Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Front Comput Neurosci ; 17: 1135783, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37251598

RESUMO

Introduction: Intracortical Brain-Computer Interfaces (iBCI) establish a new pathway to restore motor functions in individuals with paralysis by interfacing directly with the brain to translate movement intention into action. However, the development of iBCI applications is hindered by the non-stationarity of neural signals induced by the recording degradation and neuronal property variance. Many iBCI decoders were developed to overcome this non-stationarity, but its effect on decoding performance remains largely unknown, posing a critical challenge for the practical application of iBCI. Methods: To improve our understanding on the effect of non-stationarity, we conducted a 2D-cursor simulation study to examine the influence of various types of non-stationarities. Concentrating on spike signal changes in chronic intracortical recording, we used the following three metrics to simulate the non-stationarity: mean firing rate (MFR), number of isolated units (NIU), and neural preferred directions (PDs). MFR and NIU were decreased to simulate the recording degradation while PDs were changed to simulate the neuronal property variance. Performance evaluation based on simulation data was then conducted on three decoders and two different training schemes. Optimal Linear Estimation (OLE), Kalman Filter (KF), and Recurrent Neural Network (RNN) were implemented as decoders and trained using static and retrained schemes. Results: In our evaluation, RNN decoder and retrained scheme showed consistent better performance under small recording degradation. However, the serious signal degradation would cause significant performance to drop eventually. On the other hand, RNN performs significantly better than the other two decoders in decoding simulated non-stationary spike signals, and the retrained scheme maintains the decoders' high performance when changes are limited to PDs. Discussion: Our simulation work demonstrates the effects of neural signal non-stationarity on decoding performance and serves as a reference for selecting decoders and training schemes in chronic iBCI. Our result suggests that comparing to KF and OLE, RNN has better or equivalent performance using both training schemes. Performance of decoders under static scheme is influenced by recording degradation and neuronal property variation while decoders under retrained scheme are only influenced by the former one.

2.
IEEE Trans Biomed Circuits Syst ; 17(3): 598-609, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37074883

RESUMO

Versatile and energy-efficient neural signal processors are in high demand in brain-machine interfaces and closed-loop neuromodulation applications. In this paper, we propose an energy-efficient processor for neural signal analyses. The proposed processor utilizes three key techniques to efficiently improve versatility and energy efficiency. 1) Hybrid neural network design: The processor supports artificial neural network (ANN)- and spiking neural network (SNN)-based neuromorphic processing where ANN is used to support the processing of ExG signals and SNN is used for handling neural spike signals. 2) Event-driven processing: The processor can perform always-on binary neural network (BNN)-based event detection with low-energy consumption, and it only switches to the high-accuracy convolutional neural network (CNN)-based recognition mode when events are detected. 3) Reconfigurable architecture: By exploiting the computational similarity of different neural networks, the processor supports critical BNN, CNN, and SNN operations with the same processing elements, achieving significant area reduction and energy efficiency improvement over those of a naive implementation. It achieves 90.05% accuracy and 4.38 uJ/class in a center-out reaching task with an SNN and 99.4% sensitivity, 98.6% specificity, and 1.93 uJ/class in an EEG-based seizure prediction task with dual neural network-based event-driven processing. Moreover, it achieves a classification accuracy of 99.92%, 99.38%, and 86.39% and energy consumption of 1.73, 0.99, and 1.31 uJ/class for EEG-based epileptic seizure detection, ECG-based arrhythmia detection, and EMG-based gesture recognition, respectively.


Assuntos
Interfaces Cérebro-Computador , Redes Neurais de Computação , Humanos
3.
Artigo em Inglês | MEDLINE | ID: mdl-38083788

RESUMO

After the introduction of recurrence, an important property of the biological brain, spiking neural networks (SNNs) have achieved unprecedented classification performance. But they still cannot outperform many artificial neural networks. Modularity is another crucial feature of the biological brain. It remains unclear if modularity can also improve the performance of SNNs. To investigate this idea, we proposed the modular SNN, and compared its performance with a uniform SNN without modularity by employing them to classify cortical spike trains. For the first time, a significant improvement was found in our modular SNN. Further, we probed into the factors influencing the performance of the modular SNN and found: (a). The modular SNN outperformed the uniform SNN more significantly when the number of neurons in the networks increased; (b). The performance of the modular SNNs increased as the number of modules dropped. These preliminary but novel findings suggest that modularity may help develop better artificial intelligence and brain-machine interfaces. Also, the modular SNN may serve as a model for the study of neuronal spike synchrony.


Assuntos
Inteligência Artificial , Redes Neurais de Computação , Neurônios/fisiologia , Encéfalo/fisiologia
4.
Brain Sci ; 12(10)2022 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-36291203

RESUMO

One of the extraordinary characteristics of the biological brain is the low energy expense it requires to implement a variety of biological functions and intelligence as compared to the modern artificial intelligence (AI). Spike-based energy-efficient temporal codes have long been suggested as a contributor for the brain to run on low energy expense. Despite this code having been largely reported in the sensory cortex, whether this code can be implemented in other brain areas to serve broader functions and how it evolves throughout learning have remained unaddressed. In this study, we designed a novel brain-machine interface (BMI) paradigm. Two macaques could volitionally generate reproducible energy-efficient temporal patterns in the primary motor cortex (M1) by learning the BMI paradigm. Moreover, most neurons that were not directly assigned to control the BMI did not boost their excitability, and they demonstrated an overall energy-efficient manner in performing the task. Over the course of learning, we found that the firing rates and temporal precision of selected neurons co-evolved to generate the energy-efficient temporal patterns, suggesting that a cohesive rather than dissociable processing underlies the refinement of energy-efficient temporal patterns.

5.
Sci Rep ; 12(1): 15504, 2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-36109581

RESUMO

Spike sorting is a fundamental step in extracting single-unit activity from neural ensemble recordings, which play an important role in basic neuroscience and neurotechnologies. A few algorithms have been applied in spike sorting. However, when noise level or waveform similarity becomes relatively high, their robustness still faces a big challenge. In this study, we propose a spike sorting method combining Linear Discriminant Analysis (LDA) and Density Peaks (DP) for feature extraction and clustering. Relying on the joint optimization of LDA and DP: DP provides more accurate classification labels for LDA, LDA extracts more discriminative features to cluster for DP, and the algorithm achieves high performance after iteration. We first compared the proposed LDA-DP algorithm with several algorithms on one publicly available simulated dataset and one real rodent neural dataset with different noise levels. We further demonstrated the performance of the LDA-DP method on a real neural dataset from non-human primates with more complex distribution characteristics. The results show that our LDA-DP algorithm extracts a more discriminative feature subspace and achieves better cluster quality than previously established methods in both simulated and real data. Especially in the neural recordings with high noise levels or waveform similarity, the LDA-DP still yields a robust performance with automatic detection of the number of clusters. The proposed LDA-DP algorithm achieved high sorting accuracy and robustness to noise, which offers a promising tool for spike sorting and facilitates the following analysis of neural population activity.


Assuntos
Algoritmos , Neurônios , Potenciais de Ação , Animais , Análise por Conglomerados , Análise Discriminante
6.
J Neural Eng ; 17(3): 035003, 2020 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-32380494

RESUMO

OBJECTIVE: Brain Computer Interface (BCI) inefficiency indicates that there would be 10% to 50% of users are unable to operate Motor-Imagery-based BCI systems. Importantly, the almost all previous studieds on BCI inefficiency were based on tests of Sensory Motor Rhythm (SMR) feature. In this work, we assessed the occurrence of BCI inefficiency with SMR and Movement-Related Cortical Potential (MRCP) features. APPROACH: A pool of datasets of resting state and movements related EEG signals was recorded with 93 subjects during 2 sessions in separated days. Two methods, Common Spatial Pattern (CSP) and template matching, were used for SMR and MRCP feature extraction, and a winner-take-all strategy was applied to assess pattern recognition with posterior probabilities from Linear Discriminant Analysis to combine SMR and MRCP features. MAIN RESULTS: The results showed that the two types of features showed high complementarity, in line with their weak intercorrelation. In the subject group with poor accuracies (< 70%) by SMR feature in the two-class problem (right foot vs. right hand), the combination of SMR and MRCP features improved the averaged accuracy from 62% to 79%. Importantly, accuracies obtained by feature combination exceeded the inefficiency threshold. SIGNIFICANCE: The feature combination of SMR and MRCP is not new in BCI decoding, but the large scale and repeatable study on BCI inefficiency assessment by using SMR and MRCP features is novel. MRCP feature provides the similar classification accuracies on the two subject groups with poor (< 70%) and good (> 90%) accuracies by SMR feature. These results suggest that the combination of SMR and MRCP features may be a practical approach to reduce BCI inefficiency. While, 'BCI inefficiency' might be more aptly called 'SMR inefficiency' after this study.


Assuntos
Interfaces Cérebro-Computador , Encéfalo , Eletroencefalografia , Mãos , Humanos , Imagens, Psicoterapia , Imaginação , Movimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA