Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 543(7645): 411-415, 2017 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-28300096

RESUMO

Aviation-related aerosol emissions contribute to the formation of contrail cirrus clouds that can alter upper tropospheric radiation and water budgets, and therefore climate. The magnitude of air-traffic-related aerosol-cloud interactions and the ways in which these interactions might change in the future remain uncertain. Modelling studies of the present and future effects of aviation on climate require detailed information about the number of aerosol particles emitted per kilogram of fuel burned and the microphysical properties of those aerosols that are relevant for cloud formation. However, previous observational data at cruise altitudes are sparse for engines burning conventional fuels, and no data have previously been reported for biofuel use in-flight. Here we report observations from research aircraft that sampled the exhaust of engines onboard a NASA DC-8 aircraft as they burned conventional Jet A fuel and a 50:50 (by volume) blend of Jet A fuel and a biofuel derived from Camelina oil. We show that, compared to using conventional fuels, biofuel blending reduces particle number and mass emissions immediately behind the aircraft by 50 to 70 per cent. Our observations quantify the impact of biofuel blending on aerosol emissions at cruise conditions and provide key microphysical parameters, which will be useful to assess the potential of biofuel use in aviation as a viable strategy to mitigate climate change.


Assuntos
Aeronaves/instrumentação , Biocombustíveis/análise , Material Particulado/análise , Emissões de Veículos/análise , Emissões de Veículos/prevenção & controle , Aerossóis/análise , Aerossóis/química , Aquecimento Global/prevenção & controle , Efeito Estufa/prevenção & controle , Material Particulado/química
2.
Environ Sci Technol ; 45(24): 10394-400, 2011 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-22044020

RESUMO

The modification of emissions of climate-sensitive exhaust compounds such as CO(2), NO(x), hydrocarbons, and particulate matter from medium-speed marine diesel engines was studied for a set of fossil and biogenic fuels. Applied fossil fuels were the reference heavy fuel oil (HFO) and the low-sulfur marine gas oil (MGO); biogenic fuels were palm oil, soybean oil, sunflower oil, and animal fat. Greenhouse gas (GHG) emissions related to the production of biogenic fuels were treated by means of a fuel life cycle analysis which included land use changes associated with the growth of energy plants. Emissions of CO(2) and NO(x) per kWh were found to be similar for fossil fuels and biogenic fuels. PM mass emission was reduced to 10-15% of HFO emissions for all low-sulfur fuels including MGO as a fossil fuel. Black carbon emissions were reduced significantly to 13-30% of HFO. Changes in emissions were predominantly related to particulate sulfate, while differences between low-sulfur fossil fuels and low-sulfur biogenic fuels were of minor significance. GHG emissions from the biogenic fuel life cycle (FLC) depend crucially on energy plant production conditions and have the potential of shifting the overall GHG budget from positive to negative compared to fossil fuels.


Assuntos
Poluentes Atmosféricos/análise , Biocombustíveis , Navios/métodos , Emissões de Veículos/análise , Poluição do Ar/estatística & dados numéricos , Efeito Estufa , Navios/instrumentação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA