Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Infect Immun ; 85(12)2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28993455

RESUMO

In multicellular organisms, autophagy is induced as an innate defense mechanism. Notably, the obligate intracellular bacterium Ehrlichia chaffeensis resides in early endosome-like vacuoles and circumvents lysosomal fusion through an unknown mechanism, thereby avoiding destruction in the autophagolysosome. In this report, we reveal that Wnt signaling plays a crucial role in inhibition of lysosomal fusion and autolysosomal destruction of ehrlichiae. During early infection, autophagosomes fuse with ehrlichial vacuoles to form an amphisome indicated by the presence of autophagy markers such as LC3 (microtubule-associated protein 1 light chain 3), Beclin-1, and p62. LC3 colocalized with ehrlichial morulae on days 1, 2, and 3 postinfection, and increased LC3II levels were detected during infection, reaching a maximal level on day 3. Ehrlichial vacuoles did not colocalize with the lysosomal marker LAMP2, and lysosomes were redistributed and dramatically reduced in level in the infected cells. An inhibitor specific for the Wnt receptor signaling component Dishevelled induced lysosomal fusion with ehrlichial inclusions corresponding to p62 degradation and promoted transcription factor EB (TFEB) nuclear localization. E. chaffeensis infection activated the phosphatidylinositol 3-kinase (PI3K)-Akt-mTOR (mechanistic target of rapamycin) pathway, and activation was induced by three ehrlichial tandem repeat protein (TRP) effectors, with TRP120 inducing the strongest activation. Moreover, induction of glycogen synthase kinase-3 (GSK3) performed using a Wnt inhibitor and small interfering RNA (siRNA) knockdown of critical components of PI3K-GSK3-mTOR signaling decreased ehrlichial survival. This report reveals Ehrlichia exploitation of the evolutionarily conserved Wnt pathway to inhibit autolysosome generation, thereby leading to evasion of this important innate immune defense mechanism.


Assuntos
Ehrlichia chaffeensis/imunologia , Interações Hospedeiro-Patógeno , Evasão da Resposta Imune , Monócitos/imunologia , Fosfatidilinositol 3-Quinase/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Via de Sinalização Wnt , Autofagia , Humanos , Fagocitose , Células THP-1
2.
Infect Immun ; 84(3): 686-700, 2015 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-26712203

RESUMO

Ehrlichia chaffeensis invades and survives in phagocytes by modulating host cell processes and evading innate defenses, but the mechanisms are not fully defined. Recently we have determined that E. chaffeensis tandem repeat proteins (TRPs) are type 1 secreted effectors involved in functionally diverse interactions with host targets, including components of the evolutionarily conserved Wnt signaling pathways. In this study, we demonstrated that induction of host canonical and noncanonical Wnt pathways by E. chaffeensis TRP effectors stimulates phagocytosis and promotes intracellular survival. After E. chaffeensis infection, canonical and noncanonical Wnt signalings were significantly stimulated during early stages of infection (1 to 3 h) which coincided with dephosphorylation and nuclear translocation of ß-catenin, a major canonical Wnt signal transducer, and NFATC1, a noncanonical Wnt transcription factor. In total, the expression of ∼44% of Wnt signaling target genes was altered during infection. Knockdown of TRP120-interacting Wnt pathway components/regulators and other critical components, such as Wnt5a ligand, Frizzled 5 receptor, ß-catenin, nuclear factor of activated T cells (NFAT), and major signaling molecules, resulted in significant reductions in the ehrlichial load. Moreover, small-molecule inhibitors specific for components of canonical and noncanonical (Ca(2+) and planar cell polarity [PCP]) Wnt pathways, including IWP-2, which blocks Wnt secretion, significantly decreased ehrlichial infection. TRPs directly activated Wnt signaling, as TRP-coated microspheres triggered phagocytosis which was blocked by Wnt pathway inhibitors, demonstrating a key role of TRP activation of Wnt pathways to induce ehrlichial phagocytosis. These novel findings reveal that E. chaffeensis exploits canonical and noncanonical Wnt pathways through TRP effectors to facilitate host cell entry and promote intracellular survival.


Assuntos
Ehrlichia chaffeensis/fisiologia , Ehrlichiose/imunologia , Interações Hospedeiro-Patógeno , Proteínas Wnt/imunologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Ehrlichia chaffeensis/genética , Ehrlichia chaffeensis/crescimento & desenvolvimento , Ehrlichiose/genética , Ehrlichiose/microbiologia , Humanos , Fagocitose , Proteínas Wnt/genética , Via de Sinalização Wnt
3.
J Immunol ; 191(7): 3838-46, 2013 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-23997227

RESUMO

Gastric epithelial cells (GECs) are the primary target for Helicobacter pylori infection and may act as APCs regulating local T cell responses. We previously reported that H. pylori infection of GECs induces the expression of the T cell coinhibitory molecule B7-H1 on GECs. This process contributes to the hyporesponsiveness of CD4(+) effector T cells and accumulation of regulatory T cells. In the present study, we investigated the impact of H. pylori cytotoxin-associated gene A (CagA) on the modulation of the expression of the T cell costimulator B7-H2 by GECs. B7-H2 is involved in promoting Th17 type responses. H. pylori infection downregulates B7-H2 expression by GECs in a CagA-dependent manner. IFN-γ, which is increased in the H. pylori-infected gastric mucosa, synergizes with H. pylori in downregulating B7-H2 expression by GECs. CagA-mediated modulation of B7-H2 on GECs involves p70 S6 kinase phosphorylation. The CagA-dependent B7-H2 downregulation in GECs correlates with a decrease in Th17 type responses in vitro and in vivo. Furthermore, CagA-dependent modulation of Th17 responses was inversely correlated with the H. pylori colonization levels in vivo. Our data suggest that CagA contributes to the ability of H. pylori to evade Th17-mediated clearance by modulating expression of B7-H2 and, thus, to the establishment of the H. pylori chronic infection.


Assuntos
Antígenos de Bactérias/metabolismo , Proteínas de Bactérias/metabolismo , Mucosa Gástrica/imunologia , Mucosa Gástrica/microbiologia , Infecções por Helicobacter/imunologia , Helicobacter pylori/metabolismo , Ligante Coestimulador de Linfócitos T Induzíveis/genética , Células Th17/imunologia , Células Th17/metabolismo , Animais , Linhagem Celular , Regulação para Baixo , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Ligante Coestimulador de Linfócitos T Induzíveis/metabolismo , Interferon gama/farmacologia , Camundongos , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Serina-Treonina Quinases TOR/metabolismo
4.
PLoS One ; 15(10): e0240789, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33091017

RESUMO

In a recent study, using an in vitro model to study intravaginal nanoparticle exposure during yeast infections, we demonstrated that C. albicans exposure suppressed apoptotic gene expression and induced oxidative stress and pyroptosis in vaginal epithelial cells. The mucous-penetrating drug delivery nanoparticles made from poly-(D, L-lactic-co-glycolic acid)-(polyethylene glycol) induced cytotoxicity by activating apoptosis, endoplasmic reticulum (ER) stress, oxidative stress, and DNA damage repair responses alone and, in some cases with C. albicans. In the current study we evaluated the effects of fluorescently-labelled nanoparticles in CBA/J mice challenged intravaginally for two hours followed by intravaginal challenge with C. albicans for 18 hours. Nanoparticle treatment increased systemic translocation of C. albicans threefold in the heart. C. albicans also increased systemic distribution of the nanoparticles fivefold in the heart. Flow cytometric assays showed co-localization of the nanoparticles with epithelial cells, macrophages and dendritic cells. Nanoparticle-treated, C. albicans-infected mice exhibited induction of autophagy, ER stress, apoptosis, and inflammatory serum cytokines. C. albicans infection was associated with pyroptosis and suppressed expression of ER stress and apoptosis-related genes. Induction of apoptosis during nanoparticle treatment and in nanoparticle-treated-C. albicans infected mice was observed as DNA damage responses, mitochondrial depolarization and (Poly [ADP-Ribose] Polymerase) cleavage. C. albicans infection was associated with increased mRNA expression of anti-apoptotic genes. Both C. albicans infection and nanoparticle treatment showed enhanced chemoattraction of dendritic cells and polymorphonuclear cells to factors in vaginal washings in a chemotaxis assay. This study shows that both intravaginal treatment of mice with the nanoparticles and infection with C. albicans induce cytotoxic and inflammatory responses. C. albicans also suppressed cell apoptosis. These results clarify our understanding of how nanoparticles modulate host cellular responses during C. albicans infection and will be applicable for future research and development of intravaginal nanomedicines.


Assuntos
Candida albicans/fisiologia , Candidíase/tratamento farmacológico , Sistemas de Liberação de Medicamentos , Inflamação/genética , Nanopartículas/química , Polietilenoglicóis/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Vagina/microbiologia , Animais , Apoptose , Candidíase/genética , Candidíase/microbiologia , Linhagem Celular , Quimiotaxia , Citocinas/metabolismo , Células Dendríticas/patologia , Modelos Animais de Doenças , Células Epiteliais/microbiologia , Células Epiteliais/patologia , Feminino , Regulação da Expressão Gênica , Humanos , Mediadores da Inflamação/metabolismo , Camundongos Endogâmicos CBA , Neutrófilos/patologia , Especificidade de Órgãos , Estresse Fisiológico , Vagina/patologia , Leveduras
5.
Clin Oncol Res ; 2(5)2019.
Artigo em Inglês | MEDLINE | ID: mdl-31998864

RESUMO

Helicobacter pylori (H. pylori) is a gram negative bacterium that infects more than 50% of humanity and is associated with gastritis, peptic ulcer and gastric cancer. Although CD4+ T cells are recruited to the gastric mucosa, the host is unable to clear the bacteria. Previously, we demonstrated that H. pylori infection upregulates the expression of the T cell co-inhibitory molecule B7-H1 while simultaneously downregulating the expression of T cell co-stimulatory molecule B7-H2 on gastric epithelial cells (GEC), which together affect the Treg and Th17 cell balance and foster bacterial persistence. Because B7-H3, another member of the B7 family of co-inhibitory receptors, has been found to have important immunoregulatory roles and in cancer, in this study we examined the expression of B7-H3 molecules on GEC and how the expression is regulated by H. pylori during infection. Our study showed that both human and murine GEC constitutively express B7-H3 molecules, but their expression levels increased during H. pylori infection. We further demonstrated that H. pylori uses its type 4 secretion system (T4SS) components CagA and cell wall peptidoglycan (PG) fragment to upregulate B7-H3. Th17 cells and Treg cells which are increased during H. pylori infection also had an effect on B7-H3 induction. The underlying cell signaling pathway involves modulation of p38MAPK pathway. Since B7-H3 were shown to up-regulate Th2 responses, the phenotype of T cell subpopulations in mice infected with H. pylori PMSS1 or SS1 strains were characterized. A mixed Th1/Th2 response in H. pylori infected mice was observed. Consistent with previous findings, increased Treg cells and decreased Th17 cells in MLN of PMSS1 infected mice compared to SS1 infected mice was observed. Human biopsy samples collected from gastritis biopsies and gastric tumors showed a strong association between increased B7-H3 and Th2 responses in H. pylori strains associated with gastritis. T cell: GEC co-cultures and anti-B7-H3 blocking Ab confirmed that the induction of Th2 is mediated by B7-H3 and associated exclusively with an H. pylori gastritis strain not cancer or ulcer strains. In conclusion, these studies revealed a novel regulatory mechanism employed by H. pylori to influence the type of T cell response that develops within the infected gastric mucosa.

6.
mBio ; 7(4)2016 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-27381289

RESUMO

UNLABELLED: Ehrlichia chaffeensis preferentially targets mononuclear phagocytes and survives through a strategy of subverting innate immune defenses, but the mechanisms are unknown. We have shown E. chaffeensis type 1 secreted tandem repeat protein (TRP) effectors are involved in diverse molecular pathogen-host interactions, such as the TRP120 interaction with the Notch receptor-cleaving metalloprotease ADAM17. In the present study, we demonstrate E. chaffeensis, via the TRP120 effector, activates the canonical Notch signaling pathway to promote intracellular survival. We found that nuclear translocation of the transcriptionally active Notch intracellular domain (NICD) occurs in response to E. chaffeensis or recombinant TRP120, resulting in upregulation of Notch signaling pathway components and target genes notch1, adam17, hes, and hey Significant differences in canonical Notch signaling gene expression levels (>40%) were observed during early and late stages of infection, indicating activation of the Notch pathway. We linked Notch pathway activation specifically to the TRP120 effector, which directly interacts with the Notch metalloprotease ADAM17. Using pharmacological inhibitors and small interfering RNAs (siRNAs) against γ-secretase enzyme, Notch transcription factor complex, Notch1, and ADAM17, we demonstrated that Notch signaling is required for ehrlichial survival. We studied the downstream effects and found that E. chaffeensis TRP120-mediated activation of the Notch pathway causes inhibition of the extracellular signal-regulated kinase 1/2 (ERK1/2) and p38 mitogen-activated protein kinase (MAPK) pathways required for PU.1 and subsequent Toll-like receptor 2/4 (TLR2/4) expression. This investigation reveals a novel mechanism whereby E. chaffeensis exploits the Notch pathway to evade the host innate immune response for intracellular survival. IMPORTANCE: E. chaffeensis is an obligately intracellular bacterium and the etiologic agent of human monocytotropic ehrlichiosis (HME), an emerging life-threatening tick-borne zoonosis. Mechanisms by which E. chaffeensis establishes intracellular infection and avoids innate host defenses are not understood, but functionally relevant host-pathogen interactions with type 1 secreted TRP effectors are essential for the ehrlichial cellular reprogramming strategy. This study provides further insight into the molecular strategies used by obligately intracellular pathogens such as E. chaffeensis, which have small genomes and a limited number of effector proteins and exploit evolutionarily conserved host cell programs such as Notch signaling to promote infection and intracellular survival.


Assuntos
Proteínas de Bactérias/metabolismo , Regulação para Baixo , Ehrlichia chaffeensis/patogenicidade , Receptor Notch1/metabolismo , Transdução de Sinais , Receptor 2 Toll-Like/biossíntese , Receptor 4 Toll-Like/biossíntese , Linhagem Celular , Interações Hospedeiro-Patógeno , Humanos , Evasão da Resposta Imune , Viabilidade Microbiana , Monócitos/imunologia , Monócitos/microbiologia
7.
Artigo em Inglês | MEDLINE | ID: mdl-27303657

RESUMO

Ehrlichia chaffeensis is a small, gram negative, obligately intracellular bacterium that preferentially infects mononuclear phagocytes. It is the etiologic agent of human monocytotropic ehrlichiosis (HME), an emerging life-threatening tick-borne zoonosis. Mechanisms by which E. chaffeensis establishes intracellular infection, and avoids host defenses are not well understood, but involve functionally relevant host-pathogen interactions associated with tandem and ankyrin repeat effector proteins. In this review, we discuss the recent advances in our understanding of the molecular and cellular mechanisms that underlie Ehrlichia host cellular reprogramming strategies that enable intracellular survival.


Assuntos
Proteínas de Bactérias/imunologia , Ehrlichia chaffeensis/imunologia , Interações Hospedeiro-Patógeno , Fagócitos/imunologia , Fatores de Virulência/imunologia , Animais , Humanos
8.
PLoS One ; 10(3): e0121841, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25807464

RESUMO

During Helicobacter pylori (H. pylori) infection CD4+ T cells in the gastric lamina propria are hyporesponsive and polarized by Th1/Th17 cell responses controlled by Treg cells. We have previously shown that H. pylori upregulates B7-H1 expression on GEC, which, in turn, suppress T cell proliferation, effector function, and induce Treg cells in vitro. In this study, we investigated the underlying mechanisms and the functional relevance of B7-H1 induction by H. pylori infection to chronic infection. Using H. pylori wild type (WT), cag pathogenicity island (cag PAI-) and cagA- isogenic mutant strains we demonstrated that H. pylori requires its type 4 secretion system (T4SS) as well as its effector protein CagA and peptidoglycan (PG) fragments for B7-H1 upregulation on GEC. Our study also showed that H. pylori uses the p38 MAPK pathway to upregulate B7-H1 expression in GEC. In vivo confirmation was obtained when infection of C57BL/6 mice with H. pylori PMSS1 strain, which has a functional T4SS delivery system, but not with H. pylori SS1 strain lacking a functional T4SS, led to a strong upregulation of B7-H1 expression in the gastric mucosa, increased bacterial load, induction of Treg cells in the stomach, increased IL-10 in the serum. Interestingly, B7-H1-/- mice showed less Treg cells and reduced bacterial loads after infection. These studies demonstrate how H. pylori T4SS components activate the p38 MAPK pathway, upregulate B7-H1 expression by GEC, and cause Treg cell induction; thus, contribute to establishing a persistent infection characteristic of H. pylori.


Assuntos
Antígeno B7-H1/metabolismo , Ilhas Genômicas , Helicobacter pylori/genética , Evasão da Resposta Imune/genética , Animais , Antígeno B7-H1/imunologia , Proliferação de Células , Mucosa Gástrica/imunologia , Mucosa Gástrica/metabolismo , Infecções por Helicobacter/imunologia , Infecções por Helicobacter/metabolismo , Infecções por Helicobacter/microbiologia , Helicobacter pylori/metabolismo , Interleucina-10/metabolismo , Camundongos , Transdução de Sinais , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Regulação para Cima
9.
World J Gastroenterol ; 20(36): 12753-66, 2014 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-25278676

RESUMO

Helicobacter pylori (H. pylori) is perhaps the most ubiquitous and successful human pathogen, since it colonizes the stomach of more than half of humankind. Infection with this bacterium is commonly acquired during childhood. Once infected, people carry the bacteria for decades or even for life, if not treated. Persistent infection with this pathogen causes gastritis, peptic ulcer disease and is also strongly associated with the development of gastric cancer. Despite induction of innate and adaptive immune responses in the infected individual, the host is unable to clear the bacteria. One widely accepted hallmark of H. pylori is that it successfully and stealthily evades host defense mechanisms. Though the gastric mucosa is well protected against infection, H. pylori is able to reside under the mucus, attach to gastric epithelial cells and cause persistent infection by evading immune responses mediated by host. In this review, we discuss how H. pylori avoids innate and acquired immune response elements, uses gastric epithelial cells as mediators to manipulate host T cell responses and uses virulence factors to avoid adaptive immune responses by T cells to establish a persistent infection. We also discuss in this review how the genetic diversity of this pathogen helps for its survival.


Assuntos
Mucosa Gástrica/imunologia , Infecções por Helicobacter/imunologia , Helicobacter pylori/imunologia , Evasão da Resposta Imune , Imunidade Adaptativa , Animais , Células Epiteliais/imunologia , Células Epiteliais/microbiologia , Mucosa Gástrica/metabolismo , Mucosa Gástrica/microbiologia , Genótipo , Infecções por Helicobacter/metabolismo , Infecções por Helicobacter/microbiologia , Infecções por Helicobacter/terapia , Helicobacter pylori/genética , Helicobacter pylori/metabolismo , Helicobacter pylori/patogenicidade , Humanos , Imunidade Humoral , Imunidade Inata , Imunidade nas Mucosas , Imunoterapia/métodos , Viabilidade Microbiana , Linfócitos T/imunologia , Linfócitos T/microbiologia , Virulência
10.
World J Gastroenterol ; 20(36): 12767-80, 2014 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-25278677

RESUMO

The gastrointestinal epithelium has cells with features that make them a powerful line of defense in innate mucosal immunity. Features that allow gastrointestinal epithelial cells to contribute in innate defense include cell barrier integrity, cell turnover, autophagy, and innate immune responses. Helicobacter pylori (H. pylori) is a spiral shape gram negative bacterium that selectively colonizes the gastric epithelium of more than half of the world's population. The infection invariably becomes persistent due to highly specialized mechanisms that facilitate H. pylori's avoidance of this initial line of host defense as well as adaptive immune mechanisms. The host response is thus unsuccessful in clearing the infection and as a result becomes established as a persistent infection promoting chronic inflammation. In some individuals the associated inflammation contributes to ulcerogenesis or neoplasia. H. pylori has an array of different strategies to interact intimately with epithelial cells and manipulate their cellular processes and functions. Among the multiple aspects that H. pylori affects in gastric epithelial cells are their distribution of epithelial junctions, DNA damage, apoptosis, proliferation, stimulation of cytokine production, and cell transformation. Some of these processes are initiated as a result of the activation of signaling mechanisms activated on binding of H. pylori to cell surface receptors or via soluble virulence factors that gain access to the epithelium. The multiple responses by the epithelium to the infection contribute to pathogenesis associated with H. pylori.


Assuntos
Células Epiteliais/microbiologia , Mucosa Gástrica/microbiologia , Infecções por Helicobacter/microbiologia , Helicobacter pylori/patogenicidade , Animais , Aderência Bacteriana , Células Epiteliais/imunologia , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Mucosa Gástrica/imunologia , Mucosa Gástrica/metabolismo , Mucosa Gástrica/patologia , Genótipo , Infecções por Helicobacter/imunologia , Infecções por Helicobacter/metabolismo , Infecções por Helicobacter/patologia , Helicobacter pylori/genética , Helicobacter pylori/imunologia , Helicobacter pylori/metabolismo , Humanos , Evasão da Resposta Imune , Imunidade Inata , Imunidade nas Mucosas , Viabilidade Microbiana , Transdução de Sinais , Virulência
11.
PLoS One ; 9(10): e108735, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25302491

RESUMO

BACKGROUND: Resistance to cephalosporins in Enterobacteriaceae is mainly due to the production of extended-spectrum beta-lactamase (ESBL). Little is known about ESBL-producing bacteria in Bangladesh. Therefore, the study presents results of phenotypic and molecular characterization of ESBL-producing Escherichia coli from hospitals in Bangladesh. METHODS: A total of 339 E. coli isolated from patients with urinary tract and wound infections attending three different medical hospitals in urban and rural areas of Bangladesh between 2003-2007 were screened for ESBL-production by the double disk diffusion test. Isolates with ESBL-phenotype were further characterized by antibiotic susceptibility testing, PCR and sequencing of different ß-lactamase and virulence genes, serotyping, and XbaI-macrorestriction followed by pulsed-field gel electrophoresis (PFGE). RESULTS: We identified 40 E. coli with ESBL phenotype. These isolates were resistant to ceftriaxone, ceftazidime, cefotaxime, aztreonam, cefepime, and nalidixic acid but remained susceptible to imipenem. All but one isolate were additionally resistant to ciprofloxacin, and 3 isolates were resistant to cefoxitin. ESBL genes of blaCTX-M-1-group were detected in all isolates; blaTEM-type and blaOXA-1-type genes were detected in 33 (82.5%) and 19 (47.5%) isolates, respectively. Virulence genes that are present in diarrhoeagenic E. coli were not found. Class-1 integron was present in 20 (50%) isolates. All the ESBL-producing E. coli isolates harbored plasmids ranging between 1.1 and 120 MDa. PFGE-typing revealed 26 different pulsotypes, but identical pulsotype showed 6 isolates of serotype O25:H4. CONCLUSION: The prevalence of multidrug-resistant ESBL-producing E. coli isolates appears to be high and the majority of the isolates were positive for blaCTX-M. Although there was genetic heterogeneity among isolates, presence of a cluster of isolates belonging to serotype O25:H4 indicates dissemination of the pandemic uropathogenic E. coli clone in Bangladesh.


Assuntos
Farmacorresistência Bacteriana , Infecções por Escherichia coli/microbiologia , Escherichia coli/efeitos dos fármacos , Escherichia coli/enzimologia , beta-Lactamases/metabolismo , Bangladesh/epidemiologia , Escherichia coli/genética , Escherichia coli/isolamento & purificação , Infecções por Escherichia coli/tratamento farmacológico , Infecções por Escherichia coli/enzimologia , Infecções por Escherichia coli/epidemiologia , Genes Bacterianos , Humanos , Fenótipo , beta-Lactamases/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA