Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biomacromolecules ; 24(11): 4718-4730, 2023 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-37651737

RESUMO

High-fidelity preclinical in vitro tissue models can reduce the failure rate of drugs entering clinical trials. Collagen and hyaluronic acid (HA) are major components of the extracellular matrix of many native tissues and affect therapeutic macromolecule diffusion and recovery through tissues. Although collagen and HA are commonly used in tissue engineering, the physical and mechanical properties of these materials are variable and depend highly on processing conditions. In this study, HA was chemically modified and crosslinked via hydrazone bonds to form interpenetrating networks of crosslinked HA (HAX) with collagen (Col). These networks enabled a wide range of mechanical properties, including stiffness and swellability, and microstructures, such as pore morphology and size, that can better recapitulate diverse tissues. We utilized these interpenetrating ColHAX hydrogels as in vitro tissue models to examine macromolecular transport and recovery for early-stage drug screening. Hydrogel formulations with varying collagen and HAX concentrations imparted different gel properties based on the ratio of collagen to HAX. These gels were stable and swelled up to 170% of their original mass, and the storage moduli of the ColHAX gels increased over an order of magnitude by increasing collagen and HA concentration. Interestingly, when HAX concentration was constant and collagen concentration increased, both the pore size and spatial colocalization of collagen and HA increased. HA in the system dominated the ζ-potentials of the gels. The hydrogel and macromolecule properties impacted the mass transport and recovery of lysozyme, ß-lactoglobulin, and bovine serum albumin (BSA) from the ColHAX gels─large molecules were largely impacted by mesh size, whereas small molecules were influenced primarily by electrostatic forces. Overall, the tunable properties demonstrated by the ColHAX hydrogels can be used to mimic different tissues for early-stage assays to understand drug transport and its relationship to matrix properties.


Assuntos
Colágeno , Ácido Hialurônico , Ácido Hialurônico/química , Colágeno/química , Matriz Extracelular/química , Engenharia Tecidual , Hidrogéis/química
2.
Mater Sci Eng R Rep ; 1462021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34483486

RESUMO

Hydrogels have been widely investigated in biomedical fields due to their similar physical and biochemical properties to the extracellular matrix (ECM). Collagen and hyaluronic acid (HA) are the main components of the ECM in many tissues. As a result, hydrogels prepared from collagen and HA hold inherent advantages in mimicking the structure and function of the native ECM. Numerous studies have focused on the development of collagen and HA hydrogels and their biomedical applications. In this extensive review, we provide a summary and analysis of the sources, features, and modifications of collagen and HA. Specifically, we highlight the fabrication, properties, and potential biomedical applications as well as promising commercialization of hydrogels based on these two natural polymers.

3.
Biomacromolecules ; 22(10): 4316-4326, 2021 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-34520173

RESUMO

Glycosaminoglycans (GAGs), such as hyaluronic acid (HA) and chondroitin sulfate (CS), have seen widespread adoption as components of tissue engineering scaffolds because of their potent bioactive properties and ease of chemical modification. However, modification of the biopolymers will impair biological recognition of the GAG and reduce the bioactive properties of the material. In this work, we studied how the degree of thiolation of HA and CS, along with other key hydrogel design parameters, affected the physical and bioactive properties of the bulk hydrogel. Although properties, such as the HA molecular weight, did not have a major effect, increasing the degree of thiolation of both HA and CS decreased their biorecognition in experimental analogues for cell/matrix remodeling and binding. Furthermore, combining HA and CS into dual polymer network hydrogels also modulated the physical and bioactive properties, as seen with differences in gel stiffness, degradation rate, and encapsulated cell viability.


Assuntos
Glicosaminoglicanos , Hidrogéis , Sulfatos de Condroitina , Ácido Hialurônico , Polímeros , Engenharia Tecidual
4.
Biomacromolecules ; 22(12): 5270-5280, 2021 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-34793135

RESUMO

Disulfide-cross-linked hydrogels have been widely used for biological applications because of their degradability in response to redox stimuli. However, degradability often depends on polymer concentration, which also influences the hydrogel mechanical properties such as the initial stiffness. Here, we describe a one-pot cross-linking approach utilizing both a thiol-ene reaction through a Michael pathway with divinyl sulfone (DVS) to form non-reducible thioether bonds and thiol oxidation promoted by ferric ethylenediaminetetraacetic acid (Fe-EDTA) to form reducible disulfide bonds. The ratio between these two bonds was modulated by varying the DVS concentration used, and the initial shear or elastic modulus and degradation rate of the hydrogels were decoupled. These gels had tunable release rates of encapsulated dextran when exposed to 10 µM glutathione. Fibroblast encapsulation results suggested good cytocompatibility of the cross-linking reactions. This work shows the potential of combining DVS and Fe-EDTA to create thiol-cross-linked hydrogels as redox-responsive drug delivery vehicles and tissue engineering scaffolds with variable degradability.


Assuntos
Hidrogéis , Engenharia Tecidual , Hidrogéis/química , Oxirredução , Compostos de Sulfidrila/química , Engenharia Tecidual/métodos , Alicerces Teciduais/química
5.
Bioorg Med Chem ; 42: 116223, 2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-34091303

RESUMO

Libraries of DNA-Encoded small molecules created using combinatorial chemistry and synthetic oligonucleotides are being applied to drug discovery projects across the pharmaceutical industry. The majority of reported projects describe the discovery of reversible, i.e. non-covalent, target modulators. We synthesized multiple DNA-encoded chemical libraries terminated in electrophiles and then used them to discover covalent irreversible inhibitors and report the successful discovery of acrylamide- and epoxide-terminated Bruton's Tyrosine Kinase (BTK) inhibitors. We also demonstrate their selectivity, potency and covalent cysteine engagement using a range of techniques including X-ray crystallography, thermal transition shift assay, reporter displacement assay and intact protein complex mass spectrometry. The epoxide BTK inhibitors described here are the first ever reported to utilize this electrophile for this target.


Assuntos
Tirosina Quinase da Agamaglobulinemia/antagonistas & inibidores , DNA/química , Descoberta de Drogas , Inibidores de Proteínas Quinases/farmacologia , Bibliotecas de Moléculas Pequenas/farmacologia , Tirosina Quinase da Agamaglobulinemia/metabolismo , Cristalografia por Raios X , Relação Dose-Resposta a Droga , Humanos , Estrutura Molecular , Inibidores de Proteínas Quinases/química , Bibliotecas de Moléculas Pequenas/química , Relação Estrutura-Atividade
6.
J Pharmacol Exp Ther ; 362(2): 359-367, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28611092

RESUMO

Ivacaftor is currently used for the treatment of cystic fibrosis as both monotherapy (Kalydeco; Vertex Pharmaceuticals, Boston, MA) and combination therapy with lumacaftor (Orkambi; Vertex Pharmaceuticals). Each therapy targets specific patient populations: Kalydeco treats patients carrying one of nine gating mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) protein, whereas Orkambi treats patients homozygous for the F508del CFTR mutation. In this study, we explored the pharmacological and metabolic effects of precision deuteration chemistry on ivacaftor by synthesizing two novel deuterated ivacaftor analogs, CTP-656 (d9-ivacaftor) and d18-ivacaftor. Ivacaftor is administered twice daily and is extensively converted in humans to major metabolites M1 and M6; therefore, the corresponding deuterated metabolites were also prepared. Both CTP-656 and d18-ivacaftor showed in vitro pharmacologic potency similar to that in ivacaftor, and the deuterated M1 and M6 metabolites showed pharmacology equivalent to that in the corresponding metabolites of ivacaftor, which is consistent with the findings of previous studies of deuterated compounds. However, CTP-656 exhibited markedly enhanced stability when tested in vitro. The deuterium isotope effects for CTP-656 metabolism (DV = 3.8, DV/K = 2.2) were notably large for a cytochrome P450-mediated oxidation. The pharmacokinetic (PK) profile of CTP-656 and d18-ivacaftor were assessed in six healthy volunteers in a single-dose crossover study, which provided the basis for advancing CTP-656 in development. The overall PK profile, including the 15.9-hour half-life for CTP-656, suggests that CTP-656 may be dosed once daily, thereby enhancing patient adherence. Together, these data continue to validate deuterium substitution as a viable approach for creating novel therapeutic agents with properties potentially differentiated from existing drugs.


Assuntos
Aminofenóis/administração & dosagem , Aminofenóis/farmacocinética , Deutério/administração & dosagem , Deutério/farmacocinética , Metaboloma/efeitos dos fármacos , Quinolonas/administração & dosagem , Quinolonas/farmacocinética , Administração Oral , Aminofenóis/química , Animais , Estudos Cross-Over , Deutério/química , Cães , Descoberta de Drogas , Feminino , Humanos , Masculino , Metaboloma/fisiologia , Microssomos Hepáticos/efeitos dos fármacos , Microssomos Hepáticos/metabolismo , Quinolonas/química , Ratos , Ratos Sprague-Dawley
7.
Biomacromolecules ; 17(8): 2530-9, 2016 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-27400383

RESUMO

Protein-based biomaterials have received significant attention for tissue engineering applications. For example, resilin-based protein gels have been produced with different cross-linking chemistries for applications in cartilage, cardiovascular, and vocal fold engineering. In this study, we investigate an alternative cross-linking chemistry to form resilin-based protein hydrogels and demonstrate the versatility of the gels for investigating cell response to matrix stiffness. Specifically, transglutaminase was used to cross-link proteins and resulted in gel surfaces more suitable for long-term cell attachment compared to those formed by a Mannich-type condensation reaction. Since matrix stiffness is an important determinant in modulating cell response, we first tuned matrix stiffness by varying total protein concentration. Next, we observed that matrix stiffness modulated cell spreading and endothelial differentiation of human mesenchymal stem cells. In particular, our results show that cells differentiated on our matrices, which have a stiffness similar to subendothelial layers, had statistically equivalent endothelial function compared to cells differentiated on hard glass surfaces. Thus, our protein-based matrix system is a promising tool to provide substrates favorable for long-term cell attachment and better mimics the native subendothelial environment compared to conventional hard culture substrates.


Assuntos
Reagentes de Ligações Cruzadas/química , Endotélio Vascular/citologia , Hidrogéis/química , Proteínas de Insetos/química , Células-Tronco Mesenquimais/citologia , Engenharia Tecidual , Transglutaminases/química , Sequência de Aminoácidos , Materiais Biocompatíveis/química , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Endotélio Vascular/metabolismo , Humanos , Células-Tronco Mesenquimais/metabolismo
8.
Biomacromolecules ; 17(10): 3145-3152, 2016 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-27585034

RESUMO

Biomaterials that provide signals present in the native extracellular matrix have been proposed as scaffolds to support improved cartilage regeneration. This study harnesses the biological activity of collagen type II and the superior mechanical properties of collagen type I by characterizing gels made of collagen type I and II blends. The collagen blend hydrogels were able to incorporate both types of collagen and retained chondroitin sulfate and hyaluronic acid. Cryo-scanning electron microscopy images showed that the 3:1 ratio of collagen type I to type II gels had a lower void space percentage (36.4%) than the 1:1 gels (46.5%). The complex modulus was larger for the 3:1 gels (G* = 5.0 Pa) compared to the 1:1 gels (G* = 1.2 Pa). The 3:1 blend consistently formed gels with superior mechanical properties compared to the other blends and has the potential to be implemented as a scaffold for articular cartilage engineering.


Assuntos
Cartilagem Articular/efeitos dos fármacos , Matriz Extracelular/efeitos dos fármacos , Regeneração/efeitos dos fármacos , Engenharia Tecidual , Materiais Biocompatíveis/química , Materiais Biocompatíveis/uso terapêutico , Cartilagem Articular/crescimento & desenvolvimento , Condrócitos/efeitos dos fármacos , Sulfatos de Condroitina/química , Colágeno Tipo I/administração & dosagem , Colágeno Tipo I/química , Colágeno Tipo II/administração & dosagem , Colágeno Tipo II/química , Humanos , Ácido Hialurônico/química , Hidrogéis/administração & dosagem , Hidrogéis/química , Alicerces Teciduais/química
9.
J Biol Chem ; 289(30): 20559-69, 2014 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-24898247

RESUMO

Bacteria encounter environmental stresses that regulate a gene expression program required for adaptation and survival. Here, we report the 1.8-Å crystal structure of the Escherichia coli toxin-antitoxin complex YafQ-(DinJ)2-YafQ, a key component of the stress response. The antitoxin DinJ dimer adopts a ribbon-helix-helix motif required for transcriptional autorepression, and toxin YafQ contains a microbial RNase fold whose proposed active site is concealed by DinJ binding. Contrary to previous reports, our studies indicate that equivalent levels of transcriptional repression occur by direct interaction of either YafQ-(DinJ)2-YafQ or a DinJ dimer at a single inverted repeat of its recognition sequence that overlaps with the -10 promoter region. Surprisingly, multiple YafQ-(DinJ)2-YafQ complexes binding to the operator region do not appear to amplify the extent of repression. Our results suggest an alternative model for transcriptional autorepression that may be novel to DinJ-YafQ.


Assuntos
Toxinas Bacterianas , Proteínas de Escherichia coli , Escherichia coli , Modelos Biológicos , Proteínas Repressoras , Transcrição Gênica/fisiologia , Toxinas Bacterianas/química , Toxinas Bacterianas/genética , Toxinas Bacterianas/metabolismo , Cristalografia por Raios X , Escherichia coli/química , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Multimerização Proteica/fisiologia , Estrutura Quaternária de Proteína , Proteínas Repressoras/química , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo
10.
J Pharmacol Exp Ther ; 354(1): 43-54, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25943764

RESUMO

Selective deuterium substitution as a means of ameliorating clinically relevant pharmacokinetic drug interactions is demonstrated in this study. Carbon-deuterium bonds are more stable than corresponding carbon-hydrogen bonds. Using a precision deuteration platform, the two hydrogen atoms at the methylenedioxy carbon of paroxetine were substituted with deuterium. The new chemical entity, CTP-347 [(3S,4R)-3-((2,2-dideuterobenzo[d][1,3]dioxol-5-yloxy)methyl)-4-(4-fluorophenyl)piperidine], demonstrated similar selectivity for the serotonin receptor, as well as similar neurotransmitter uptake inhibition in an in vitro rat synaptosome model, as unmodified paroxetine. However, human liver microsomes cleared CTP-347 faster than paroxetine as a result of decreased inactivation of CYP2D6. In phase 1 studies, CTP-347 was metabolized more rapidly in humans and exhibited a lower pharmacokinetic accumulation index than paroxetine. These alterations in the metabolism profile resulted in significantly reduced drug-drug interactions between CTP-347 and two other CYP2D6-metabolized drugs: tamoxifen (in vitro) and dextromethorphan (in humans). Our results show that precision deuteration can improve the metabolism profiles of existing pharmacotherapies without affecting their intrinsic pharmacologies.


Assuntos
Inibidores do Citocromo P-450 CYP2D6/farmacologia , Citocromo P-450 CYP2D6/metabolismo , Paroxetina/farmacologia , Animais , Encéfalo/metabolismo , Inibidores do Citocromo P-450 CYP2D6/farmacocinética , Deutério , Método Duplo-Cego , Interações Medicamentosas , Feminino , Humanos , Marcação por Isótopo , Microssomos Hepáticos/metabolismo , Paroxetina/farmacocinética , Paroxetina/uso terapêutico , Ensaio Radioligante , Ratos , Receptores de Serotonina/metabolismo , Inibidores Seletivos de Recaptação de Serotonina/farmacocinética , Inibidores Seletivos de Recaptação de Serotonina/farmacologia , Sinaptossomos/metabolismo , Tamoxifeno/metabolismo
11.
J Cell Physiol ; 229(1): 90-6, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23794239

RESUMO

For clinical applications of engineered vascular replacements, endothelial cells may not be available in sufficient quantities due to limited harvesting sites and slow in vitro expansion rates. Soluble vascular endothelial growth factor (VEGF) is often added to differentiate mesenchymal stem cells (MSCs) into endothelial cells; however, recent studies demonstrate that VEGF is not required to upregulate endothelial markers. In contrast to previous assumptions, this study demonstrates that exogenous VEGF does not enhance or accelerate the upregulation of common endothelial markers during endothelial differentiation of human MSCs. MSCs were cultured at confluence for up to 3 weeks in either basal medium or medium containing VEGF. Cells were examined for gene and protein expression as well as the ability to internalize acetylated low density lipoprotein. With either treatment, endothelial differentiation occurred as evidenced by upregulation of gene and protein expression of typical endothelial markers and the ability to internalize acetylated low density lipoproteins. Interestingly, the addition of VEGF at typical or high concentrations (50 or 100 ng/ml) did not result in differences in gene or protein expression levels of many typical endothelial markers. However, high concentrations of VEGF did significantly increase protein expression of the arterial marker Ephrin-B1. Thus, VEGF did not accelerate or enhance differentiation of human MSCs towards endothelial cells but was vital for specification of arterial fate.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Células Endoteliais/efeitos dos fármacos , Células-Tronco Mesenquimais/citologia , Fator A de Crescimento do Endotélio Vascular/metabolismo , Artérias/efeitos dos fármacos , Artérias/crescimento & desenvolvimento , Linhagem da Célula , Células Cultivadas , Efrina-B1/metabolismo , Humanos , Células-Tronco Mesenquimais/efeitos dos fármacos , Fator A de Crescimento do Endotélio Vascular/administração & dosagem
12.
J Cell Biochem ; 115(1): 111-20, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23913753

RESUMO

Therapeutic strategies aim to regulate vasculature either by encouraging vessel growth for tissue engineering or inhibiting vascularization around a tumor. Vascular endothelial growth factor (VEGF) is essential to these processes, and there are several strategies that manipulate VEGF signaling. Here we develop a method to control the surface density of VEGF, which is covalently attached to tissue culture polystyrene (TCPS), and explore cellular responses to surfaces with varying VEGF densities. We show that the crosslinker reduces but does not eliminate the biological activity of soluble VEGF as measured by endothelial proliferation. However, endothelial cells cultured on surfaces of covalently bound VEGF did not proliferate in response to surface cues. Interestingly, compared to cells incubated with soluble VEGF (10 ng/ml) and cultured on TCPS, lower cell proliferation was observed when endothelial cells were cultured on high VEGF surface densities (5.9 ng/cm(2)), whereas higher cell proliferation occurred when cells were cultured on low surface densities (0.04 ng/cm(2)). High density surfaces (5.9 ng/cm(2)) also acted in synergy with an inhibitor of VEGF receptors to further suppress endothelial cell proliferation. We also examined the effect of VEGF surfaces on endothelial differentiation of mesenchymal stem cells. No effect was observed when cells were cultured on VEGF surfaces; however, the VEGF surfaces acted in synergy with an inhibitor of VEGF receptors to decrease the ability of differentiated cells to form vascular networks. Together, these results suggest that surface density of bound VEGF can be used to modulate cell behavior and inhibit an angiogenic response.


Assuntos
Células Endoteliais/citologia , Células-Tronco Mesenquimais/citologia , Fator A de Crescimento do Endotélio Vascular/metabolismo , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Humanos , Células-Tronco Mesenquimais/efeitos dos fármacos , Fator A de Crescimento do Endotélio Vascular/química , Fator A de Crescimento do Endotélio Vascular/farmacologia
13.
ACS Biomater Sci Eng ; 10(5): 3242-3254, 2024 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-38632852

RESUMO

Osteoarthritis is characterized by enzymatic breakdown of the articular cartilage via the disruption of chondrocyte homeostasis, ultimately resulting in the destruction of the articular surface. Decades of research have highlighted the importance of inflammation in osteoarthritis progression, with inflammatory cytokines shifting resident chondrocytes into a pro-catabolic state. Inflammation can result in poor outcomes for cells implanted for cartilage regeneration. Therefore, a method to promote the growth of new cartilage and protect the implanted cells from the pro-inflammatory cytokines found in the joint space is required. In this study, we fabricate two gel types: polymer network hydrogels composed of chondroitin sulfate and hyaluronic acid, glycosaminoglycans (GAGs) known for their anti-inflammatory and prochondrogenic activity, and interpenetrating networks of GAGs and collagen I. Compared to a collagen-only hydrogel, which does not provide an anti-inflammatory stimulus, chondrocytes in GAG hydrogels result in reduced production of pro-inflammatory cytokines and enzymes as well as preservation of collagen II and aggrecan expression. Overall, GAG-based hydrogels have the potential to promote cartilage regeneration under pro-inflammatory conditions. Further, the data have implications for the use of GAGs to generally support tissue engineering in pro-inflammatory environments.


Assuntos
Condrócitos , Sulfatos de Condroitina , Ácido Hialurônico , Hidrogéis , Inflamação , Hidrogéis/química , Hidrogéis/farmacologia , Condrócitos/efeitos dos fármacos , Condrócitos/metabolismo , Ácido Hialurônico/química , Ácido Hialurônico/farmacologia , Sulfatos de Condroitina/farmacologia , Sulfatos de Condroitina/química , Inflamação/metabolismo , Inflamação/tratamento farmacológico , Inflamação/patologia , Animais , Cartilagem Articular/metabolismo , Cartilagem Articular/efeitos dos fármacos , Cartilagem Articular/patologia , Citocinas/metabolismo , Agrecanas/metabolismo , Engenharia Tecidual/métodos , Osteoartrite/patologia , Osteoartrite/tratamento farmacológico , Osteoartrite/metabolismo
14.
J Biomed Mater Res A ; 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38988200

RESUMO

Wound closure in surgeries is traditionally achieved using invasive methods such as sutures and staples. Adhesion-based wound closure methods such as tissue adhesives, sealants, and hemostats are slowly replacing these methods due to their ease of application. Although several chemistries have been developed and used commercially for wound closure, there is still a need for better tissue adhesives from the point of view of toxicity, wet-adhesion strength, and long-term bonding. Catechol chemistry has shown great promise in developing wet-set adhesives that meet these criteria. Herein, we have studied the biocompatibility of a catechol-based copolymer adhesive, poly([dopamine methacrylamide]-co-[methyl methacrylate]-co-[poly(ethylene glycol) methyl ether methacrylate]) or poly(catechol-MMA-OEG), which is soluble in water. The adhesive was injected subcutaneously in a mouse model on its own and in combination with a sodium periodate crosslinker. After 72 h, 4 weeks, and 12 weeks, the mice were euthanized and subjected to histopathological analysis. Both adhesives were present and still palpable at the end of 12 weeks. The moderate inflammation observed for the poly(catechol-MMA-OEG) cohort at 72 h had reduced to mild inflammation at the end of 12 weeks. However, the moderate inflammatory response observed for the poly(catechol-MMA-OEG) + crosslinker cohort at 72 h had not subsided at 12 weeks.

15.
Infect Dis Rep ; 16(3): 531-542, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38920896

RESUMO

COVID-19, caused by the SARS-CoV-2 virus, is a highly pathogenic emerging infectious disease. Healthcare personnel (HCP) are presumably at higher risk of acquiring emerging infections because of occupational exposure. The prevalence of COVID-19 in HCP is unknown, particularly in low- to middle-income countries like El Salvador. The goal of this study was to determine the seroprevalence of anti-SARS-CoV-2 antibodies among HCP in El Salvador just prior to vaccine rollout in March 2021. We evaluated 2176 participants from a nationally representative sample of national healthcare institutions. We found 40.4% (n = 880) of the study participants were seropositive for anti-spike protein antibodies. Significant factors associated with infection included younger age; living within the central, more populated zone of the country; living in a larger household (≥7 members); household members with COVID-19 or compatible symptoms; and those who worked in auxiliary services (i.e., housekeeping and food services). These findings provide insight into opportunities to mitigate SARS-CoV-2 risk and other emerging respiratory pathogens in HCP in El Salvador.

16.
J Med Chem ; 67(4): 3039-3065, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38306405

RESUMO

Evasion of apoptosis is critical for the development and growth of tumors. The pro-survival protein myeloid cell leukemia 1 (Mcl-1) is an antiapoptotic member of the Bcl-2 family, associated with tumor aggressiveness, poor survival, and drug resistance. Development of Mcl-1 inhibitors implies blocking of protein-protein interactions, generally requiring a lengthy optimization process of large, complex molecules. Herein, we describe the use of DNA-encoded chemical library synthesis and screening to directly generate complex, yet conformationally privileged macrocyclic hits that serve as Mcl-1 inhibitors. By applying a conceptual combination of conformational analysis and structure-based design in combination with a robust synthetic platform allowing rapid analoging, we optimized in vitro potency of a lead series into the low nanomolar regime. Additionally, we demonstrate fine-tuning of the physicochemical properties of the macrocyclic compounds, resulting in the identification of lead candidates 57/59 with a balanced profile, which are suitable for future development toward therapeutic use.


Assuntos
Antineoplásicos , Neoplasias , Humanos , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Apoptose , Conformação Molecular , DNA , Linhagem Celular Tumoral , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/química
17.
Biomacromolecules ; 14(12): 4301-8, 2013 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-24147646

RESUMO

Recombinant proteins are promising tools for tissue engineering and drug delivery applications. Protein-based biomaterials have several advantages over natural and synthetic polymers, including precise control over amino acid composition and molecular weight, modular swapping of functional domains, and tunable mechanical and physical properties. In this work, we describe recombinant proteins based on abductin, an elastomeric protein that is found in the inner hinge of bivalves and functions as a coil spring to keep shells open. We illustrate, for the first time, the design, cloning, expression, and purification of a recombinant protein based on consensus abductin sequences derived from Argopecten irradians . The molecular weight of the protein was confirmed by mass spectrometry, and the protein was 94% pure. Circular dichroism studies showed that the dominant structures of abductin-based proteins were polyproline II helix structures in aqueous solution and type II ß-turns in trifluoroethanol. Dynamic light scattering studies illustrated that the abductin-based proteins exhibit reversible upper critical solution temperature behavior and irreversible aggregation behavior at high temperatures. A LIVE/DEAD assay revealed that human umbilical vein endothelial cells had a viability of 98 ± 4% after being cultured for two days on the abductin-based protein. Initial cell spreading on the abductin-based protein was similar to that on bovine serum albumin. These studies thus demonstrate the potential of abductin-based proteins in tissue engineering and drug delivery applications due to the cytocompatibility and its response to temperature.


Assuntos
Fragmentos de Peptídeos/química , Proteínas/química , Sequência de Aminoácidos , Animais , Adesão Celular , Movimento Celular , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Materiais Revestidos Biocompatíveis/química , Escherichia coli , Células Endoteliais da Veia Umbilical Humana/fisiologia , Humanos , Teste de Materiais , Pectinidae , Fragmentos de Peptídeos/biossíntese , Fragmentos de Peptídeos/toxicidade , Estrutura Secundária de Proteína , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/toxicidade , Propriedades de Superfície
18.
bioRxiv ; 2023 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-37873247

RESUMO

Sea squirts' or tunicates' bodies are composed of cellulose nanofibers and gallol- functionalized proteins. These sea creatures are known to heal their injuries under seawater by forming crosslinks between gallols and functional groups from other proteins in their bodies. Inspired by their wound healing mechanism, herein, we have developed a tissue sealant using zein (a plant-based protein) and tannic acid (gallol-containing polyphenol). Except for fibrin- based sealants, most commercial surgical adhesives, and sealants available today are derived from petroleum products that compromise their biodegradability. They often have complicated and multi-step synthesis processes that ultimately affect their affordability. To overcome this challenge, we ensured that these sea squirt-inspired tissue sealants are bio-based, easily synthesized, and low-cost. The sealants were studied on their own and with a food-grade enzyme transglutaminase. The adhesion performances of the sealants were found to be higher than physiological pressures in seven out of nine different tissue substrates studied here. Their performance was also better than or on par with the FDA-approved fibrin sealant Tisseel. Ex vivo models demonstrate instant sealing of leaking wounds in less than a minute. The sealants were not only cytocompatible but also showed complete wound healing on par with sutures and Tisseel when applied in vivo on skin incisions in rats. Overall, these sea squirt-inspired bio-based sealants show great potential to replace currently available wound closure methods.

19.
SLAS Discov ; 28(8): 376-384, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37625785

RESUMO

DHX9 is a DExH-box RNA helicase that utilizes hydrolysis of all four nucleotide triphosphates (NTPs) to power cycles of 3' to 5' directional movement to resolve and/or unwind double stranded RNA, DNA, and RNA/DNA hybrids, R-loops, triplex-DNA and G-quadraplexes. DHX9 activity is important for both viral amplification and maintaining genomic stability in cancer cells; therefore, it is a therapeutic target of interest for drug discovery efforts. Biochemical assays measuring ATP hydrolysis and oligonucleotide unwinding for DHX9 have been developed and characterized, and these assays can support high-throughput compound screening efforts under balanced conditions. Assay development efforts revealed DHX9 can use double stranded RNA with 18-mer poly(U) 3' overhangs and as well as significantly shorter overhangs at the 5' or 3' end as substrates. The enzymatic assays are augmented by a robust SPR assay for compound validation. A mechanism-derived inhibitor, GTPγS, was characterized as part of the validation of these assays and a crystal structure of GDP bound to cat DHX9 has been solved. In addition to enabling drug discovery efforts for DHX9, these assays may be extrapolated to other RNA helicases providing a valuable toolkit for this important target class.


Assuntos
RNA Helicases DEAD-box , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/química , RNA Helicases DEAD-box/metabolismo , DNA/química , RNA de Cadeia Dupla , Humanos , Animais , Gatos , Cristalografia
20.
Colloids Surf B Biointerfaces ; 222: 113123, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36640539

RESUMO

Therapeutic macromolecules possess properties such as size and electrostatic charge that will dictate their transport through subcutaneous (SC) tissue and ultimate bioavailability and efficacy. To improve therapeutic design, platforms that systematically measure the transport of macromolecules as a function of both drug and tissue properties are needed. We utilize a Transwell chamber with tunable collagen-hyaluronic acid (ColHA) hydrogels as an in vitro model to determine mass transport of macromolecules using non-invasive UV spectroscopy. Increasing hyaluronic acid (HA) concentration from 0 to 2 mg/mL within collagen gels decreases the mass transport of five macromolecules independent of size and charge and results in a maximum decrease in recovery of 23.3% in the case of bovine immunoglobulin G (IgG). However, in a pure 10 mg/mL HA solution, negatively-charged macromolecules bovine serum albumin (BSA), ß-lactoglobulin (BLg), dextran (Dex), and IgG had drastically increased recovery by 20-40% compared to their performance in ColHA matrices. This result was different from the positively-charged macromolecule Lysozyme (Lys), which, despite its small size, showed reduced recovery by 3% in pure HA. These results demonstrate two distinct regimes of mass transport within our tissue model. In the presence of both collagen and HA, increasing HA concentrations decrease mass transport; however, in the absence of collagen, the high negative charge of HA sequesters and increases residence time of positively-charged macromolecules and decreases residence time of negatively-charged macromolecules. Through our approach, ColHA hydrogels serve as a platform for the systematic evaluation of therapeutic macromolecule transport as a function of molecular characteristics.


Assuntos
Colágeno , Ácido Hialurônico , Ácido Hialurônico/química , Colágeno/química , Hidrogéis/química , Soroalbumina Bovina/química , Substâncias Macromoleculares , Imunoglobulina G
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA