Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Proc Biol Sci ; 290(2011): 20231739, 2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-37989240

RESUMO

Predicting the spatial occurrence of wildlife is a major challenge for ecology and management. In Latin America, limited knowledge of the number and locations of vampire bat roosts precludes informed allocation of measures intended to prevent rabies spillover to humans and livestock. We inferred the spatial distribution of vampire bat roosts while accounting for observation effort and environmental effects by fitting a log Gaussian Cox process model to the locations of 563 roosts in three regions of Peru. Our model explained 45% of the variance in the observed roost distribution and identified environmental drivers of roost establishment. When correcting for uneven observation effort, our model estimated a total of 2340 roosts, indicating that undetected roosts (76%) exceed known roosts (24%) by threefold. Predicted hotspots of undetected roosts in rabies-free areas revealed high-risk areas for future viral incursions. Using the predicted roost distribution to inform a spatial model of rabies spillover to livestock identified areas with disproportionate underreporting and indicated a higher rabies burden than previously recognized. We provide a transferrable approach to infer the distribution of a mostly unobserved bat reservoir that can inform strategies to prevent the re-emergence of an important zoonosis.


Assuntos
Quirópteros , Vírus da Raiva , Raiva , Animais , Humanos , Raiva/epidemiologia , Raiva/veterinária , Raiva/prevenção & controle , Zoonoses , América Latina , Gado
2.
Genet Sel Evol ; 54(1): 76, 2022 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-36418945

RESUMO

BACKGROUND: By entering the era of mega-scale genomics, we are facing many computational issues with standard genomic evaluation models due to their dense data structure and cubic computational complexity. Several scalable approaches have been proposed to address this challenge, such as the Algorithm for Proven and Young (APY). In APY, genotyped animals are partitioned into core and non-core subsets, which induces a sparser inverse of the genomic relationship matrix. This partitioning is often done at random. While APY is a good approximation of the full model, random partitioning can make results unstable, possibly affecting accuracy or even reranking animals. Here we present a stable optimisation of the core subset by choosing animals with the most informative genotype data. METHODS: We derived a novel algorithm for optimising the core subset based on a conditional genomic relationship matrix or a conditional single nucleotide polymorphism (SNP) genotype matrix. We compared the accuracy of genomic predictions with different core subsets for simulated and real pig data sets. The core subsets were constructed (1) at random, (2) based on the diagonal of the genomic relationship matrix, (3) at random with weights from (2), or (4) based on the novel conditional algorithm. To understand the different core subset constructions, we visualise the population structure of the genotyped animals with linear Principal Component Analysis and non-linear Uniform Manifold Approximation and Projection. RESULTS: All core subset constructions performed equally well when the number of core animals captured most of the variation in the genomic relationships, both in simulated and real data sets. When the number of core animals was not sufficiently large, there was substantial variability in the results with the random construction but no variability with the conditional construction. Visualisation of the population structure and chosen core animals showed that the conditional construction spreads core animals across the whole domain of genotyped animals in a repeatable manner. CONCLUSIONS: Our results confirm that the size of the core subset in APY is critical. Furthermore, the results show that the core subset can be optimised with the conditional algorithm that achieves an optimal and repeatable spread of core animals across the domain of genotyped animals.


Assuntos
Genoma , Modelos Genéticos , Suínos , Animais , Genômica/métodos , Genótipo , Algoritmos
3.
Environmetrics ; 26(3): 159-177, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25937792

RESUMO

Antarctica is the world's largest fresh-water reservoir, with the potential to raise sea levels by about 60 m. An ice sheet contributes to sea-level rise (SLR) when its rate of ice discharge and/or surface melting exceeds accumulation through snowfall. Constraining the contribution of the ice sheets to present-day SLR is vital both for coastal development and planning, and climate projections. Information on various ice sheet processes is available from several remote sensing data sets, as well as in situ data such as global positioning system data. These data have differing coverage, spatial support, temporal sampling and sensing characteristics, and thus, it is advantageous to combine them all in a single framework for estimation of the SLR contribution and the assessment of processes controlling mass exchange with the ocean. In this paper, we predict the rate of height change due to salient geophysical processes in Antarctica and use these to provide estimates of SLR contribution with associated uncertainties. We employ a multivariate spatio-temporal model, approximated as a Gaussian Markov random field, to take advantage of differing spatio-temporal properties of the processes to separate the causes of the observed change. The process parameters are estimated from geophysical models, while the remaining parameters are estimated using a Markov chain Monte Carlo scheme, designed to operate in a high-performance computing environment across multiple nodes. We validate our methods against a separate data set and compare the results to those from studies that invariably employ numerical model outputs directly. We conclude that it is possible, and insightful, to assess Antarctica's contribution without explicit use of numerical models. Further, the results obtained here can be used to test the geophysical numerical models for which in situ data are hard to obtain. © 2015 The Authors. Environmetrics published by John Wiley & Sons Ltd.

4.
PLoS One ; 18(11): e0291348, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37988358

RESUMO

The impact of the COVID-19 pandemic on University students has been a topic of fiery debate and of public health research. This study demonstrates the use of a combination of spatiotemporal epidemiological models to describe the trends in COVID-19 positive cases on spatial, temporal and spatiotemporal scales. In addition, this study proposes new epidemiological metrics to describe the connectivity between observed positivity; an analogous metric to the R number in conventional epidemiology. The proposed indices, Rspatial, Rspatiotemporal and Rscaling will aim to improve the characterisation of the spread of infectious disease beyond that of the COVID-19 framework and as a result inform relevant public health policy. Apart from demonstrating the application of the novel epidemiological indices, the key findings in this study are: firstly, there were some Intermediate Zones in Edinburgh with noticeably high levels of COVID-19 positivity, and that the first outbreak during the study period was observed in Dalry and Fountainbridge. Secondly, the estimation of the distance over which the COVID-19 counts at the halls of residence are spatially correlated (or related to each other) was found to be 0.19km (0.13km to 0.27km) and is denoted by the index, Rspatial. This estimate is useful for public health policy in this setting, especially with contact tracing. Thirdly, the study indicates that the association between the surrounding community level of COVID-19 positivity (Intermediate Zones in Edinburgh) and that of the University of Edinburgh's halls of residence was not statistically significant. Fourthly, this study reveals that relatively high levels of COVID-19 positivity were observed for halls for which higher COVID-19 fines were issued (Spearman's correlation coefficient = 0.34), and separately, for halls which were non-ensuite relatively to those which were not (Spearman's correlation coefficient = 0.16). Finally, Intermediate Zones with the highest positivity were associated with student residences that experienced relatively high COVID-19 positivity (Spearman's correlation coefficient = 0.27).


Assuntos
COVID-19 , Humanos , COVID-19/epidemiologia , Universidades , Pandemias , Saúde Pública , Estudantes
5.
J Am Stat Assoc ; 115(530): 501-520, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33060871

RESUMO

Cortical surface fMRI (cs-fMRI) has recently grown in popularity versus traditional volumetric fMRI. In addition to offering better whole-brain visualization, dimension reduction, removal of extraneous tissue types, and improved alignment of cortical areas across subjects, it is also more compatible with common assumptions of Bayesian spatial models. However, as no spatial Bayesian model has been proposed for cs-fMRI data, most analyses continue to employ the classical general linear model (GLM), a "massive univariate" approach. Here, we propose a spatial Bayesian GLM for cs-fMRI, which employs a class of sophisticated spatial processes to model latent activation fields. We make several advances compared with existing spatial Bayesian models for volumetric fMRI. First, we use integrated nested Laplacian approximations (INLA), a highly accurate and efficient Bayesian computation technique, rather than variational Bayes (VB). To identify regions of activation, we utilize an excursions set method based on the joint posterior distribution of the latent fields, rather than the marginal distribution at each location. Finally, we propose the first multi-subject spatial Bayesian modeling approach, which addresses a major gap in the existing literature. The methods are very computationally advantageous and are validated through simulation studies and two task fMRI studies from the Human Connectome Project.

6.
Front Genet ; 11: 531218, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33519886

RESUMO

We introduce a hierarchical model to estimate haplotype effects based on phylogenetic relationships between haplotypes and their association with observed phenotypes. In a population there are many, but not all possible, distinct haplotypes and few observations per haplotype. Further, haplotype frequencies tend to vary substantially. Such data structure challenge estimation of haplotype effects. However, haplotypes often differ only due to few mutations, and leveraging similarities can improve the estimation of effects. We build on extensive literature and develop an autoregressive model of order one that models haplotype effects by leveraging phylogenetic relationships described with a directed acyclic graph. The phylogenetic relationships can be either in a form of a tree or a network, and we refer to the model as the haplotype network model. The model can be included as a component in a phenotype model to estimate associations between haplotypes and phenotypes. Our key contribution is that we obtain a sparse model, and by using hierarchical autoregression, the flow of information between similar haplotypes is estimated from the data. A simulation study shows that the hierarchical model can improve estimates of haplotype effects compared to an independent haplotype model, especially with few observations for a specific haplotype. We also compared it to a mutation model and observed comparable performance, though the haplotype model has the potential to capture background specific effects. We demonstrate the model with a study of mitochondrial haplotype effects on milk yield in cattle. We provide R code to fit the model with the INLA package.

7.
IEEE Trans Biomed Eng ; 67(1): 99-109, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-30969911

RESUMO

OBJECTIVE: Local activation time (LAT) mapping of the atria is important for targeted treatment of atrial arrhythmias, but current methods do not interpolate on the atrial manifold and neglect uncertainties associated with LAT observations. In this paper, we describe novel methods to, first, quantify uncertainties in LAT arising from bipolar electrogram analysis and assignment of electrode recordings to the anatomical mesh, second, interpolate uncertain LAT measurements directly on left atrial manifolds to obtain complete probabilistic activation maps, and finally, interpolate LAT jointly across both the manifold and different S1-S2 pacing protocols. METHODS: A modified center of mass approach was used to process bipolar electrograms, yielding a LAT estimate and error distribution from the electrogram morphology. An error distribution for assigning measurements to the anatomical mesh was estimated. Probabilistic LAT maps were produced by interpolating on a left atrial manifold using Gaussian Markov random fields, taking into account observation errors and characterizing LAT predictions by their mean and standard deviation. This approach was extended to interpolate across S1-S2 pacing protocols. RESULTS: We evaluated our approach using recordings from three patients undergoing atrial ablation. Cross-validation showed consistent and accurate prediction of LAT observations both at different locations on the left atrium and for different S1-S2 intervals. SIGNIFICANCE: Interpolation of scalar and vector fields across anatomical structures from point measurements is a challenging problem in biomedical engineering, compounded by uncertainties in measurements and meshes. New methods and approaches are required, and in this paper, we have demonstrated an effective method for probabilistic interpolation of uncertain LAT.


Assuntos
Função Atrial/fisiologia , Técnicas Eletrofisiológicas Cardíacas/métodos , Átrios do Coração/diagnóstico por imagem , Modelos Estatísticos , Processamento de Sinais Assistido por Computador , Humanos
8.
J Agric Biol Environ Stat ; 24(3): 398-425, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31496633

RESUMO

The Gaussian process is an indispensable tool for spatial data analysts. The onset of the "big data" era, however, has lead to the traditional Gaussian process being computationally infeasible for modern spatial data. As such, various alternatives to the full Gaussian process that are more amenable to handling big spatial data have been proposed. These modern methods often exploit low-rank structures and/or multi-core and multi-threaded computing environments to facilitate computation. This study provides, first, an introductory overview of several methods for analyzing large spatial data. Second, this study describes the results of a predictive competition among the described methods as implemented by different groups with strong expertise in the methodology. Specifically, each research group was provided with two training datasets (one simulated and one observed) along with a set of prediction locations. Each group then wrote their own implementation of their method to produce predictions at the given location and each was subsequently run on a common computing environment. The methods were then compared in terms of various predictive diagnostics. Supplementary materials regarding implementation details of the methods and code are available for this article online. ELECTRONIC SUPPLEMENTARY MATERIAL: Supplementary materials for this article are available at 10.1007/s13253-018-00348-w.

9.
Psychiatry Res ; 147(2-3): 187-95, 2006 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-16949799

RESUMO

This pilot study applies a new 3D morphometric MR method to test the hypothesis that men with schizophrenia (vs. controls) have deviant facial shapes and landmark relations in cranio/facial/brain (CFB) regions. This constitutes Part 2 of paired articles in this issue of Psychiatry Research: Neuroimaging, in which Part 1 presents the new method in detail. MRI coordinates from CFB landmarks of 23 patients and 15 controls were identified and then aligned with the Procrustes model, leaving shape as the only unit-less geometrical information. Men with schizophrenia had significantly longer mid- and lower-facial heights, and greater lower (left) facial depth, with a tendency toward rotation along the facial midline. This supports findings from earlier anthropometric and 3D studies of the "exterior" (face). In contrast, none of the patient-control differences for the new "interior" (cranial-brain) distances reached statistical significance. These results need to be retested on a larger sample of both sexes.


Assuntos
Encéfalo/anatomia & histologia , Face/anatomia & histologia , Imageamento por Ressonância Magnética , Esquizofrenia/diagnóstico , Crânio/anatomia & histologia , Antropometria , Humanos , Masculino , Projetos Piloto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA