Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Anim Ecol ; 91(7): 1345-1360, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35362103

RESUMO

Light-level geolocators have revolutionised the study of animal behaviour. However, lacking spatial precision, their usage has been primary targeted towards the analysis of large-scale movements. Recent technological developments have allowed the integration of magnetometers and accelerometers into geolocator tags in addition to barometers and thermometers, offering new behavioural insights. Here, we introduce an R toolbox for identifying behavioural patterns from multisensor geolocator tags, with functions specifically designed for data visualisation, calibration, classification and error estimation. More specifically, the package allows for the flexible analysis of any combination of sensor data using k-means clustering, expectation maximisation binary clustering, hidden Markov models and changepoint analyses. Furthermore, the package integrates tailored algorithms for identifying periods of prolonged high activity (most commonly used for identifying migratory flapping flight), and pressure changes (most commonly used for identifying dive or flight events). Finally, we highlight some of the limitations, implications and opportunities of using these methods.


Les géolocalisateurs lumineux ont révolutionné l'étude du comportement animal. Toutefois, en raison de leur manque de précision spatiale, leur utilisation a été principalement dirigée vers l'analyse de mouvements à grandes échelles. Les développements technologiques récents ont permis l'intégration de magnétomètres et d'accéléromètres dans les balises de géolocalisation, en plus de baromètres et de thermomètres, permettant de nouvelles analyses du comportement animalier. Nous présentons ici notre R package pour l'identification de modèles comportementaux à partir de balises géolocalisatrices multisensoriels. Le package intègre des fonctions conçues spécifiquement pour la visualisation de données, la calibration des balises, la classification du comportement et l'estimation des erreurs d'analyses. Plus précisément, le package permet l'analyse flexible de n'importe quelle combinaison de capteurs de données en utilisant le k-means clustering, le expectation maximisation binary clustering, les hidden Markov models et les analyses changepoint. En outre, le package intègre des algorithmes adaptés pour identifier les périodes de haute activité prolongée (le plus souvent utilisé pour identifier le vol migratoire d'oiseaux), et les changements de pression (le plus souvent utilisé pour identifier des periodes où l'animal est en plongée ou au vol). Enfin, nous soulignons les limites, les implications et les opportunités d'utilisation de ces méthodes.


Assuntos
Comportamento Animal , Passeriformes , Aceleração , Animais , Fenômenos Magnéticos , Temperatura
2.
Glob Chang Biol ; 27(4): 768-780, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33151018

RESUMO

Climate change is drastically changing the timing of biological events across the globe. Changes in the phenology of seasonal migrations between the breeding and wintering grounds have been observed across biological taxa, including birds, mammals, and insects. For birds, strong links have been shown between changes in migration phenology and changes in weather conditions at the wintering, stopover, and breeding areas. For other animal taxa, the current understanding of, and evidence for, climate (change) influences on migration still remains rather limited, mainly due to the lack of long-term phenology datasets. Bracken Cave in Texas (USA) holds one of the largest bat colonies of the world. Using weather radar data, a unique 23-year (1995-2017) long time series was recently produced of the spring and autumn migration phenology of Brazilian free-tailed bats (Tadarida brasiliensis) at Bracken Cave. Here, we analyse these migration phenology time series in combination with gridded temperature, precipitation, and wind data across Mexico and southern USA, to identify the climatic drivers of (changes in) bat migration phenology. Perhaps surprisingly, our extensive spatiotemporal search did not find temperature to influence either spring or autumn migration. Instead, spring migration phenology seems to be predominantly driven by wind conditions at likely wintering or spring stopover areas during the migration period. Autumn migration phenology, on the other hand, seems to be dominated by precipitation to the east and north-east of Bracken Cave. Long-term changes towards more frequent migration and favourable wind conditions have, furthermore, allowed spring migration to occur 16 days earlier. Our results illustrate how some of the remaining knowledge gaps on the influence of climate (change) on bat migration and abundance can be addressed using weather radar analyses.


Assuntos
Migração Animal , Quirópteros , Animais , Mudança Climática , México , Estações do Ano , Texas , Tempo (Meteorologia)
3.
Proc Biol Sci ; 286(1897): 20182821, 2019 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-30963841

RESUMO

In many taxa, the most common form of sex-biased migration timing is protandry-the earlier arrival of males at breeding areas. Here we test this concept across the annual cycle of long-distance migratory birds. Using more than 350 migration tracks of small-bodied trans-Saharan migrants, we quantify differences in male and female migration schedules and test for proximate determinants of sex-specific timing. In autumn, males started migration about 2 days earlier, but this difference did not carry over to arrival at the non-breeding sites. In spring, males on average departed from the African non-breeding sites about 3 days earlier and reached breeding sites ca 4 days ahead of females. A cross-species comparison revealed large variation in the level of protandry and protogyny across the annual cycle. While we found tight links between individual timing of departure and arrival within each migration season, only for males the timing of spring migration was linked to the timing of previous autumn migration. In conclusion, our results demonstrate that protandry is not exclusively a reproductive strategy but rather occurs year-round and the two main proximate determinants for the magnitude of sex-biased arrival times in autumn and spring are sex-specific differences in departure timing and migration duration.


Assuntos
Migração Animal , Aves/fisiologia , África do Norte , Animais , Europa (Continente) , Feminino , Masculino , Reprodução , Estações do Ano , Fatores Sexuais , Aves Canoras/fisiologia
4.
J Theor Biol ; 454: 126-138, 2018 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-29874554

RESUMO

Crossing of large ecological barriers, such as mountains, is in terms of energy considered to be a demanding and critical step during bird migration. Besides forming a geographical barrier, mountains have a profound impact on the resulting wind flow. We use a novel framework of mathematical models to investigate the influences of wind and topography on nocturnal passerine bird behaviour, and to assess the energy costs for different flight strategies for crossing the Jura Mountains. The mathematical models include three biological models of bird behaviour: i) wind drift compensation; ii) adaptation of flight height for favourable winds; and, iii) avoidance of obstacles (cross over and/or circumvention of an obstacle following a minimum energy expenditure strategy), which are assessed separately and in combination. Further, we use a mesoscale weather model for high-resolution predictions of the wind fields. We simulate the broad front nocturnal passerine migration for autumn nights with peak migration intensities. The bird densities retrieved from a weather radar are used as the initial intensities and to specify the vertical distributions of the simulated birds. It is shown that migration over complex terrain represents the most expensive flight option in terms of energy expenditure, and wind is seen to be the main factor that influences the energy expenditure in the bird's preferred flight direction. Further, the combined effects of wind and orography lead to a high concentration of migratory birds within the favourable wind conditions of the Swiss lowlands and north of the Jura Mountains.


Assuntos
Altitude , Migração Animal/fisiologia , Ciências Biocomportamentais , Aves/fisiologia , Voo Animal/fisiologia , Vento , Adaptação Fisiológica , Animais , Comportamento Animal/fisiologia , Geografia , Modelos Teóricos , Vigilância da População , Radar , Estações do Ano , Navegação Espacial/fisiologia , Tempo (Meteorologia)
5.
Artigo em Inglês | MEDLINE | ID: mdl-28508130

RESUMO

The extraordinary adaptations of birds to contend with atmospheric conditions during their migratory flights have captivated ecologists for decades. During the 21st century technological advances have sparked a revival of research into the influence of weather on migrating birds. Using biologging technology, flight behaviour is measured across entire flyways, weather radar networks quantify large-scale migratory fluxes, citizen scientists gather observations of migrant birds and mechanistic models are used to simulate migration in dynamic aerial environments. In this review, we first introduce the most relevant microscale, mesoscale and synoptic scale atmospheric phenomena from the point of view of a migrating bird. We then provide an overview of the individual responses of migrant birds (when, where and how to fly) in relation to these phenomena. We explore the cumulative impact of individual responses to weather during migration, and the consequences thereof for populations and migratory systems. In general, individual birds seem to have a much more flexible response to weather than previously thought, but we also note similarities in migratory behaviour across taxa. We propose various avenues for future research through which we expect to derive more fundamental insights into the influence of weather on the evolution of migratory behaviour and the life-history, population dynamics and species distributions of migrant birds.


Assuntos
Migração Animal/fisiologia , Aves/fisiologia , Voo Animal/fisiologia , Tempo (Meteorologia) , Animais
6.
J Anim Ecol ; 86(2): 239-249, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28000219

RESUMO

Life of many organisms flows as a sequence of annual cycles. Timing of cyclical events is shaped by natural selection also via the domino effects that any life history stage has on the stages that follow. Such 'carry-over effects' have major consequences for evolutionary, ecological and demographic processes, but the causes that generate their individual-level variation, including the effect of sex, are poorly understood. We used light-level geolocators to study carry-over effects on the year-round life cycle of the long-distance migratory barn swallow (Hirundo rustica) and sex-dependent variation in their strength. Correlation analyses showed that timing of breeding influenced departure time for autumn migration in females but not in males. In addition, strong, time-mediated carry-over effects of timing of departure from the wintering areas in sub-Saharan Africa for spring migration on timing of arrival to the breeding grounds in Italy and Switzerland operated in both sexes. However, carry-over effects of spring migration phenology on breeding date and seasonal fecundity were observed among females but not among males. We used partial least squares path modelling to unveil the complex carry-over effects of phenology during the non-breeding season in combination with the ecological conditions experienced by individual swallows in the wintering area, as gauged by Normalized Difference Vegetation Index values (NDVI), on breeding performance. Phenology during the non-breeding season combined with NDVI during wintering accounted for as much as 65-70% of variation in subsequent seasonal fecundity in females, while such carry-over effects on breeding success of males were weaker. Intense, sex-specific carry-over effects can have impacted on evolutionary processes, including sexual selection, and affected phenological response to climate change, causing the large population decline observed in this species.


Assuntos
Migração Animal , Fertilidade , Reprodução , Andorinhas/fisiologia , Animais , Feminino , Itália , Masculino , Seleção Genética , Andorinhas/genética , Suíça
7.
Oecologia ; 184(4): 799-812, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28741127

RESUMO

Variation in wing morphology results from the combination of diverse selection pressures. Wing feather morphology within species varies with sex and ontogenetic effects, and also with ecological factors. Yet, the direction of causation for the wing morphology-ecology association remains to be elucidated. Under the 'ecology-dependence' hypothesis, wing morphology covaries with ecological conditions, because the latter affect feather molt. Alternatively, the 'habitat choice' hypothesis posits that individuals with different wing morphology choose different habitats because of the habitat-dependent advantages of a specific wing morphology. We tested these competing hypotheses in the migratory, aerially insectivorous barn swallow (Hirundo rustica). We quantified wing morphology (isometric size, pointedness, and convexity) on the same individuals during consecutive breeding seasons (i.e., before and after molt in sub-Saharan wintering areas) and located wintering areas using light-level geolocators. Wing pointedness of females but not males during 1 year negatively correlated with vegetation vigor (gauged by the Normalized Difference Vegetation Index; NDVI) in the African area where individuals spent the next winter. Partial least-squares path modelling showed that the association between wing morphology and NDVI was sex-dependent. Conversely, NDVI during wintering did not predict wing morphology in the next breeding season. Because wing morphology can have carry-over effects on subsequent performance, we investigated selection on wing traits and found strong positive fecundity selection on wing size of females. Our results suggest that female barn swallows choose their wintering habitat depending on their wing morphology. In addition, directional fecundity selection operates on females, suggesting sex-dependence of current selection on the flight apparatus.


Assuntos
Migração Animal , Ecologia , Plumas , Fertilidade , Andorinhas , África do Norte , Animais , Cruzamento , Ecossistema , Plumas/anatomia & histologia , Feminino , Masculino , Muda , Fenótipo , Estações do Ano
8.
Oecologia ; 178(4): 1105-12, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25822115

RESUMO

Contingent individual performance can depend on the environment experienced at previous life-stages. Migratory birds are especially susceptible to such carry-over effects as they periodically travel between breeding ranges and 'wintering' areas where they may experience broadly different ecological conditions. However, the study of carry-over effects is hampered by the difficulty of tracking vagile organisms throughout their annual life-cycle. Using information from light-level geolocators on the barn swallow (Hirundo rustica), we tested if feather growth bar width (GBW), a proxy of feather growth rate which depends on individual condition, and wing isometric size and shape predict the phenology of subsequent migration. GBW did not predict duration of wintering but negatively predicted the duration of spring migration and arrival date to the breeding sites, suggesting that migration phenology is not constrained by molt, and individuals in prime condition achieve both faster molt and earlier arrival. Wing morphology did not predict migration duration, as expected if wing shape were optimized for foraging, rather than migration performance, in this aerially foraging, insectivorous bird. Thus, we showed for the first time that migration phenology in a long-distance migratory bird covaries with body condition during wintering, as reflected by the growth rate of feathers.


Assuntos
Migração Animal/fisiologia , Plumas/crescimento & desenvolvimento , Muda , Andorinhas/fisiologia , Animais , Feminino , Luz , Masculino , Estações do Ano , Asas de Animais/fisiologia
9.
Ecol Lett ; 17(6): 670-9, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24641086

RESUMO

Aerodynamic theory postulates that gliding airspeed, a major flight performance component for soaring avian migrants, scales with bird size and wing morphology. We tested this prediction, and the role of gliding altitude and soaring conditions, using atmospheric simulations and radar tracks of 1346 birds from 12 species. Gliding airspeed did not scale with bird size and wing morphology, and unexpectedly converged to a narrow range. To explain this discrepancy, we propose that soaring-gliding birds adjust their gliding airspeed according to the risk of grounding or switching to costly flapping flight. Introducing the Risk Aversion Flight Index (RAFI, the ratio of actual to theoretical risk-averse gliding airspeed), we found that inter- and intraspecific variation in RAFI positively correlated with wing loading, and negatively correlated with convective thermal conditions and gliding altitude, respectively. We propose that risk-sensitive behaviour modulates the evolution (morphology) and ecology (response to environmental conditions) of bird soaring flight.


Assuntos
Migração Animal , Aves/anatomia & histologia , Aves/fisiologia , Voo Animal/fisiologia , Animais , Comportamento Animal/fisiologia , Evolução Biológica , Fenômenos Biomecânicos , Especificidade da Espécie , Asas de Animais/anatomia & histologia
10.
Mov Ecol ; 12(1): 41, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38816784

RESUMO

BACKGROUND: Migrating birds fly non-stop for hours or even for days. They rely mainly on fat as fuel complemented by a certain amount of protein. Studies on homing pigeons and birds flying in a wind-tunnel suggest that the shares of fat and protein on total energy expenditure vary with flight duration and body fat stores. Also, flight behaviour, such as descending flight, is expected to affect metabolism. However, studies on free flying migrant birds under natural conditions are lacking. METHODS: On a Swiss Alpine pass, we caught three species of nocturnal migrant passerines out of their natural migratory flight. Since most night migrants start soon after dusk, we used time since dusk as a measure of flight duration. We used plasma concentrations of metabolites of the fat, protein, and carbohydrate metabolism as indicators of relative fuel use. We used flight altitudes of birds tracked with radar and with atmospheric pressure loggers to characterize flight behaviour. RESULTS: The indicators of fat catabolism (triglycerides, very low-density lipoproteins, glycerol) were positively correlated with body energy stores, supporting earlier findings that birds with high fat stores have a higher fat catabolism. As expected, plasma levels of triglycerides, very low-density lipoproteins, glycerol and ß-hydroxy-butyrate increased at the beginning of the night, indicating that nocturnal migrants increased their fat metabolism directly after take-off. Surprisingly, fat catabolism as well as glucose levels decreased in the second half of the night. Data from radar observations showed that the number of birds aloft, their mean height above ground and vertical flight speed decreased after midnight. Together with the findings from atmospheric pressure-loggers put on three species, this shows that nocturnal migrants migrating over continental Europe descend slowly during about 1.5 h before final landfall at night, which results in 11-30% energy savings according to current flight models. CONCLUSIONS: We suggest that this slow descent reduces energy demands to an extent which is noticeable in the plasma concentration of lipid, protein, and carbohydrate metabolites. The slow descent may facilitate the search for a suitable resting habitat and serve to refill glycogen stores needed for foraging and predator escape when landed.

11.
Philos Trans R Soc Lond B Biol Sci ; 379(1904): 20230116, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38705191

RESUMO

Many insects depend on high-altitude, migratory movements during part of their life cycle. The daily timing of these migratory movements is not random, e.g. many insect species show peak migratory flight activity at dawn, noon or dusk. These insects provide essential ecosystem services such as pollination but also contribute to crop damage. Quantifying the diel timing of their migratory flight and its geographical and seasonal variation, are hence key towards effective conservation and pest management. Vertical-looking radars provide continuous and automated measurements of insect migration, but large-scale application has not been possible because of limited availability of suitable devices. Here, we quantify patterns in diel flight periodicity of migratory insects between 50 and 500 m above ground level during March-October 2021 using a network of 17 vertical-looking radars across Europe. Independent of the overall daily migratory movements and location, peak migratory movements occur around noon, during crepuscular evening and occasionally the morning. Relative daily proportions of insect migration intensity and traffic during the diel phases of crepuscular-morning, day, crepuscular-evening and night remain largely equal throughout May-September and across Europe. These findings highlight, extend, and generalize previous regional-scale findings on diel migratory insect movement patterns to the whole of temperate Europe. This article is part of the theme issue 'Towards a toolkit for global insect biodiversity monitoring'.


Assuntos
Altitude , Migração Animal , Voo Animal , Insetos , Animais , Voo Animal/fisiologia , Europa (Continente) , Insetos/fisiologia , Estações do Ano
12.
Oecologia ; 173(4): 1217-25, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23839267

RESUMO

Whether migratory animals use similar resources during continental-scale movements that characterize their annual cycles is highly relevant to both individual performances and population dynamics. Direct knowledge of the locations and resources used by migrants during non-breeding is generally scarce. Our goal was to estimate migratory connectivity of a small Palaearctic long-distance migrant, the common nightingale Luscinia megarhynchos, and to compare resources used in non-breeding areas with resources used at the breeding grounds. We tracked individuals of three geographically separated populations and characterised their stable isotope niches during breeding and non-breeding over 2 years. Individuals spent the non-breeding period in population-specific clusters from west to central Africa, indicating strong migratory connectivity at the population level. Irrespective of origin, their isotopic niches were surprisingly similar within a particular period, although sites of residence were distant. However, niche characteristics differed markedly between breeding and non-breeding periods, indicating a consistent seasonal isotopic niche shift in the sampled populations. Although nightingales of distinct breeding populations migrated to different non-breeding areas, they chose similar foraging conditions within specific periods. However, nightingales clearly changed resource use between breeding and non-breeding periods, indicating adaptations to changes in food availability.


Assuntos
Migração Animal , Ecossistema , Estações do Ano , Aves Canoras , África Subsaariana , Animais , Cruzamento , Bulgária , Isótopos de Carbono/análise , Feminino , França , Itália , Masculino , Isótopos de Nitrogênio/análise
13.
Sci Rep ; 13(1): 15114, 2023 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-37704700

RESUMO

Insects are of increasing conservation concern as a severe decline of both biomass and biodiversity have been reported. At the same time, data on where and when they occur in the airspace is still sparse, and we currently do not know whether their density is linked to the type of landscape above which they occur. Here, we combined data of high-flying insect abundance from six locations across Switzerland representing rural, urban and mountainous landscapes, which was recorded using vertical-looking radar devices. We analysed the abundance of high-flying insects in relation to meteorological factors, daytime, and type of landscape. Air pressure was positively related to insect abundance, wind speed showed an optimum, and temperature and wind direction did not show a clear relationship. Mountainous landscapes showed a higher insect abundance than the other two landscape types. Insect abundance increased in the morning, decreased in the afternoon, had a peak after sunset, and then declined again, though the extent of this general pattern slightly differed between landscape types. We conclude that the abundance of high-flying insects is not only related to abiotic parameters, but also to the type of landscapes and its characteristics, which, on a long-term, should be taken into account for when designing conservation measures for insects.


Assuntos
Biodiversidade , Insetos , Animais , Pressão do Ar , Biomassa , Conceitos Meteorológicos
14.
Mov Ecol ; 11(1): 19, 2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-37020307

RESUMO

BACKGROUND: To understand the ecology of long-distance migrant bird species, it is necessary to study their full annual cycle, including migratory routes and stopovers. This is especially important for species in high-elevation habitats that are particularly vulnerable to environmental change. Here, we investigated both local and global movements during all parts of the annual cycle in a small trans-Saharan migratory bird breeding at high elevation. METHODS: Recently, multi-sensor geolocators have opened new research opportunities in small-sized migratory organisms. We tagged Northern Wheatears Oenanthe oenanthe from the central-European Alpine population with loggers recording atmospheric pressure and light intensity. We modelled migration routes and identified stopover and non-breeding sites by correlating the atmospheric pressure measured on the birds with global atmospheric pressure data. Furthermore, we compared barrier-crossing flights with other migratory flights and studied the movement behaviour throughout the annual cycle. RESULTS: All eight tracked individuals crossed the Mediterranean Sea, using islands for short stops, and made longer stopovers in the Atlas highlands. Single non-breeding sites were used during the entire boreal winter and were all located in the same region of the Sahel. Spring migration was recorded for four individuals with similar or slightly different routes compared to autumn. Migratory flights were typically nocturnal and characterized by fluctuating altitudes, frequently reaching 2000 to 4000 m a.s.l, with a maximum of up to 5150 m. Barrier-crossing flights, i.e., over the sea and the Sahara, were longer, higher, and faster compared to flights above favourable stopover habitat. In addition, we detected two types of altitudinal movements at the breeding site. Unexpected regular diel uphill movements were undertaken from the breeding territories towards nearby roosting sites at cliffs, while regional scale movements took place in response to local meteorological conditions during the pre-breeding period. CONCLUSION: Our data inform on both local and global scale movements, providing new insights into migratory behaviour and local movements in small songbirds. This calls for a wider use of multi-sensor loggers in songbird migration research, especially for investigating both local and global movements in the same individuals.

15.
Ecol Evol ; 12(8): e9146, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35923938

RESUMO

Wind has a significant yet complex effect on bird migration speed. With prevailing south wind, overall migration is generally faster in spring than in autumn. However, studies on the difference in airspeed between seasons have shown contrasting results so far, in part due to their limited geographical or temporal coverage. Using the first full-year weather radar data set of nocturnal bird migration across western Europe together with wind speed from reanalysis data, we investigate variation of airspeed across season. We additionally expand our analysis of ground speed, airspeed, wind speed, and wind profit variation across time (seasonal and daily) and space (geographical and altitudinal). Our result confirms that wind plays a major role in explaining both temporal and spatial variabilities in ground speed. The resulting airspeed remains relatively constant at all scales (daily, seasonal, geographically and altitudinally). We found that spring airspeed is overall 5% faster in Spring than autumn, but we argue that this number is not significant compared to the biases and limitation of weather radar data. The results of the analysis can be used to further investigate birds' migratory strategies across space and time, as well as their energy use.

16.
Sci Rep ; 12(1): 4964, 2022 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-35322145

RESUMO

During their annual migration, avian migrants alternate stopover periods, for refuelling, with migratory flight bouts. We hypothesise that European Nightjars (Caprimulgus europaeus) adapt their daily migration tactics in association with biomes. We tracked the autumn migration of 24 European Nightjars, from breeding populations in Mongolia, Belgium and UK, using GPS-loggers and multi-sensor data loggers. We quantified crepuscular and nocturnal migration and foraging probabilities, as well as daily travel speed and flight altitude during active migration in response to biomes. Nightjars adopt a rush tactic, reflected in high daily travel speed, flight altitude and high migration probabilities at dusk and at night, when travelling through ecological barriers. Migration is slower in semi-open, hospitable biomes. This is reflected in high foraging probabilities at dusk, lower daily travel speed and lower migration probabilities at dusk. Our study shows how nightjars switch migration tactics during autumn migration, and suggest nightjars alternate between feeding and short migratory flight bouts within the same night when travelling through suitable habitats. How this may affect individuals' fuel stores and whether different biomes provide refuelling opportunities en route remains to be investigated, to understand how future land-use change may affect migration patterns and survival probabilities.


Assuntos
Migração Animal , Estrigiformes , Altitude , Migração Animal/fisiologia , Animais , Ecossistema , Eulipotyphla , Humanos , Estações do Ano
17.
J R Soc Interface ; 18(179): 20210194, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34157892

RESUMO

To understand the influence of biomass flows on ecosystems, we need to characterize and quantify migrations at various spatial and temporal scales. Representing the movements of migrating birds as a fluid, we applied a flow model to bird density and velocity maps retrieved from the European weather radar network, covering almost a year. We quantified how many birds take-off, fly, and land across Western Europe to (1) track bird migration waves between nights, (2) cumulate the number of birds on the ground and (3) quantify the seasonal flow into and out of the study area through several regional transects. Our results identified several migration waves that crossed the study area in 4 days only and included up to 188 million (M) birds that took-off in a single night. In spring, we estimated that 494 M birds entered the study area, 251 M left it, and 243 M birds remained within the study area. In autumn, 314 M birds entered the study area while 858 M left it. In addition to identifying fundamental quantities, our study highlights the potential of combining interdisciplinary data and methods to elucidate the dynamics of avian migration from nightly to yearly time scales and from regional to continental spatial scales.


Assuntos
Migração Animal , Voo Animal , Animais , Aves , Ecossistema , Europa (Continente) , Hidrodinâmica , Estações do Ano
18.
Ecol Evol ; 10(14): 7106-7116, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32760515

RESUMO

Biological rhythms of nearly all animals on earth are synchronized with natural light and are aligned to day-and-night transitions. Here, we test the hypothesis that the lunar cycle affects the nocturnal flight activity of European Nightjars (Caprimulgus europaeus). We describe daily activity patterns of individuals from three different countries across a wide geographic area, during two discrete periods in the annual cycle. Although the sample size for two of our study sites is small, the results are clear in that on average individual flight activity was strongly correlated with both local variation in day length and with the lunar cycle. We highlight the species' sensitivity to changes in ambient light and its flexibility to respond to such changes in different parts of the world.

19.
J R Soc Interface ; 5(26): 1041-53, 2008 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-18331979

RESUMO

Bird identification with radar is important for bird migration research, environmental impact assessments (e.g. wind farms), aircraft security and radar meteorology. In a study on bird migration, radar signals from birds, insects and ground clutter were recorded. Signals from birds show a typical pattern due to wing flapping. The data were labelled by experts into the four classes BIRD, INSECT, CLUTTER and UFO (unidentifiable signals). We present a classification algorithm aimed at automatic recognition of bird targets. Variables related to signal intensity and wing flapping pattern were extracted (via continuous wavelet transform). We used support vector classifiers to build predictive models. We estimated classification performance via cross validation on four datasets. When data from the same dataset were used for training and testing the classifier, the classification performance was extremely to moderately high. When data from one dataset were used for training and the three remaining datasets were used as test sets, the performance was lower but still extremely to moderately high. This shows that the method generalizes well across different locations or times. Our method provides a substantial gain of time when birds must be identified in large collections of radar signals and it represents the first substantial step in developing a real time bird identification radar system. We provide some guidelines and ideas for future research.


Assuntos
Aves , Modelos Biológicos , Radar , Asas de Animais , Algoritmos , Animais
20.
Curr Biol ; 28(17): 2824-2830.e3, 2018 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-30146151

RESUMO

Thousands of species migrate [1]. Though we have some understanding of where and when they travel, we still have very little insight into who migrates with whom and for how long. Group formation is pivotal in allowing individuals to interact, transfer information, and adapt to changing conditions [2]. Yet it is remarkably difficult to infer group membership in migrating animals without being able to directly observe them. Here, we use novel lightweight atmospheric pressure loggers to monitor group dynamics in a small migratory bird, the European bee-eater (Merops apiaster). We present the first evidence of a migratory bird flying together with non-kin of different ages and sexes at all stages of the life cycle. In fact, 49% stay together throughout the annual cycle, never separating longer than 5 days at a time despite the ∼14,000-km journey. Of those that separated for longer, 89% reunited within less than a month with individuals they had previously spent time with, having flown up to 5,000 km apart. These birds were not only using the same non-breeding sites, but also displayed coordinated foraging behaviors-these are unlikely to result from chance encounters in response to the same environmental conditions alone. Better understanding of migratory group dynamics, using the presented methods, could help improve our understanding of collective decision making during large-scale movements.


Assuntos
Migração Animal/fisiologia , Aves/fisiologia , África , Animais , Europa (Continente) , Monitorização Fisiológica , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA