Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Neurobiol Dis ; : 106697, 2024 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-39389155

RESUMO

Chronic pain (CP) affects over 30 % of the global population, imposing significant financial burdens on individuals and society. However, existing treatments for CP offer limited efficacy and troublesome side effects, primarily owing to a lack of knowledge of its precise underlying mechanism. Pathological stimuli disrupt the intricate process of protein folding and endoplasmic reticulum (ER) homeostasis. This disruption leads to the accumulation of misfolded or unfolded proteins in the ER, generating a condition termed ER stress. Emerging data have indicated that ER stress, occurring in the peripheral and central nervous systems, contributes to the development and maintenance of CP. This review aimed to comprehensively explore the intersection of ER stress and CP within the lower and upper nervous systems and highlight the cell-specific contributions of the unfolded protein response in different CP types. We provide a comprehensive synthesis of evidence from animal models, examining neuronal and non-neuronal mechanisms and discuss the damaging ER stress-linked inflammation, autophagy, oxidative stress, and apoptosis, which collectively drive disease progression and contribute to a neurotoxic environment. However, the mechanisms through which ER stress influences the most advanced centre-of-pain projections in the brain remain unclear. Further investigation in this area is crucial to elucidate the relationship between ER stress and CP and facilitate the development of novel therapeutic drugs for this intractable dilemma.

2.
J Neuroinflammation ; 18(1): 211, 2021 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-34530836

RESUMO

BACKGROUND: Central post-stroke pain (CPSP) is a chronic and intolerable neuropathic pain syndrome following a cerebral vascular insult, which negatively impacts the quality of life of stroke survivors but currently lacks efficacious treatments. Though its underlying mechanism remains unclear, clinical features of hyperalgesia and allodynia indicate central sensitization due to excessive neuroinflammation. Recently, the crosslink between neuroinflammation and endoplasmic reticulum (ER) stress has been identified in diverse types of diseases. Nevertheless, whether this interaction contributes to pain development remains unanswered. Epoxyeicosatrienoic acids (EETs)/soluble epoxy hydrolase inhibitors (sEHi) are emerging targets that play a significant role in pain and neuroinflammatory regulation. Moreover, recent studies have revealed that EETs are effective in attenuating ER stress. In this study, we hypothesized that ER stress around the stroke site may activate glial cells and lead to further inflammatory cascades, which constitute a positive feedback loop resulting in central sensitization and CPSP. Additionally, we tested whether EETs/sEHi could attenuate CPSP by suppressing ER stress and neuroinflammation, as well as their vicious cycle, in a rat model of CPSP. METHODS: Young male SD rats were used to induce CPSP using a model of thalamic hemorrhage and were then treated with TPPU (sEHi) alone or in combination with 14,15-EET or 14,15-epoxyeicosa-5(Z)-enoic acid (14,15-EEZE, the EET antagonist), tunicamycin (Tm, ER stress inducer), or 4-PBA (ER stress inhibitor). Nociceptive behaviors, ER stress markers, JNK and p38 (two well-recognized inflammatory kinases of mitogen-activated protein kinase (MAPK) signaling) expression, and glial cell activation were assessed. In addition, some healthy rats were intrathalamically microinjected with Tm or lipopolysaccharide (LPS) to test the interaction between ER stress and neuroinflammation in central pain. RESULTS: Analysis of the perithalamic lesion tissue from the brain of CPSP rats demonstrated decreased soluble epoxy hydrolase (sEH) expression, which was accompanied by increased expression of ER stress markers, including BIP, p-IRE, p-PERK, and ATF6. In addition, inflammatory kinases (p-p38 and p-JNK) were upregulated and glial cells were activated. Intrathalamic injection of sEHi (TPPU) increased the paw withdrawal mechanical threshold (PWMT), reduced hallmarks of ER stress and MAPK signaling, and restrained the activation of microglia and astrocytes around the lesion site. However, the analgesic effect of TPPU was completely abolished by 14,15-EEZE. Moreover, microinjection of Tm into the thalamic ventral posterior lateral (VPL) nucleus of healthy rats induced mechanical allodynia and activated MAPK-mediated neuroinflammatory signaling; lipopolysaccharide (LPS) administration led to activation of ER stress along the injected site in healthy rats. CONCLUSIONS: The present study provides evidence that the interaction between ER stress and neuroinflammation is involved in the mechanism of CPSP. Combined with the previously reported EET/sEHi effects on antinociception and neuroprotection, therapy with agents that target EET signaling may serve as a multi-functional approach in central neuropathic pain by attenuating ER stress, excessive neuroinflammation, and subsequent central sensitization. The use of these agents within a proper time window could not only curtail further nerve injury but also produce an analgesic effect.


Assuntos
Ácido 8,11,14-Eicosatrienoico/análogos & derivados , Estresse do Retículo Endoplasmático/fisiologia , Epóxido Hidrolases/uso terapêutico , Neuralgia/metabolismo , Nociceptividade/fisiologia , Acidente Vascular Cerebral/metabolismo , Ácido 8,11,14-Eicosatrienoico/antagonistas & inibidores , Ácido 8,11,14-Eicosatrienoico/metabolismo , Animais , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Epóxido Hidrolases/farmacologia , Masculino , Neuralgia/tratamento farmacológico , Doenças Neuroinflamatórias/tratamento farmacológico , Doenças Neuroinflamatórias/metabolismo , Nociceptividade/efeitos dos fármacos , Compostos de Fenilureia/farmacologia , Compostos de Fenilureia/uso terapêutico , Piperidinas/farmacologia , Piperidinas/uso terapêutico , Ratos , Ratos Sprague-Dawley , Acidente Vascular Cerebral/tratamento farmacológico , Vasodilatadores/antagonistas & inibidores , Vasodilatadores/metabolismo
3.
Pharmacol Res ; 159: 104923, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32461186

RESUMO

Central post-stroke pain (CPSP) is chronic neuropathic pain due to a lesion or dysfunction of the central nervous system following cerebrovascular insult. This syndrome is characterized by chronic somatosensory abnormalities including spontaneous pain, hyperalgesia and allodynia, which localize to body areas corresponding to the injured brain region. However, despite its potential to impair activities of daily life and cause mood disorders after stroke, it is probably the least recognized complication of stroke. All currently approved treatments for CPSP have limited efficacy but troublesome side effects. The detailed mechanism underlying CPSP is still under investigation; however, its diverse clinical features indicate excessive central neuronal excitability, which is attributed to loss of inhibition and excessive neuroinflammation. Recently, exogenous epoxyeicosatrienoic acids (EETs) have been used to attenuate the mechanical allodynia in CPSP rats and proven to provide a quicker onset and superior pain relief compared to the current first line drug gabapentin. This anti-nociceptive effect is mediated by reserving the normal thalamic inhibition state through neurosteroid-GABA signaling. Moreover, mounting evidence has revealed that EETs exert anti-inflammatory effects by inhibiting the expression of vascular adhesion molecules, activating NFκB, inflammatory cytokines secretion and COX-2 gene induction. The present review focuses on the extensive evidence supporting the potential of EETs to be a multi-functional therapeutic approach for CPSP. Additionally, the role of EETs in the crosstalk between anti-CPSP and the comorbid mood disorder is reviewed herein.


Assuntos
Analgésicos/uso terapêutico , Encéfalo/efeitos dos fármacos , Dor Crônica/tratamento farmacológico , Eicosanoides/uso terapêutico , Neuralgia/tratamento farmacológico , Acidente Vascular Cerebral/tratamento farmacológico , Analgésicos/efeitos adversos , Animais , Encéfalo/metabolismo , Encéfalo/fisiopatologia , Dor Crônica/metabolismo , Dor Crônica/fisiopatologia , Eicosanoides/efeitos adversos , Humanos , Mediadores da Inflamação/metabolismo , Neuralgia/metabolismo , Neuralgia/fisiopatologia , Plasticidade Neuronal/efeitos dos fármacos , Limiar da Dor , Acidente Vascular Cerebral/metabolismo , Acidente Vascular Cerebral/fisiopatologia , Ácido gama-Aminobutírico/metabolismo
4.
Cell Mol Neurobiol ; 39(1): 123-135, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30460429

RESUMO

Anaphase-promoting complex (APC) with its coactivator Cdh1 is required to maintain the postmitotic state of neurons via degradation of Cyclin B1, which aims to prevent aberrant cell cycle entry that causes neuronal apoptosis. Interestingly, evidence is accumulating that apart from the cell cycle, APC-Cdh1 also involves in neuronal metabolism via modulating the glycolysis promoting enzyme, 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase-3 (PFKFB3). Here, we showed that under oxygen-glucose deprivation and reperfusion (OGD/R), APC-Cdh1 was decreased in primary cortical neurons. Likewise, the neurons exhibited enhanced glycolysis when oxygen supply was reestablished during reperfusion, which was termed as the "neuronal Warburg effect." In particular, the reperfused neurons showed elevated PFKFB3 expression in addition to a reduction in glucose 6-phosphate dehydrogenase (G6PD). Such changes directed neuronal glucose metabolism from pentose-phosphate pathway (PPP) to aerobic glycolysis compared to the normal neurons, resulting in increased ROS production and apoptosis during reperfusion. Pretreatment of neurons with Cdh1 expressing lentivirus before OGD could reverse this metabolic shift and attenuated ROS-induced apoptosis. However, the metabolism regulation and neuroprotection by Cdh1 under OGD/R condition could be blocked when co-transfecting neurons with Ken box-mut-PFKFB3 (which is APC-Cdh1 insensitive). Based on these data, we suggest that the Warburg effect may contribute to apoptotic mechanisms in neurons under OGD/R insult, and targeting Cdh1 may be a potential therapeutic strategy as both glucose metabolic regulator and apoptosis suppressor of neurons in brain injuries.


Assuntos
Apoptose , Proteínas Cdh1/metabolismo , Glucose/deficiência , Glicólise , Neurônios/metabolismo , Oxigênio/metabolismo , Via de Pentose Fosfato , Reperfusão , Animais , Sobrevivência Celular , Lentivirus/metabolismo , Neurônios/patologia , Neuroproteção , Estresse Oxidativo , Fosfofrutoquinase-2/metabolismo , Fosforilação , Ratos Sprague-Dawley
5.
Neurochem Int ; 154: 105291, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35074479

RESUMO

Central post stroke pain (CPSP) is an intractable neuropathic pain syndrome that occurs after the acute focal lesion of the central nervous system (CNS) due to a cerebrovascular cause. Epoxyeicosatrienoic acids (EETs) exert many pharmacological effects in vivo and in vitro, such as anti-apoptosis, anti-inflammatory, and anti-oxidative stress. Neuroinflammation and apoptosis are the potential pathophysiological mechanisms of neuropathic pain. This study aimed to investigate whether 14,15-EET has an antinociception effect on CPSP rats through its anti-inflammation and anti-apoptosis mechanisms. Rats were treated with type IV collagenase (CPSP group) or saline (Sham group) via injection with a Hamilton syringe into the ventral posterior lateral nucleus (VPL) according to the stereotaxic coordinates. We first tested the mechanical withdrawal threshold, as well as neuroinflammation- and apoptosis-related protein expressions in the per-lesion site of CPSP and Sham rats. Sprague-Dawley rats were randomly divided into five groups, as follows: vehicle; EET at 0.025, 0.05, and 0.1 µg; and EET (0.1 µg) + EEZE (3.25 ng). EET or and vehicle were administered into VPL nuclei three consecutive days after hemorrhagic stroke. Immunostaining, ELISA, and Western blot were performed to evaluate neuroinflammation and apoptosis. Hemorrhagic stroke induced mechanical allodynia, glial activation, neuroinflammation, and apoptosis-related protein upregulation. However, early treatment with 14,15-EET inhibited glial cell activation, decreased proinflammatory cytokines and apoptosis-related protein, and alleviated the pain behavior of CPSP rats. Our results provided strong evidence that antinociception produced by 14,15-EET is partly mediated by the inhibition of neuroinflammation and apoptosis.


Assuntos
Neuralgia , Ácido 8,11,14-Eicosatrienoico/análogos & derivados , Ácido 8,11,14-Eicosatrienoico/farmacologia , Ácido 8,11,14-Eicosatrienoico/uso terapêutico , Animais , Anti-Inflamatórios/uso terapêutico , Neuralgia/metabolismo , Ratos , Ratos Sprague-Dawley
6.
J Pain ; 20(5): 577-591, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30500366

RESUMO

Central poststroke pain (CPSP) is a neuropathic pain syndrome arising after a lesion of the central nervous system owing to cerebrovascular insult. Impaired daily activities and reduced quality of life in people suffering from CPSP justify the need for improved treatment. The detailed mechanism of CPSP is not well understood, but central disinhibition has been suggested. Recent reports indicated that epoxyeicosatrienoic acids (EETs), the cytochrome P450 metabolites of arachidonic acid, promoted neuronal survival after stroke, displayed antinociception in peripheral inflammatory pain, and reduced neuronal excitability in seizure model. Here, we tested the hypothesis that 14,15-EET may attenuate CPSP by suppressing thalamic disinhibition through neurosteroids-δ-subunit-containing gamma-aminobutyric acid A receptors (δGABAAR) signaling. In this study, we used a rat model of thalamic hemorrhagic stroke to induce CPSP. Pain behavioral tests revealed that CPSP rats exhibited mechanical allodynia, starting at day 7 postlesion and lasting at least 4 weeks. Analysis of the perithalamic lesion tissue from the brain of CPSP rats demonstrated a decrease of 14,15-EET content, steroidogenic acute regulatory protein expression, and allopregnanolone (AP) production. This was accompanied by reduced δGABAAR expression in the medial thalamus at 4 weeks postlesion. Intrathalamic injection of exogenous 14,15-EET into the ventral posterior lateral nucleus attenuated mechanical allodynia, induced a marked increase in the abundance of the steroidogenic acute regulatory protein and AP along the lesion site and a concomitant increase in δGABAAR expression in the medial thalamus under CPSP condition. However, this antinociceptive effect could be eliminated by the 5α-reductase inhibitor finasteride or dutasteride or GABAAR antagonist bicuculline. Moreover, compared with the current first-line drug gabapentin for central neuropathic pain, an early treatment of EET showed greater efficacy in the secondary prevention of CPSP. Taken together, this study provided a proof of concept that EETs may have anti-CPSP effect by reserving normal thalamic inhibition through AP-δGABAAR signaling. PERSPECTIVE: Agents targeting EETs may serve as potential therapeutic options for stroke, the use of which at the initial period could not only block further nerve damage but also prevent the occurrence of CPSP.


Assuntos
Ácido 8,11,14-Eicosatrienoico/análogos & derivados , Analgésicos/farmacologia , Hiperalgesia/tratamento farmacológico , Hiperalgesia/etiologia , Acidente Vascular Cerebral/complicações , Ácido 8,11,14-Eicosatrienoico/farmacologia , Animais , Hemorragia Cerebral/complicações , Hemorragia Cerebral/metabolismo , Modelos Animais de Doenças , Gabapentina/farmacologia , Hiperalgesia/metabolismo , Masculino , Pregnanolona/metabolismo , Estudo de Prova de Conceito , Distribuição Aleatória , Ratos Sprague-Dawley , Receptores de GABA-A/metabolismo , Acidente Vascular Cerebral/metabolismo , Tálamo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA