsules, and the epoxy polymer flowed out to seal the cracks. (2) When exposed to water, the microcapsules inflated to form a seal around the fissures. (3) The microcapsules facilitated the autogenous healing of cracks in the cementitious material when wet and dry conditions were alternated. The three self-healing mechanisms worked synergistically and contributed to the effective restoration of the impermeability and strength of concrete under different environments. Particularly, the recovery of compressive strength and impermeability exceeded 100% when the microcapsule content was 4% and the pre-pressure was 40% of fmax.

20.
Materials (Basel) ; 16(11)2023 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-37297103

RESUMO

Spark plasma sintering is a new technology for preparing ceramic materials. In this article, a thermal-electric-mechanical coupled model is used to simulate the spark plasma sintering process of boron carbide. The solution of the thermal-electric part was based on the charge conservation equation and the energy conservation equation. A phenomenological constitutive model (Drucker-Prager Cap model) was used to simulate the densification process of boron carbide powder. To reflect the influence of temperature on sintering performance, the model parameters were set as functions of temperature. Spark plasma sintering experiments were conducted at four temperatures: 1500 °C, 1600 °C, 1700 °C, and 1800 °C, and the sintering curves were obtained. The parameter optimization software was integrated with the finite element analysis software, and the model parameters at different temperatures were obtained through the parameter inverse identification method by minimizing the difference between the experimental displacement curve and the simulated displacement curve. The Drucker-Prager Cap model was then incorporated into the coupled finite element framework to analyze the changes of various physical fields of the system over time during the sintering process.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA