Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Comput Biol ; 18(1): e1009848, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35100254

RESUMO

Cortical neural networks exhibit high internal variability in spontaneous dynamic activities and they can robustly and reliably respond to external stimuli with multilevel features-from microscopic irregular spiking of neurons to macroscopic oscillatory local field potential. A comprehensive study integrating these multilevel features in spontaneous and stimulus-evoked dynamics with seemingly distinct mechanisms is still lacking. Here, we study the stimulus-response dynamics of biologically plausible excitation-inhibition (E-I) balanced networks. We confirm that networks around critical synchronous transition states can maintain strong internal variability but are sensitive to external stimuli. In this dynamical region, applying a stimulus to the network can reduce the trial-to-trial variability and shift the network oscillatory frequency while preserving the dynamical criticality. These multilevel features widely observed in different experiments cannot simultaneously occur in non-critical dynamical states. Furthermore, the dynamical mechanisms underlying these multilevel features are revealed using a semi-analytical mean-field theory that derives the macroscopic network field equations from the microscopic neuronal networks, enabling the analysis by nonlinear dynamics theory and linear noise approximation. The generic dynamical principle revealed here contributes to a more integrative understanding of neural systems and brain functions and incorporates multimodal and multilevel experimental observations. The E-I balanced neural network in combination with the effective mean-field theory can serve as a mechanistic modeling framework to study the multilevel neural dynamics underlying neural information and cognitive processes.


Assuntos
Córtex Cerebral/fisiologia , Rede Nervosa/fisiologia , Potenciais de Ação/fisiologia , Humanos , Dinâmica não Linear , Tempo de Reação , Reprodutibilidade dos Testes
2.
Sci Technol Adv Mater ; 23(1): 619-632, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36212681

RESUMO

Poly(3-hexylthiophene) (P3HT) is a typical conducting polymer widely used in organic thin-film transistors, polymer solar cells, etc., due to good processability and remarkable charging carrier and hole mobility. It is known that the ordered structure assembled by π-conjugated P3HT chains could promote the performance of electronic devices. Interfacial and confined molecular-assembly is one effective way to generate an ordered structure by tuning surface geometry and substrate interaction. Great efforts have been made to investigate the molecular chain assembly of P3HT on a curved surface that is confined to different geometry. In this report, we review the recent advances of the interfacial chain assembly of P3HT in a flat or curved confined space and its application to organic electronic devices. In principle, this interfacial assembly of P3HT at a nanoscale could improve the electronic properties, such as the current transport, power conversion efficiency, etc. Therefore, this review on interfacial and confined assembly of P3HT could give general implications for designing high-performance organic electronic devices.

3.
Inorg Chem ; 60(12): 8404-8408, 2021 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-34078071

RESUMO

The field of cocrystalline nanoclusters stabilized by thiolates is in a period of rapid development. However, the types of cocrystallization have been limited to a few reported until now, so it is of great importance to investigate and understand the novel cocrystallographic structures. Herein, we design and synthesize a new type of cocrystallization, [Ag23Au2(2-EBT)18Ag22Au3(2-EBT)18]2-[2(PPh4)]2+, characterized by thermogravimetric analysis, X-ray photoelectron spectroscopy, and single-crystal X-ray crystallography. Interestingly, both of the cocrystallized nanoclusters show the same outer-shell geometric structure but diffenent cores (Ag11Au2 vs Ag10Au3). The cocrystal lattice exhibits a multilayer structure in which both of the cocrystallized nanoclusters and the counterion assemble in a layer-by-layer model. Meanwhile, the counterion is found to be critical for formation and stabilization of the target cocrystal. In addition, the target cocrystal shows high thermal stability, and this result possibly originates from the electrostatic and weak interactions in the cocrystals.

4.
Neural Plast ; 2021: 6668175, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33542728

RESUMO

Gamma oscillation in neural circuits is believed to associate with effective learning in the brain, while the underlying mechanism is unclear. This paper aims to study how spike-timing-dependent plasticity (STDP), a typical mechanism of learning, with its interaction with gamma oscillation in neural circuits, shapes the network dynamics properties and the network structure formation. We study an excitatory-inhibitory (E-I) integrate-and-fire neuronal network with triplet STDP, heterosynaptic plasticity, and a transmitter-induced plasticity. Our results show that the performance of plasticity is diverse in different synchronization levels. We find that gamma oscillation is beneficial to synaptic potentiation among stimulated neurons by forming a special network structure where the sum of excitatory input synaptic strength is correlated with the sum of inhibitory input synaptic strength. The circuit can maintain E-I balanced input on average, whereas the balance is temporal broken during the learning-induced oscillations. Our study reveals a potential mechanism about the benefits of gamma oscillation on learning in biological neural circuits.


Assuntos
Potenciais de Ação/fisiologia , Ritmo Gama/fisiologia , Aprendizagem/fisiologia , Modelos Neurológicos , Rede Nervosa/fisiologia , Plasticidade Neuronal/fisiologia , Encéfalo/fisiologia , Humanos
5.
Cities ; 118: 103396, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34334868

RESUMO

Effective control of the COVID-19 pandemic via appropriate management of the built environment is an urgent issue. This study develops a research framework to explore the relationship between COVID-19 incidence and influential factors related to protection of vulnerable populations, intervention in transmission pathways, and provision of healthcare resources. Relevant data for regression analysis and structural equation modeling is collected during the first wave of the pandemic in the United States, from counties with over 100 confirmed cases. In addition to confirming certain factors found in the existing literature, we uncover six new factors significantly associated with COVID-19 incidence. Furthermore, incidence during the lockdown is found to significantly affect incidence after the reopening, highlighting that timely quarantining and treating of patients is essential to avoid the snowballing transmission over time. These findings suggest ways to mitigate the negative effects of subsequent waves of the pandemic, such as special attention of infection prevention in neighborhoods with unsanitary and overcrowded housing, minimization of social activities organized by neighborhood associations, and contactless home delivery service of healthy food. Also worth noting is the need to provide support to people less capable of complying with the stay-at-home order because of their occupations or socio-economic disadvantage.

6.
Phys Rep ; 820: 1-51, 2019 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-32308252

RESUMO

The propagations of diseases, behaviors and information in real systems are rarely independent of each other, but they are coevolving with strong interactions. To uncover the dynamical mechanisms, the evolving spatiotemporal patterns and critical phenomena of networked coevolution spreading are extremely important, which provide theoretical foundations for us to control epidemic spreading, predict collective behaviors in social systems, and so on. The coevolution spreading dynamics in complex networks has thus attracted much attention in many disciplines. In this review, we introduce recent progress in the study of coevolution spreading dynamics, emphasizing the contributions from the perspectives of statistical mechanics and network science. The theoretical methods, critical phenomena, phase transitions, interacting mechanisms, and effects of network topology for four representative types of coevolution spreading mechanisms, including the coevolution of biological contagions, social contagions, epidemic-awareness, and epidemic-resources, are presented in detail, and the challenges in this field as well as open issues for future studies are also discussed.

7.
J Chem Phys ; 148(10): 104105, 2018 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-29544279

RESUMO

While many physical or chemical systems can be modeled by nonlinear Langevin equations (LEs), dynamical analysis of these systems is challenging in the cases of moderate and strong noise. Here we develop a linear approximation scheme, which can transform an often intractable LE into a linear set of binomial moment equations (BMEs). This scheme provides a feasible way to capture nonlinear behaviors in the sense of probability distribution and is effective even when the noise is moderate or big. Based on BMEs, we further develop a noise reduction technique, which can effectively handle tough cases where traditional small-noise theories are inapplicable. The overall method not only provides an approximation-based paradigm to analysis of the local and global behaviors of nonlinear noisy systems but also has a wide range of applications.

9.
Neuroscientist ; : 10738584231221766, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38291889

RESUMO

Neural activities in local circuits exhibit complex and multilevel dynamic features. Individual neurons spike irregularly, which is believed to originate from receiving balanced amounts of excitatory and inhibitory inputs, known as the excitation-inhibition balance. The spatial-temporal cascades of clustered neuronal spikes occur in variable sizes and durations, manifested as neural avalanches with scale-free features. These may be explained by the neural criticality hypothesis, which posits that neural systems operate around the transition between distinct dynamic states. Here, we summarize the experimental evidence for and the underlying theory of excitation-inhibition balance and neural criticality. Furthermore, we review recent studies of excitatory-inhibitory networks with synaptic kinetics as a simple solution to reconcile these two apparently distinct theories in a single circuit model. This provides a more unified understanding of multilevel neural activities in local circuits, from spontaneous to stimulus-response dynamics.

10.
World J Surg Oncol ; 11: 216, 2013 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-23987305

RESUMO

BACKGROUND: Although nephron-sparing surgery has been reported not to affect total renal function, it is a non-negligible fact that functional damage of the operated kidney usually results, for various reasons. This study aimed to explore the effects of preoperative baseline characteristics, tumor characteristics, and function protection methods on postoperative renal damage. METHODS: This study was a retrospective review of 51 patients who underwent open nephron-sparing surgery. The mean age of the patients (39 men, 12 women) was 54.2 ± 13.9 years, range 32 to 71 years. The glomerular filtration rate (GFR) was measured preoperatively and 6th months after the operation. Univariate analysis was used to screen indicators with significant differences in different levels of renal function damage. All variables found to be significant on univariate analysis were entered into a multiple logistic regression model to predict risk factors for renal function damage. RESULTS: Univariate analysis showed that there was a significant difference in age, GFR of operated kidney, tumor diameter, tumor depth, and ischemic protection type between patients with little damage and those with heavy damage (P < 0.05). Forward stepwise logistic regression analysis suggested that age (odds ratio, 3.08; 95% confidence interval 1.78 to 7.04; P = 0.037), preoperative GFR of operated kidney (odds ratio, 0.51; 95% confidence interval 0.11 to 0.73; P = 0.033), and tumor diameter (odds ratio, 5.49; 95% confidence interval 2.14 to 7.88; P = 0.012) and depth (odds ratio, 5.82; 95% confidence interval 2.66 to 8.06; P = 0.010) were independent risk factors for postoperative renal function damage. CONCLUSIONS: Patients with older age, poor renal function, and large tumor diameter and depth might be at higher risk of renal function damage after nephron-sparing surgery.


Assuntos
Nefropatias/diagnóstico , Neoplasias Renais/cirurgia , Rim/fisiopatologia , Nefrectomia/efeitos adversos , Néfrons/cirurgia , Complicações Pós-Operatórias , Adulto , Idoso , Feminino , Seguimentos , Taxa de Filtração Glomerular , Humanos , Nefropatias/etiologia , Nefropatias/fisiopatologia , Testes de Função Renal , Neoplasias Renais/complicações , Neoplasias Renais/patologia , Masculino , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Tratamentos com Preservação do Órgão , Prognóstico , Estudos Retrospectivos
11.
Vision Res ; 212: 108308, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37659334

RESUMO

Typically, searching for a target among uniformly tilted non-targets is easier when this target is perpendicular, rather than parallel, to the non-targets. The V1 Saliency Hypothesis (V1SH) - that V1 creates a saliency map to guide attention exogenously - predicts exactly the opposite in a special case: each target or non-target is a pair of equally-sized disks, a homo-pair of two disks of the same color, black or white, or a hetero-pair of two disks of the opposite color; the inter-disk displacement defines its orientation. This prediction - parallel advantage - was supported by the finding that parallel targets require shorter reaction times (RTs) to report targets' locations. Furthermore, it is stronger for targets further from the center of search images, as predicted by the Central-peripheral Dichotomy (CPD) theory entailing that saliency effects are stronger in peripheral than in central vision. However, the parallel advantage could arise from a shorter time required to recognize - rather than to shift attention to - the parallel target. By gaze tracking, the present study confirms that the parallel advantage is solely due to the RTs for the gaze to reach the target. Furthermore, when the gaze is sufficiently far from the target during search, saccade to a parallel, rather than perpendicular, target is more likely, demonstrating the Central-peripheral Dichotomy more directly. Parallel advantage is stronger among observers encouraged to let their search be guided by spontaneous gaze shifts, which are presumably guided by bottom-up saliency rather than top-down factors.

12.
Metabolites ; 13(2)2023 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-36837880

RESUMO

Plant triterpenoids play a critical role in plant resistance against Phytophthora infestans de Bary, the causal pathogen of potato and tomato late blight. However, different triterpenoids could have contrasting functions on plant resistance against P. infestans. In this study, we targeted the key biosynthetic gene of all plant triterpenoids, SQUALENE SYNTHASE (SQS), to examine the function of this gene in plant-P. infestans interactions. A post-inoculation, time-course gene expression analysis revealed that SQS expression was induced in Nicotiana benthamiana but was transiently suppressed in Solanum lycopersicum. Consistent with the host-specific changes in SQS expression, concentrations of major triterpenoid compounds were only induced in S. lycopersicum. A stable overexpression of SQS in N. benthamiana reduced plant resistance against P. infestans and induced the hyperaccumulation of stigmasterol. A comparative transcriptomics analysis of the transgenic lines showed that diverse plant physiological processes were influenced by SQS overexpression, suggesting that phytosterol content regulation may not be the sole mechanism through which SQS promotes plant susceptibility towards P. infestans. This study provides experimental evidence for the host-specific transcriptional regulation and function of SQS in plant interactions with P. infestans, offering a novel perspective in examining the quantitative disease resistance against late blight.

13.
Adv Sci (Weinh) ; 10(29): e2302119, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37541435

RESUMO

Injectable hydrogels have attracted increasing attention for promoting systemic antitumor immune response through the co-delivery of chemotherapeutics and immunomodulators. However, the biosafety and bioactivity of conventional hydrogel depots are often impaired by insufficient possibilities for post-gelling injection and means for biofunction integration. Here, an unprecedented injectable stimuli-responsive immunomodulatory depot through programming a super-soft DNA hydrogel adjuvant is reported. This hydrogel system encoded with adenosine triphosphate aptamers can be intratumorally injected in a gel formulation and then undergoes significant molecular conformation change to stimulate the distinct release kinetics of co-encapsulated therapeutics. In this scenario, doxorubicin is first released to induce immunogenic cell death that intimately works together with the polymerized cytosine-phosphate-guanine oligodeoxynucleotide (CpG ODN) in gel scaffold for effectively recruiting and activating dendritic cells. The polymerized CpG ODN not only enhances tumor immunogenicity but minimizes free CpG-induced splenomegaly. Furthermore, the subsequently released anti-programmed cell death protein ligand 1 (aPDL1) blocks the corresponding immune inhibitory checkpoint molecule on tumor cells to sensitize antitumor T-cell immunity. This work thus contributes to the first proof-of-concept demonstration of a programmable super-soft DNA hydrogel system that perfectly matches the synergistic therapeutic modalities based on chemotherapeutic toxicity, in situ vaccination, and immune checkpoint blockade.


Assuntos
Hidrogéis , Microambiente Tumoral , Adjuvantes Imunológicos/farmacologia , Antígenos de Neoplasias , DNA , Imunoterapia , Trifosfato de Adenosina
14.
Nat Commun ; 14(1): 1434, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36918572

RESUMO

Rich spatiotemporal dynamics of cortical activity, including complex and diverse wave patterns, have been identified during unconscious and conscious brain states. Yet, how these activity patterns emerge across different levels of wakefulness remain unclear. Here we study the evolution of wave patterns utilizing data from high spatiotemporal resolution optical voltage imaging of mice transitioning from barbiturate-induced anesthesia to wakefulness (N = 5) and awake mice (N = 4). We find that, as the brain transitions into wakefulness, there is a reduction in hemisphere-scale voltage waves, and an increase in local wave events and complexity. A neural mass model recapitulates the essential cellular-level features and shows how the dynamical competition between global and local spatiotemporal patterns and long-range connections can explain the experimental observations. These mechanisms possibly endow the awake cortex with enhanced integrative processing capabilities.


Assuntos
Anestesia , Estado de Consciência , Camundongos , Animais , Vigília , Encéfalo , Inconsciência , Córtex Cerebral
15.
Natl Sci Rev ; 9(3): nwab102, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35355506

RESUMO

The brain network is notably cost-efficient, while the fundamental physical and dynamic mechanisms underlying its economical optimization in network structure and activity have not been determined. In this study, we investigate the intricate cost-efficient interplay between structure and dynamics in biologically plausible spatial modular neuronal network models. We observe that critical avalanche states from excitation-inhibition balance under modular network topology with less wiring cost can also achieve lower costs in firing but with strongly enhanced response sensitivity to stimuli. We derive mean-field equations that govern the macroscopic network dynamics through a novel approximate theory. The mechanism of low firing cost and stronger response in the form of critical avalanches is explained as a proximity to a Hopf bifurcation of the modules when increasing their connection density. Our work reveals the generic mechanism underlying the cost-efficient modular organization and critical dynamics widely observed in neural systems, providing insights into brain-inspired efficient computational designs.

16.
Insects ; 13(10)2022 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-36292826

RESUMO

Insects are sterol auxotrophs and typically obtain sterols from food. However, the sterol demand and metabolic capacity vary greatly among species, even for closely related species. The low survival of many insects on atypical sterols, such as cholestanol and cholestanone, raises the possibility of using sterol-modified plants to control insect herbivore pests. In this study, we evaluated two devastating migratory crop pests, Mythimna separata and Spodoptera frugiperda, in response to atypical sterols and explored the reasons that caused the divergences in sterol nutritional biology between them. Contrary to M. separata, S. frugiperda had unexpectedly high survival on cholestanone, and nearly 80% of the individuals pupated. Comparative studies, including insect response to multiple diets and larval body sterol/steroids analysis, were performed to explain their differences in cholestanone usage. Our results showed that, in comparison to M. separata, the superiority of S. frugiperda on cholestanone can be attributed to its higher efficiency of converting ketone into available stanol and its lower demand for sterols, which resulted in a better survival when cholesterol was unavailable. This research will help us to better understand insect sterol nutritional biology and the potential of using atypical sterols to control herbivorous insect pests.

17.
Chem Asian J ; 17(18): e202200702, 2022 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-35871606

RESUMO

Adding redox additives to conventional electrolytes is considered to be an effective method to improve electrochemical performance of the supercapacitors, which is ascribed to the additional Farady capacitance derived from the reversible redox reaction. Here, the influence of K3 Fe(CN)6 on electrochemical properties for single electrode system and the assembled solid-state supercapacitor are investigated. The carbon felt (CF) electrode in the mixed solution of K3 Fe(CN)6 /KCl exhibits remarkable specific capacitance of 2.45 F cm-2 after 5000 cycles, obviously much higher than conventional electrolyte KCl. The capacitance retention and the coulombic efficiency of the solid-state supercapacitor maintains 86.5% and 97% after 2500 cycles, symmetric supercapacitor shows a high energy density of 58 mWh L-1 at power density of 660 mW L-1 . Furthermore, the solid-state SCs exhibit excellent flexibility and four supercapacitors are capable of lighting up an LED lamp, demonstrating the potential of practical applications of the as-prepared solid-state SCs.

18.
ACS Appl Mater Interfaces ; 14(37): 42412-42419, 2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-36070359

RESUMO

A high-performance surface plasmon resonance (SPR) fiber sensor is proposed with hyperbolic metamaterials (HMMs), nanodiamonds (NDs), and polydimethylsiloxane (PDMS) to enhance the temperature sensitivity and response time. The HMM with tunable dispersion can break through the structural limitations of the optical fiber to improve the refractive index (RI) sensitivity, while NDs and PDMS with large thermo-optic coefficients enable to induce significant RI change under varied thermal fields. The ternary composite endows the sensor with a high temperature sensitivity of -9.021 nm/°C, which is 28.6 times higher than that of the conventional gold film-based SPR sensor. Furthermore, NDs with high thermal conductivity (2200 W/mK) effectively expedite the thermal response of PDMS, which reduces the response time from 80 to 6 s. It is believed that the proposed sensors with high sensitivity, fast response time, and compact size have great potential for applications in industrial production, healthcare, environmental monitoring, etc.

19.
Lasers Surg Med ; 43(6): 516-21, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21761422

RESUMO

BACKGROUND: The femtosecond (FS) pulse laser incises soft tissues with minimal peripheral damage and is a promising cutting tool for ureteroscopic endoureterotomy of benign ureteral strictures. OBJECTIVE: To evaluate the feasibility of applying the FS laser to ureteroscopic endoureterotomy. MATERIALS AND METHODS: A commercial Ti:Sapphire regenerative amplifier system (Coherent, RegA 9050, USA) was used in this study. Normal saline, 5% glucose solution, 4% mannitol solution, distilled water, and a 1% (v/v) suspension of whole blood with each of these solutions were tested for their attenuation rate (AR) of the FS laser's power. Bladder specimens from Sprague-Dawley (SD) rats were used as a surrogate model. The laser incised slots of 2 mm in length at bladder samples using three power grades (5×, 10×, and 20× the threshold power) combined with five effective pulse rates (40, 20, 10, 5, and 2.5 kHz), both in air and in normal saline. After samples were processed with standard hematoxylin-eosin staining procedures, the incision depth and collateral damage range were determined microscopically. RESULTS: The ARs of blood suspensions with each of the three isosmotic solutions were significantly higher than the other five solutions (P < 0.001). The FS laser's cutting depth and the collateral damage were increased with the laser power or power density but the collateral damages were less than 100 µm. Microbubble formation was detected in the liquid environments tested and influenced the effective laser power. CONCLUSIONS: Endoscopic application of the FS laser is feasible. Microbubble formation with the laser incision, however, may influence cutting effects. Proposed methods to address these issues include increasing the irrigation rate, using distilled water as irrigation or using gas insufflation instead of irrigation. It is necessary to evaluate these methods, as well as the long-term biologic response to laser incision, on living animal models in endoscopic settings before use on humans.


Assuntos
Terapia a Laser/métodos , Ureter/cirurgia , Obstrução Ureteral/cirurgia , Ureteroscopia , Bexiga Urinária/cirurgia , Animais , Estudos de Viabilidade , Técnicas In Vitro , Ratos , Ratos Sprague-Dawley
20.
Nat Nanotechnol ; 16(6): 661-666, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33875868

RESUMO

Active metasurfaces promise reconfigurable optics with drastically improved compactness, ruggedness, manufacturability and functionality compared to their traditional bulk counterparts. Optical phase-change materials (PCMs) offer an appealing material solution for active metasurface devices with their large index contrast and non-volatile switching characteristics. Here we report a large-scale, electrically reconfigurable non-volatile metasurface platform based on optical PCMs. The optical PCM alloy used in the devices, Ge2Sb2Se4Te (GSST), uniquely combines giant non-volatile index modulation capability, broadband low optical loss and a large reversible switching volume, enabling notably enhanced light-matter interactions within the active optical PCM medium. Capitalizing on these favourable attributes, we demonstrated quasi-continuously tuneable active metasurfaces with record half-octave spectral tuning range and large optical contrast of over 400%. We further prototyped a polarization-insensitive phase-gradient metasurface to realize dynamic optical beam steering.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA