Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Molecules ; 25(4)2020 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-32054138

RESUMO

Tryptophan is one of the most extensively used amino acids in livestock industry owing to its effectiveness in enhancing the growth performance of animals. Conventionally, the production of tryptophan relies heavily on genetically modified Escherichia coli but its pathogenicity is a great concern. Our recent study demonstrated that a lactic acid bacterium (LAB), Pediococcus acidilactici TP-6 that isolated from Malaysian food was a promising tryptophan producer. However, the tryptophan production must enhance further for viable industrial application. Hence, the current study evaluated the effects of medium components and optimized the medium composition for tryptophan production by P. acidilactici TP-6 statistically using Plackett-Burman Design, and Central Composite Design. The optimized medium containing molasses (14.06 g/L), meat extract (23.68 g/L), urea (5.56 g/L) and FeSO4 (0.024 g/L) significantly enhanced the tryptophan production by 150% as compared to the control de Man, Rogosa and Sharpe medium. The findings obtained in this study revealed that rapid evaluation and effective optimization of medium composition governing tryptophan production by P. acidilactici TP-6 were feasible via statistical approaches. Additionally, the current findings reveal the potential of utilizing LAB as a safer alternative tryptophan producer and provides insight for future exploitation of various amino acid productions by LAB.


Assuntos
Fermentação , Microbiologia de Alimentos , Pediococcus acidilactici/metabolismo , Triptofano/biossíntese , Aminoácidos/metabolismo , Análise de Variância , Ácido Láctico/metabolismo , Pediococcus acidilactici/isolamento & purificação
2.
Microb Cell Fact ; 18(1): 125, 2019 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-31331395

RESUMO

BACKGROUND: Threonine is an essential amino acid that is extensively used in livestock industry as feed supplement due to its pronounced effect in improving the growth performance of animals. Application of genetically engineered bacteria for amino acid production has its share of controversies after eosinophils myalgia syndrome outbreak in 1980s. This has urged for continuous search for a food grade producer as a safer alternative for industrial amino acid production. Lactic acid bacteria (LAB) appear as an exceptional candidate owing to their non-pathogenic nature and reputation of Generally Recognized as Safe (GRAS) status. Recently, we have identified a LAB, Pediococcus pentosaceus TL-3, isolated from Malaysian food as a potential threonine producer. Thus, the objective of this study was to enhance the threonine production by P. pentosaceus TL-3 via optimized medium developed by using Plackett-Burman design (PBD) and central composite design (CCD). RESULTS: Molasses, meat extract, (NH4)2SO4, and MnSO4 were identified as the main medium components for threonine production by P. pentosaceus TL-3. The optimum concentration of molasses, meat extract, (NH4)2SO4 and MnSO4 were found to be 30.79 g/L, 25.30 g/L, 8.59 g/L, and 0.098 g/L respectively based on model obtained in CCD with a predicted net threonine production of 123.07 mg/L. The net threonine production by P. pentosaceus TL-3 in the optimized medium was enhanced approximately 2 folds compared to the control. CONCLUSIONS: This study has revealed the potential of P. pentosaceus TL-3 as a safer alternative to produce threonine. Additionally, the current study has identified the key medium components affecting the production of threonine by P. pentosaceus TL-3, followed by optimization of their concentrations by means of statistical approach. The findings of this study could act as a guideline for the future exploration of amino acid production by LAB.


Assuntos
Meios de Cultura/química , Pediococcus pentosaceus/metabolismo , Treonina/biossíntese , Análise de Alimentos , Microbiologia de Alimentos , Concentração de Íons de Hidrogênio , Malásia , Pediococcus pentosaceus/crescimento & desenvolvimento
3.
J Anim Sci Biotechnol ; 10: 15, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30886709

RESUMO

BACKGROUND: Increasing understanding on the functions of amino acids (AA) has led to new commercial applications and expansion of the worldwide markets. However, the current technologies rely heavily on non-food grade microorganism and chemical synthesis for the production of AA. Several studies reported that lactic acid bacteria (LAB) have the capability of producing AA owing to their well-established proteolytic system and amino acid biosynthesis genes. Hence, the objectives of this study were to explore the extracellular proteolytic activity of LAB isolated from various Malaysian fermented foods and their potential to produce AA extracellularly as feed supplements. RESULTS: All the studied LAB isolates were versatile extracellular protease producers, whereby extracellular protease activities were detected from acidic to alkaline pH (pH 5, pH 6.5, pH 8) using qualitative and quantitative proteolytic assays. The highest proteolytic activity at pH 5 (15.76 U/mg) and pH 8 (19.42 U/mg) was achieved by Lactobacillus plantarum RG14, while Lactobacillus plantarum RS5 exhibited the highest proteolytic activity of 17.22 U/mg at pH 6.5. As for the results of AA production conducted in de Man, Rogosa and Sharpe medium and analysed by high pressure liquid chromatography system, all LAB isolates were capable of producing an array of AA. Generally, Pediococcus sp. showed greater ability for AA production as compared to Lactobacillus sp. Moreover, the studied LAB were able to produce a few major feed supplement AA such as methionine, lysine, threonine and tryptophan. P. pentosaceus TL-3 recorded the highest methionine and threonine productivity of 3.72 mg/L/h and 5.58 mg/L/h respectively. However, L. plantarum I-UL4 demonstrated a lysine productivity of 1.24 mg/L/h, while P. acidilactici TP-6 achieved up to 1.73 mg/L/h of tryptophan productivity. CONCLUSION: All the 17 studied LAB isolates possessed versatile extracellular proteolytic system and have vast capability of producing various amino acids including a few major feed supplement AA such as methionine, lysine, threonine and tryptophan. Despite AA production was strain dependent, the studied LAB isolates possessed vast potential and can be exploited further as a bio-agent or an alternative amino acids and bioactive peptide producers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA