Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mol Psychiatry ; 2023 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-36914810

RESUMO

Recent studies based on animal models of various neurological disorders have indicated that mitophagy, a selective autophagy that eliminates damaged and superfluous mitochondria through autophagic degradation, may be involved in various neurological diseases. As an important mechanism of cellular stress response, much less is known about the role of mitophagy in stress-related mood disorders. Here, we found that tumor necrosis factor-α (TNF-α), an inflammation cytokine that plays a particular role in stress responses, impaired the mitophagy in the medial prefrontal cortex (mPFC) via triggering degradation of an outer mitochondrial membrane protein, NIP3-like protein X (NIX). The deficits in the NIX-mediated mitophagy by TNF-α led to the accumulation of damaged mitochondria, which triggered synaptic defects and behavioral abnormalities. Genetic ablation of NIX in the excitatory neurons of mPFC caused passive coping behaviors to stress, and overexpression of NIX in the mPFC improved TNF-α-induced synaptic and behavioral abnormalities. Notably, ketamine, a rapid on-set and long-lasting antidepressant, reversed the TNF-α-induced behavioral abnormalities through activation of NIX-mediated mitophagy. Furthermore, the downregulation of NIX level was also observed in the blood of major depressive disorder patients and the mPFC tissue of animal models. Infliximab, a clinically used TNF-α antagonist, alleviated both chronic stress- and inflammation-induced behavioral abnormalities via restoring NIX level. Taken together, these results suggest that NIX-mediated mitophagy links inflammation signaling to passive coping behaviors to stress, which underlies the pathophysiology of stress-related emotional disorders.

2.
Brain Behav Immun ; 109: 23-36, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36581303

RESUMO

Synapse loss in medial prefrontal cortex (mPFC) has been implicated in stress-related mood disorders, such as depression. However, the exact effect of synapse elimination in the depression and how it is triggered are largely unknown. Through repeated longitudinal imaging of mPFC in the living brain, we found both presynaptic and postsynaptic components were declined, together with the impairment of synapse remodeling and cross-synaptic signal transmission in the mPFC during chronic stress. Meanwhile, chronic stress also induced excessive microglia phagocytosis, leading to engulfment of excitatory synapses. Further investigation revealed that the elevated complement C3 during the stress acted as the tag of synapses to be eliminated by microglia. Besides, chronic stress induced a reduction of the connectivity between the mPFC and neighbor regions. C3 knockout mice displayed significant reduction of synaptic pruning and alleviation of disrupted functional connectivity in mPFC, resulting in more resilience to chronic stress. These results indicate that complement-mediated excessive microglia phagocytosis in adulthood induces synaptic dysfunction and cortical hypo-connectivity, leading to stress-related behavioral abnormality.


Assuntos
Microglia , Derrota Social , Camundongos , Animais , Sinapses , Camundongos Knockout , Plasticidade Neuronal
3.
Acta Pharmacol Sin ; 44(8): 1576-1588, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37012493

RESUMO

Emerging evidence demonstrates the vital role of synaptic transmission and structural remodeling in major depressive disorder. Activation of melanocortin receptors facilitates stress-induced emotional behavior. Prolylcarboxypeptidase (PRCP) is a serine protease, which splits the C-terminal amino acid of α-MSH and inactivates it. In this study, we asked whether PRCP, the endogenous enzyme of melanocortin system, might play a role in stress susceptibility via regulating synaptic adaptations. Mice were subjected to chronic social defeat stress (CSDS) or subthreshold social defeat stress (SSDS). Depressive-like behavior was assessed in SIT, SPT, TST and FST. Based on to behavioral assessments, mice were divided into the susceptible (SUS) and resilient (RES) groups. After social defeat stress, drug infusion or viral expression and behavioral tests, morphological and electrophysiological analysis were conducted in PFX-fixed and fresh brain slices containing the nucleus accumbens shell (NAcsh). We showed that PRCP was downregulated in NAcsh of susceptible mice. Administration of fluoxetine (20 mg·kg-1·d-1, i.p., for 2 weeks) ameliorated the depressive-like behavior, and restored the expression levels of PRCP in NAcsh of susceptible mice. Pharmacological or genetic inhibition of PRCP in NAcsh by microinjection of N-benzyloxycarbonyl-L-prolyl-L-prolinal (ZPP) or LV-shPRCP enhanced the excitatory synaptic transmission in NAcsh, facilitating stress susceptibility via central melanocortin receptors. On the contrary, overexpression of PRCP in NAcsh by microinjection of AAV-PRCP alleviated the depressive-like behavior and reversed the enhanced excitatory synaptic transmission, abnormal dendritogenesis and spinogenesis in NAcsh induced by chronic stress. Furthermore, chronic stress increased the level of CaMKIIα, a kinase closely related to synaptic plasticity, in NAcsh. The elevated level of CaMKIIα was reversed by overexpression of PRCP in NAcsh. Pharmacological inhibition of CaMKIIα in NAcsh alleviated stress susceptibility induced by PRCP knockdown. This study has revealed the essential role of PRCP in relieving stress susceptibility through melanocortin signaling-mediated synaptic plasticity in NAcsh.


Assuntos
Transtorno Depressivo Maior , Núcleo Accumbens , Camundongos , Animais , Núcleo Accumbens/metabolismo , alfa-MSH/metabolismo , Plasticidade Neuronal/fisiologia , Receptores de Melanocortina/metabolismo , Estresse Psicológico
4.
Neurochem Res ; 41(11): 2890-2903, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27426946

RESUMO

Sulfhydryl compounds such as dithiothreitol (DTT) and ß-mercaptoethanol (ß-ME) are widely used as redox agents. Previous studies in our group and other laboratory have reported the effect of sulfhydryl compounds on the function of glutamate receptor, including plasticity. Most of these findings have focused on the N-methyl-D-aspartic acid receptor, in contrast, very little is known about the effect of sulfhydryl compounds on α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptor (AMPAR). Here, we observed that DTT (100 µM), ß-ME (200 µM) and L-cysteine (200 µM) significantly elevated the surface expression of AMPARs via reducing their palmitoylation in rat hippocampal slices in vitro. Increased surface stability of AMPARs was not be correlated with the altered redox status, because the chemical entities containing mercapto group such as penicillamine (200 µM) and 2-mercapto-1-methylimidazole (200 µM) exhibited little effects on the surface expression of AMPARs. Computing results of Asp-His-His-Cys (DHHC) 3, the main enzyme for palmitoylation of AMPARs, indicated that only the alkyl mercaptans with chain-like configuration, such as DTT and ß-ME, can enter the pocket of DHHC3 and disrupt the catalytic activity via inhibiting DHHC3 auto-palmitoylation. Collectively, our findings indicate a novel redox-independent mechanism underlay the multiple effects of thiol reductants on synaptic function.


Assuntos
Hipocampo/efeitos dos fármacos , N-Metilaspartato/metabolismo , Receptores de AMPA/metabolismo , Compostos de Sulfidrila/metabolismo , Compostos de Sulfidrila/farmacologia , Animais , Cisteína/metabolismo , Hipocampo/metabolismo , Lipoilação/fisiologia , Masculino , Oxirredução/efeitos dos fármacos , Ratos Sprague-Dawley , Receptores de Glutamato/metabolismo
5.
Adv Sci (Weinh) ; : e2309473, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38978348

RESUMO

Melatonin (N-acetyl-5-methoxytryptamine) is reported to improve mood disorders in perimenopausal women and gut microbiome composition is altered during menopausal period. The possible role of microbiome in the treatment effect of melatonin on menopausal depression remains unknown. Here, it is shown that melatonin treatment reverses the gut microbiota dysbiosis and depressive-like behaviors in ovariectomy (OVX) operated mice. This effect of melatonin is prevented by antibiotic cocktails (ABX) treatment. Transferring microbiota harvested from adolescent female mice to OVX-operated mice is sufficient to ameliorate depressive-like behaviors. Conversely, microbiota transplantation from OVX-operated mice or melatonin-treated OVX-operated mice to naïve recipient mice exhibits similar phenotypes to donors. The colonization of Alistipes Inops, which is abundant in OVX-operated mice, confers the recipient with depressive-like behaviors. Further investigation indicates that the expansion of Alistipes Inops induced by OVX leads to the degradation of intestinal tryptophan, which destroys systemic tryptophan availability. Melatonin supplementation restores systemic tryptophan metabolic disorders by suppressing the growth of Alistipes Inops, which ameliorates depressive-like behaviors. These results highlight the previously unrecognized role of Alistipes Inops in the modulation of OVX-induced behavioral disorders and suggest that the application of melatonin to inhibit Alistipes Inops may serve as a potential strategy for preventing menopausal depressive symptoms.

6.
Adv Sci (Weinh) ; : e2400205, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38965798

RESUMO

Physical exercise has beneficial effect on anxiety disorders, but the underlying molecular mechanism remains largely unknown. Here, it is demonstrated that physical exercise can downregulate the S-nitrosylation of gephyrin (SNO-gephyrin) in the basolateral amygdala (BLA) to exert anxiolytic effects. It is found that the level of SNO-gephyrin is significantly increased in the BLA of high-anxiety rats and a downregulation of SNO-gephyrin at cysteines 212 and 284 produced anxiolytic effect. Mechanistically, inhibition of SNO-gephyrin by either Cys212 or Cys284 mutations increased the surface expression of GABAAR γ2 and the subsequent GABAergic neurotransmission, exerting anxiolytic effect in male rats. On the other side, overexpression of neuronal nitric oxide synthase in the BLA abolished the anxiolytic-like effects of physical exercise. This study reveals a key role of downregulating SNO-gephyrin in the anxiolytic effects of physical exercise, providing a new explanation for protein post-translational modifications in the brain after exercise.

7.
Mol Pharmacol ; 84(6): 876-87, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24068427

RESUMO

Hypothalamic AMP-activated protein kinase (AMPK) and orexins/hypocretins are both involved in the control of feeding behavior, but little is known about the interaction between these two signaling systems. Here, we demonstrated that orexin-A elicited significant activation of AMPK in the arcuate nucleus (ARC) of the hypothalamus by elevating cytosolic free Ca²âº involving extracellular calcium influx. Electrophysiological results revealed that orexin-A increased the L-type calcium current via the orexin receptor-phospholipase C-protein kinase C signaling pathway in ARC neurons that produce neuropeptide Y, an important downstream effector of orexin-A's orexigenic effect. Furthermore, the L-type calcium channel inhibitor nifedipine attenuated orexin-A-induced AMPK activation in vitro and in vivo. We found that inhibition of AMPK by either compound C (6-[4-[2-(1-piperidinyl)ethoxy]phenyl]-3-(4-pyridinyl)-pyrazolo[1,5-a]pyrimidine) or the ATP-mimetic 9-ß-D-arabinofuranoside prevented the appetite-stimulating effect of orexin-A. This action can be mimicked by nifedipine, the blocker of the L-type calcium channel. Our results indicated that orexin-A activates hypothalamic AMPK signaling through a Ca²âº-dependent mechanism involving the voltage-gated L-type calcium channel, which may serve as a potential target for regulating feeding behavior.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Núcleo Arqueado do Hipotálamo/efeitos dos fármacos , Canais de Cálcio Tipo L/metabolismo , Cálcio/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/farmacologia , Neuropeptídeos/farmacologia , Animais , Núcleo Arqueado do Hipotálamo/metabolismo , Quinase da Proteína Quinase Dependente de Cálcio-Calmodulina/metabolismo , Células Cultivadas , Comportamento Alimentar , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Ativação do Canal Iônico , Masculino , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neuropeptídeo Y/metabolismo , Neuropeptídeos/metabolismo , Receptores de Orexina/metabolismo , Orexinas , Proteína Quinase C/metabolismo , Ratos , Ratos Sprague-Dawley , Transdução de Sinais , Fosfolipases Tipo C/metabolismo
8.
CNS Neurosci Ther ; 29(2): 646-658, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36510669

RESUMO

AIMS: Central melanocortin 4 receptor (MC4R) has been reported to induce anhedonia via eliciting dysfunction of excitatory synapses. It is evident that metabolic signals are closely related to chronic stress-induced depression. Here, we investigated that a neural circuit is involved in melanocortin signaling contributing to susceptibility to stress. METHODS: Chronic social defeat stress (CSDS) was used to develop depressive-like behavior. Electrophysiologic and chemogenetic approaches were performed to evaluate the role of paraventricular thalamus (PVT) glutamatergic to nucleus accumbens shell (NAcsh) circuit in stress susceptibility. Pharmacological and genetic manipulations were applied to investigate the molecular mechanisms of melanocortin signaling in the circuit. RESULTS: CSDS increases the excitatory neurotransmission in NAcsh through MC4R signaling. The enhanced excitatory synaptic input in NAcsh is projected from PVT glutamatergic neurons. Moreover, chemogenetic manipulation of PVTGlu -NAcsh projection mediates the susceptibility to stress, which is dependent on MC4R signaling. Overall, these results reveal that the strengthened excitatory neurotransmission in NAcsh originates from PVT glutamatergic neurons, facilitating the susceptibility to stress through melanocortin signaling. CONCLUSIONS: Our results make a strong case for harnessing a thalamic circuit to reorganize excitatory synaptic transmission in relieving stress susceptibility and provide insights gained on metabolic underpinnings of protection against stress-induced depressive-like behavior.


Assuntos
Núcleo Accumbens , Receptor Tipo 4 de Melanocortina , Núcleo Accumbens/metabolismo , Receptor Tipo 4 de Melanocortina/genética , Receptor Tipo 4 de Melanocortina/metabolismo , Tálamo , Neurônios/metabolismo , Transmissão Sináptica
9.
Nat Metab ; 5(12): 2220-2236, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37985735

RESUMO

Neurons are particularly susceptible to energy fluctuations in response to stress. Mitochondrial fission is highly regulated to generate ATP via oxidative phosphorylation; however, the role of a regulator of mitochondrial fission in neuronal energy metabolism and synaptic efficacy under chronic stress remains elusive. Here, we show that chronic stress promotes mitochondrial fission in the medial prefrontal cortex via activating dynamin-related protein 1 (Drp1), resulting in mitochondrial dysfunction in male mice. Both pharmacological inhibition and genetic reduction of Drp1 ameliorates the deficit of excitatory synaptic transmission and stress-related depressive-like behavior. In addition, enhancing Drp1 fission promotes stress susceptibility, which is alleviated by coenzyme Q10, which potentiates mitochondrial ATP production. Together, our findings unmask the role of Drp1-dependent mitochondrial fission in the deficits of neuronal metabolic burden and depressive-like behavior and provides medication basis for metabolism-related emotional disorders.


Assuntos
Dinaminas , Dinâmica Mitocondrial , Camundongos , Masculino , Animais , Dinâmica Mitocondrial/genética , Dinaminas/genética , Dinaminas/metabolismo , Neurônios/metabolismo , Mitocôndrias/metabolismo , Fosforilação , Trifosfato de Adenosina/metabolismo
10.
Cell Discov ; 9(1): 90, 2023 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-37644025

RESUMO

Dysfunctional autophagy and impairment of adult hippocampal neurogenesis (AHN) each contribute to the pathogenesis of major depressive disorder (MDD). However, whether dysfunctional autophagy is linked to aberrant AHN underlying MDD remains unclear. Here we demonstrate that the expression of nuclear receptor binding factor 2 (NRBF2), a component of autophagy-associated PIK3C3/VPS34-containing phosphatidylinositol 3-kinase complex, is attenuated in the dentate gyrus (DG) under chronic stress. NRBF2 deficiency inhibits the activity of the VPS34 complex and impairs autophagic flux in adult neural stem cells (aNSCs). Moreover, loss of NRBF2 disrupts the neurogenesis-related protein network and causes exhaustion of aNSC pool, leading to the depression-like phenotype. Strikingly, overexpressing NRBF2 in aNSCs of the DG is sufficient to rescue impaired AHN and depression-like phenotype of mice. Our findings reveal a significant role of NRBF2-dependent autophagy in preventing chronic stress-induced AHN impairment and suggest the therapeutic potential of targeting NRBF2 in MDD treatment.

11.
Acta Pharmacol Sin ; 33(5): 594-605, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22504905

RESUMO

AIM: To identify the mechanisms underlying the elevation of intracellular Ca(2+) level ([Ca(2+)](i)) induced by lowering extracellular glucose in rat hypothalamic arcuate nucleus NPY neurons. METHODS: Primary cultures of hypothalamic arcuate nucleus (ARC) neurons were prepared from Sprague-Dawley rats. NPY neurons were identified with immunocytochemical method. [Ca(2+)](i) was measured using fura-2 AM. Ca(2+) current was recorded using whole-cell patch clamp recording. AMPK and GSK3ß levels were measured using Western blot assay. RESULTS: Lowering glucose level in the medium (from 10 to 1 mmol/L) induced a transient elevation of [Ca(2+)](i) in ARC neurons, but not in hippocampal and cortical neurons. The low-glucose induced elevation of [Ca(2+)](i) in ARC neurons depended on extracellular Ca(2+), and was blocked by P/Q-type Ca(2+)channel blocker ω-agatoxin TK (100 nmol/L), but not by L-type Ca(2+) channel blocker nifedipine (10 µmol/L) or N-type Ca(2+)channel blocker ω-conotoxin GVIA (300 nmol/L). Lowering glucose level increased the peak amplitude of high voltage-activated Ca(2+) current in ARC neurons. The low-glucose induced elevation of [Ca(2+)](i) in ARC neurons was blocked by the AMPK inhibitor compound C (20 µmol/L), and enhanced by the GSK3ß inhibitor LiCl (10 mmol/L). Moreover, lowering glucose level induced the phosphorylation of AMPK and GSK3ß, which was inhibited by compound C (20 µmol/L). CONCLUSION: Lowering glucose level enhances the activity of P/Q type Ca(2+)channels and elevates [Ca(2+)](i) level in hypothalamic arcuate nucleus neurons via inhibition of GSK3ß.


Assuntos
Núcleo Arqueado do Hipotálamo/enzimologia , Canais de Cálcio Tipo N/metabolismo , Cálcio/metabolismo , Glucose/metabolismo , Quinase 3 da Glicogênio Sintase/metabolismo , Ativação do Canal Iônico , Neurônios/enzimologia , Neuropeptídeo Y/metabolismo , Proteínas Quinases Ativadas por AMP/antagonistas & inibidores , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Animais Recém-Nascidos , Núcleo Arqueado do Hipotálamo/citologia , Núcleo Arqueado do Hipotálamo/efeitos dos fármacos , Biomarcadores/metabolismo , Bloqueadores dos Canais de Cálcio/farmacologia , Canais de Cálcio Tipo N/efeitos dos fármacos , Células Cultivadas , Ativação Enzimática , Quinase 3 da Glicogênio Sintase/antagonistas & inibidores , Glicogênio Sintase Quinase 3 beta , Imuno-Histoquímica , Ativação do Canal Iônico/efeitos dos fármacos , Potenciais da Membrana , Microscopia de Fluorescência , Neurônios/efeitos dos fármacos , Técnicas de Patch-Clamp , Fosforilação , Inibidores de Proteínas Quinases/farmacologia , Ratos , Ratos Sprague-Dawley , Transdução de Sinais , Fatores de Tempo
12.
Neurobiol Stress ; 18: 100453, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35685681

RESUMO

Repeated vagus nerve stimulation (rVNS) exerts anxiolytic effect by activation of noradrenergic pathway. Centrolateral amygdala (CeL), a lateral subdivision of central amygdala, receives noradrenergic inputs, and its neuronal activity is positively correlated to anxiolytic effect of benzodiazepines. The activation of ß-adrenergic receptors (ß-ARs) could enhance glutamatergic transmission in CeL. However, it is unclear whether the neurobiological mechanism of noradrenergic system in CeL mediates the anxiolytic effect induced by rVNS. Here, we find that rVNS treatment produces an anxiolytic effect in male rats by increasing the neuronal activity of CeL. Electrophysiology recording reveals that rVNS treatment enhances the alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor (AMPAR)-mediated excitatory neurotransmission in CeL, which is mimicked by ß-ARs agonist isoproterenol or blocked by ß-ARs antagonist propranolol. Moreover, chemogenetic inhibition of CeL neurons or pharmacological inhibition of ß-ARs in CeL intercepts both enhanced glutamatergic neurotransmission and the anxiolytic effects by rVNS treatment. These results suggest that the amplified AMPAR trafficking in CeL via activation of ß-ARs is critical for the anxiolytic effects induced by rVNS treatment.

13.
Anal Bioanal Chem ; 399(6): 2267-74, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21207014

RESUMO

Protein-bound methionine (Met) oxidation has been associated with normal aging and a variety of age-related diseases, including Alzheimer's disease and Parkinson's disease. Monitoring the changes of protein-bound methionine content in the brain in response to normal aging and oxidative stress is of great interest and could be used as an indicator of oxidative stress of rats in pathological conditions. We have developed a rapid analytical method for the determination of oxidized products of protein-bound methionine in rat brain. The assay involved rapid acid proteolysis with microwave irradiation and solid-phase extraction of the free amino acids followed by LC-ESI-ITMS analysis. Detection was achieved in positive ionization with an ion trap mass spectrometer operating in multiple-reaction monitoring mode. The calibration curves of the analytes were linear (r(2) > 0.99) in the range between 0.098 and 1.560 µg/mL. Intra- and inter-day relative standard deviation percentages were <9% and <8%, respectively. The assay performance was sufficient to support a rapid analytical tool for monitoring brain protein-bound methionine oxidation levels. The content of protein-bound Met and methionine sulfoxide (MetO) in the hippocampus of adult and old rats with or without H(2)O(2) treatment was determined by employing the new method. The content of protein-bound MetO was significantly increased in old rats after exposure to H(2)O(2). This result indicates increased sensitivity to Met oxidation in the hippocampus of old rats.


Assuntos
Cromatografia Líquida/métodos , Hipocampo/química , Metionina/química , Espectrometria de Massas por Ionização por Electrospray/métodos , Fatores Etários , Animais , Hipocampo/metabolismo , Hidrólise , Masculino , Metionina/metabolismo , Micro-Ondas , Oxirredução , Ligação Proteica , Proteínas/metabolismo , Ratos , Ratos Sprague-Dawley
14.
Biol Psychiatry ; 89(6): 615-626, 2021 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-33190845

RESUMO

BACKGROUND: Deficiency in neuronal structural plasticity is involved in the development of major depressive disorder. TWIST1, a helix-loop-helix transcription factor that is essential for morphogenesis and organogenesis, is normally expressed at low levels in mature neurons. However, it is poorly understood what role TWIST1 plays in the brain and whether it is involved in the pathophysiology of depression. METHODS: Depressive-like behaviors in C57BL/6J mice were developed by chronic social defeat stress. Genetic and pharmacological approaches were used to investigate the role of the TWIST1-miR-214-PPAR-δ signaling pathway in depressive-like behaviors. Molecular biological and morphological studies were performed to define the molecular mechanisms downstream of TWIST1. RESULTS: The expression of TWIST1 was positively correlated with depressive behaviors in humans and mice. Chronic stress elevated TWIST1 expression in the medial prefrontal cortex of mice, which was reversed by fluoxetine treatment. While the overexpression of TWIST1 increased susceptibility to stress, the knockdown of TWIST1 prevented the defective morphogenesis of dendrites of pyramidal neurons in layer II/III of the medial prefrontal cortex and alleviated depressive-like behaviors. Mechanistically, this prodepressant property of TWIST1 was mediated, at least in part, through the repression of miR-214-PPAR-δ signaling and mitochondrial function, which was also mimicked by genetic and pharmacological inhibition of PPAR-δ. CONCLUSIONS: These results suggest that TWIST1 in the medial prefrontal cortex mediates chronic stress-induced dendritic remodeling and facilitates the occurrence of depressive-like behavior, providing new information for developing drug targets for depression therapy.


Assuntos
Transtorno Depressivo Maior , Animais , Depressão , Camundongos , Camundongos Endogâmicos C57BL , Plasticidade Neuronal , Córtex Pré-Frontal , Estresse Psicológico , Fatores de Transcrição , Proteína 1 Relacionada a Twist
15.
Am J Physiol Cell Physiol ; 299(6): C1355-62, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20826761

RESUMO

Acid-sensing ion channels (ASICs) extensively exist in both central and peripheral neuronal systems and contribute to many physiological and pathological processes. The protein that interacts with C kinase 1 (PICK1) was cloned as one of the proteins interacting with protein kinase C (PKC) and colocalized with ASIC1 and ASIC2. Here, we used PICK1 knockout (PICK1-KO) C57/BL6 mice together with the whole cell patch clamp, calcium imaging, RT-PCR, Western blot, and immunocytochemistry techniques to explore the possible change in ASICs and the regulatory effects of PKC on ASICs. The results showed that PICK1 played a key role in regulation of ASIC functions. In PICK1-KO mouse cortical neurons, both the amplitude of ASIC currents and elevation of [Ca(2+)](i) mediated by acid were decreased, which were attributable to the decreased expression of ASIC1a and ASIC2a proteins in the plasma membrane. PKC, a partner protein of PICK1, regulated ASIC functions via PICK1. The agonist and antagonist of PKC only altered ASIC currents and acid-induced increase in [Ca(2+)](i) in wild-type, but not in KO mice. In conclusion, our data provided the direct evidence from PICK1-KO mice that a novel target protein, PICK1, would regulate ASIC function and membrane expression in the brain. In addition, PICK1 played the bridge role between PKC and ASICs.


Assuntos
Proteínas de Transporte/fisiologia , Proteínas do Tecido Nervoso/fisiologia , Proteínas Nucleares/fisiologia , Proteína Quinase C/fisiologia , Canais de Sódio/fisiologia , Canais Iônicos Sensíveis a Ácido , Animais , Encéfalo/enzimologia , Encéfalo/fisiologia , Proteínas de Transporte/genética , Proteínas de Ciclo Celular , Córtex Cerebral/enzimologia , Córtex Cerebral/fisiologia , Proteínas de Membrana/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurônios/enzimologia , Neurônios/fisiologia , Proteínas Nucleares/genética
16.
Am J Physiol Endocrinol Metab ; 298(2): E193-201, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19671839

RESUMO

The adipocyte-derived hormone leptin and the pancreatic beta-cell-derived hormone insulin function as afferent signals to the hypothalamus in an endocrine feedback loop that regulates body adiposity. They act in hypothalamic centers to modulate the function of specific neuronal subtypes, such as neuropeptide Y (NPY) neurons, by modifying neuronal electrical activity. To investigate the intrinsic activity of these neurons and their responses to insulin and leptin, we used a combination of morphological features and immunocytochemical technique to identify the NPY neurons of hypothalamic arcuate nucleus (ARC) and record whole cell large-conductance Ca(2+)-activated potassium (BK) currents on them. We found that both of the hormones increase the peak amplitude of BK currents, shifting the steady-state activation curve to the left. The effect of both insulin and leptin can be prevented by pretreatment with inhibitors of tyrosine kinase and phosphatidylinositol 3-kinase (PI3K) but not MAPK. These data indicate that PI3K-mediated signals are the common regulators of BK channels by insulin and leptin and mediated the two hormones' identical activatory effects on ARC NPY neurons. The effect of insulin and leptin together was similar to that of insulin or leptin alone, and leptin or insulin pretreatment did not lead to insulin- or leptin-sensitizing effects, respectively. These intracellular signaling mechanisms may play key roles in regulating ARC NPY neuron activity and physiological processes such as the control of food intake and body weight, which are under the combined control of insulin and leptin.


Assuntos
Insulina/metabolismo , Canais de Potássio Ativados por Cálcio de Condutância Alta/metabolismo , Leptina/metabolismo , Neurônios/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Sistemas do Segundo Mensageiro/fisiologia , Adiposidade/fisiologia , Animais , Núcleo Arqueado do Hipotálamo/citologia , Núcleo Arqueado do Hipotálamo/metabolismo , Células Cultivadas , Imuno-Histoquímica , Neurônios/classificação , Neuropeptídeo Y/metabolismo , Técnicas de Patch-Clamp , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/fisiologia
17.
Acta Pharmacol Sin ; 31(11): 1508-14, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20871622

RESUMO

AIM: To improve and validate analytical methods based on HPLC and liquid chromatography coupled to electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS) for the quantitative measurement of sinomenine in rat plasma and brain tissue. METHODS: The separation of analytes and the internal standard (IS), chloramphenicol, was performed on an Agilent TC-C18 column (250×4.6 mm, 5 µm). Blood samples were measured with a Surveyor photodiode array (PDA) detector at a wavelength of 263 nm. The LCQ DECA XP(Plus) mass spectrometer was operated in the multiple reactions monitoring mode using positive electrospray ionization, and the transition from the precursor ion (m/z 279) to the product ion (m/z 224) for sinomenine was measured in brain tissue. RESULTS: Measurements were linear over the concentration range of 0.1-100 µg/mL for sinomenine in plasma and over the range of 0.01-5.00 µg/g for sinomenine in brain tissue. The intra- and inter-day variabilities were less than 10% of the relative standard deviation (RSD), and the extraction and recovery of sinomenine was 72.48%-80.26% from plasma and 73.75%-80.26% from brain tissue. The limit of quantification (LOQ) was 0.1 µg/mL for plasma, and 0.01 µg/g for brain tissue. Identification of sinomenine was reproducible at 0.5, 5, and 50 µg/mL in the plasma and at 0.05, 0.50, and 2.00 µg/g in brain tissue. The concentration of sinomenine measured in brain tissue after a single ip dose had a neuroprotective effect on H2O2-induced injury in PC12 cells in vitro. CONCLUSION: Our methods offered a sensitivity within a wide linear concentration range for sinomenine. These methods were successfully applied to evaluate sinomenine pharmacokinetics over time in rat brain tissue after a single ip dose of 30 mg/kg.


Assuntos
Morfinanos/análise , Morfinanos/farmacocinética , Fármacos Neuroprotetores/análise , Fármacos Neuroprotetores/farmacocinética , Animais , Encéfalo/metabolismo , Calibragem , Técnicas de Cultura de Células , Sobrevivência Celular/efeitos dos fármacos , Cromatografia Líquida de Alta Pressão , Feminino , Peróxido de Hidrogênio/toxicidade , Masculino , Morfinanos/sangue , Morfinanos/farmacologia , Fármacos Neuroprotetores/sangue , Fármacos Neuroprotetores/farmacologia , Oxidantes/toxicidade , Células PC12 , Ratos , Ratos Wistar , Reprodutibilidade dos Testes , Espectrometria de Massas por Ionização por Electrospray , Distribuição Tecidual
18.
Biol Psychiatry ; 88(5): 415-425, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32220499

RESUMO

BACKGROUND: Angiotensin-converting enzyme inhibitors (ACEIs) are widely prescribed antihypertensive agents. Intriguingly, case reports and clinical trials have indicated that ACEIs, including captopril and lisinopril, may have a rapid mood-elevating effect in certain patients, but few experimental studies have investigated their value as fast-onset antidepressants. METHODS: The present study consisted of a series of experiments using biochemical assays, immunohistochemistry, and behavioral techniques to examine the effect and mechanism of captopril on depressive-like behavior in 2 animal models, the chronic unpredictable stress model and the chronic social defeat stress model. RESULTS: Captopril (19.5 or 39 mg/kg, intraperitoneal injection) exerted rapid antidepressant activity in mice treated under the chronic unpredictable stress model and mice treated under the chronic social defeat stress model. Pharmacokinetic analysis revealed that captopril crossed the blood-brain barrier and that lisinopril, another ACEI with better blood-brain barrier permeability, exerted a faster and longer-lasting effect at a same molar equivalent dose. This antidepressant effect seemed to be independent of the renin-angiotensin system, but dependent on the bradykinin (BK) system, since the decreased BK detected in the stressed mice could be reversed by captopril. The hypofunction of the downstream effector of BK, Cdc42 (cell division control protein 42) homolog, contributed to the stress-induced loss of dendritic spines, which was rapidly reversed by captopril via activating the mTORC1 (mammalian target of rapamycin complex 1) pathway. CONCLUSIONS: Our findings indicate that the BK-dependent activation of mTORC1 may represent a promising mechanism underlying antidepressant pharmacology. Considering their affordability and availability, ACEIs may emerge as a novel fast-onset antidepressant, especially for patients with comorbid depression and hypertension.


Assuntos
Inibidores da Enzima Conversora de Angiotensina , Hipertensão , Inibidores da Enzima Conversora de Angiotensina/farmacologia , Animais , Bradicinina , Captopril/farmacologia , Humanos , Hipertensão/tratamento farmacológico , Camundongos , Serina-Treonina Quinases TOR
19.
Cell Mol Neurobiol ; 29(1): 7-15, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18581229

RESUMO

Methionine and cysteine residues in proteins are the major targets of reactive oxygen species (ROS). The present work was designed to characterize the impact of methionine and cysteine oxidation upon [Ca(2+)](i) in hippocampal neurons. We investigated the effects of H(2)O(2) and chloramine T(Ch-T) agents known to oxidize both cysteine and methionine residues, and 5, 5'-dithio-bis (2-nitrobenzoic acid) (DTNB)--a cysteine-specific oxidant, on the intracellular calcium in hippocampal neurons. The results showed that these three oxidants, 1 mM H(2)O(2), 1 mM Ch-T, and 500 microM DTNB, induced an sustained elevation of [Ca(2+)](i) by 76.1 +/- 3.9%, 86.5 +/- 5.0%, and 24.4 +/- 3.2% over the basal level, respectively. The elevation induced by H(2)O(2) and Ch-T was significantly higher than DTNB. Pretreatment with reductant DTT at 1 mM for 10 min completely prevented the action of DTNB on [Ca(2+)](i), but only partially reduced the effects of H(2)O(2) and Ch-T on [Ca(2+)](i), the reductions were 44.6 +/- 4.2% and 29.6 +/- 6.1% over baseline, respectively. The elevation of [Ca(2+)](i) induced by H(2)O(2) and Ch-T after pretreatment with DTT were statistically higher than that induced by single administration of DTNB. Further investigation showed that the elevation of [Ca(2+)](i) mainly resulted from internal calcium stores. From our data, we propose that methionine oxidation plays an important role in the regulation of intracellular calcium and this regulation may mainly be due to internal calcium stores.


Assuntos
Sinalização do Cálcio , Cisteína/metabolismo , Hipocampo/citologia , Metionina/metabolismo , Neurônios/citologia , Neurônios/metabolismo , Animais , Animais Recém-Nascidos , Cálcio/metabolismo , Sinalização do Cálcio/efeitos dos fármacos , Células Cultivadas , Ditiotreitol/farmacologia , Indóis/farmacologia , Inositol 1,4,5-Trifosfato/metabolismo , Neurônios/efeitos dos fármacos , Oxidantes/farmacologia , Oxirredução/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Substâncias Redutoras/farmacologia
20.
Cell Mol Neurobiol ; 29(3): 317-28, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-18975071

RESUMO

Recent evidences indicate the existence of an atypical D(1) dopamine receptor other than traditional D(1) dopamine receptor in the brain that mediates PI hydrolysis via activation of phospholipase C(beta) (PLC(beta)). To further understand the basic physiological function of this receptor in brain, the effects of a selective phosphoinositide (PI)-linked D(1) dopamine receptor agonist SKF83959 on cytosolic free calcium concentration ([Ca(2+)](i)) in cultured rat prefrontal cortical astrocytes were investigated by calcium imaging. The results indicated that SKF83959 caused a transient dose-dependent increase in [Ca(2+)](i). Application of D(1) receptor, but not D(2), alpha(1) adrenergic, 5-HT receptor, or cholinergic antagonist prevented SKF83959-induced [Ca(2+)](i) rise, indicating that activation of the D(1) dopamine receptor was essential for this response. Increase in [Ca(2+)](i) was a two-step process characterized by an initial increase in [Ca(2+)](i) mediated by release from intracellular stores, supplemented by influx through voltage-gated calcium channels, receptor-operated calcium channels, and capacitative Ca(2+) entry. Furthermore, SKF83959-stimulated increase in [Ca(2+)](i) was abolished following treatment with a PLC inhibitor. Overall, these results suggested that activation of D(1) receptor by SKF83959 mediates a dose-dependent mobilization of [Ca(2+)](i) via the PLC signaling pathway in cultured rat prefrontal cortical astrocytes.


Assuntos
Astrócitos/metabolismo , Sinalização do Cálcio , Fosfatidilinositóis/metabolismo , Córtex Pré-Frontal/citologia , Receptores de Dopamina D1/metabolismo , 2,3,4,5-Tetra-Hidro-7,8-Di-Hidroxi-1-Fenil-1H-3-Benzazepina/análogos & derivados , 2,3,4,5-Tetra-Hidro-7,8-Di-Hidroxi-1-Fenil-1H-3-Benzazepina/farmacologia , Animais , Astrócitos/efeitos dos fármacos , Astrócitos/enzimologia , Canais de Cálcio/metabolismo , Sinalização do Cálcio/efeitos dos fármacos , Células Cultivadas , Ativação Enzimática/efeitos dos fármacos , Espaço Extracelular/efeitos dos fármacos , Espaço Extracelular/metabolismo , Feminino , Inositol 1,4,5-Trifosfato/metabolismo , Espaço Intracelular/efeitos dos fármacos , Espaço Intracelular/metabolismo , Masculino , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Fosfolipases Tipo C/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA