Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Langmuir ; 33(43): 12336-12343, 2017 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-28985471

RESUMO

Film rehydration method is commonly used for membrane protein (MP) reconstitution into block copolymer (BCP), but the lack of control in the rehydration step formed a heterogeneous population of proteopolymersomes that interferes with the characterization and performance of devices incorporating them. To improve the self-assembly of polymersomes with simultaneous MP reconstitution, the study reported herein aimed to understand the effects of different variants of the rehydration procedure on the MP reconstitution into BCP membranes. The model MP used in this study was AquaporinZ (AqpZ), an α-helical MP that has been shown to have a high permeation rate exclusive to water molecules. Comparing four rehydration methods differing in the hydration time (i.e., brief wetting or full hydration) and medium (i.e., in buffer or AqpZ stock solution), prehydration with buffer prior to adding AqpZ was found to be most desirable and reproducible reconstitution method because it gave rise to the highest proportion of well-formed vesicles with intact AqpZ functionality as evidenced by the transmission electron microscopy images, dynamic light scattering, and stopped-flow analyses. The mechanisms by which effective AqpZ reconstitution takes place were also investigated and discussed. Small-angle X-ray scattering analysis shows that hydrating the initially dry multilamellar BCP films allows the separation of lamellae. This is anticipated to increase the membrane fluidity that facilitates a fast and spontaneous integration of AqpZ as the detergent concentration is considerably lowered below its critical micelle concentration. Dilution of detergent can result in precipitation of proteins in the absence of well-fluidized membranes for protein integration that underscores the importance of membrane fluidity in MP reconstitution.


Assuntos
Polímeros/química , Detergentes , Hidrogênio , Proteínas de Membrana , Micelas
2.
Environ Sci Technol ; 49(4): 2310-8, 2015 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-25650519

RESUMO

The authors have recently reported the fabrication of superabsorbent cryogels decorated with silver nanoparticles (PSA/AgNP cryogels) that demonstrate rapid water disinfection. This paper provides a systematic elucidation of the bactericidal mechanisms of AgNPs (silver nanoparticles), both generally and in the specific context of cryogels. Direct contact between the PSA/AgNP cryogel interface and the bacterial cells is required to accomplish disinfection. Specifically, the disinfection efficacy is closely correlated to the cell-bound Ag concentration, which constitutes >90% of the Ag released. Cells exposed to PSA/AgNP cryogels show a significant depletion of intracellular adenosine triphosphate (ATP) content and cell-membrane lesions. A positive ROS (reactive oxygen species) scavenging test confirms the involvement of ROS (·O2(-), H2O2, and ·OH) in the bactericidal mechanism. Furthermore, exposed bacterial cells show an enhanced level of thiobarbituric acid reactive substances, indicating the occurrence of cell-membrane peroxidation mediated by ROS. In addition, this study reveals that both Ag(+) and Ag(0) are involved in the bactericidal mechanism of AgNPs via tests conducted using PSA cryogels with bound Ag(+) ions (or PSA/Ag(+) cryogels without reducing Ag(+) to Ag(0)). Significantly, bacterial cells exposed to PSA/Ag(+) cryogels did not show any cell-membrane damage even though the former had a higher cell-bound Ag concentration than that of the PSA/AgNP cryogels, thus indicating the differential action of Ag(+) and Ag(0).


Assuntos
Antibacterianos/química , Criogéis/química , Desinfecção/métodos , Nanopartículas Metálicas/química , Antibacterianos/farmacologia , Membrana Celular/efeitos dos fármacos , Peróxido de Hidrogênio/química , Espécies Reativas de Oxigênio , Prata/farmacocinética , Água/química , Microbiologia da Água , Purificação da Água/métodos
3.
Environ Sci Technol ; 47(16): 9363-71, 2013 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-23927762

RESUMO

This paper reports the preparation of poly(sodium acrylate) (PSA) cryogels decorated with silver nanoparticles (AgNPs) for point-of-use (POU) water disinfection. The PSA/Ag cryogels combine the high porosity, excellent mechanical and water absorption properties of cryogels, and uniform dispersion of fine AgNPs on the cryogel pore surface for rapid disinfection with minimal Ag release (<100 µg L(-1)). They were used in a process that employed their ability to absorb water, which subsequently could be released via application of mild pressure. Their antibacterial performance was evaluated based on the disinfection efficacies of E. coli and B. subtilis . The PSA/Ag cryogels had excellent disinfection efficacies showing close to a 3 log reduction of viable bacteria after a brief 15 s contact time. They were highly reusable as there was no significant difference in the disinfection efficacies over five cycles of operation. The biocidal action of the PSA/Ag cryogels is believed to be dominated by surface-controlled mechanisms that are dependent on direct contact of the interface of PSA/Ag cryogels with the bacterial cells. The PSA/Ag cryogels are thought to offer a simpler approach for drinking water disinfection in disaster relief applications.


Assuntos
Criogéis , Desinfecção , Nanopartículas Metálicas , Prata , Purificação da Água
4.
Sci Total Environ ; 837: 155720, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35525366

RESUMO

Harmful microorganism (e.g., new coronavirus) based infection is the most important security concern in life sciences and healthcare. This article aims to provide a state-of-the-art review on the development of advanced technology based on nanomaterial disinfection/sterilization techniques (NDST) for the first time including the nanomaterial types, disinfection techniques, bactericidal devices, sterilization products, and application scenarios (i.e., water, air, medical healthcare), with particular brief account of bactericidal behaviors referring to varied systems. In this emerging research area spanning the years from 1998 to 2021, total of ~200 publications selected for the type of review paper and research articles were reviewed. Four typical functional materials (namely type of metal/metal oxides, S-based, C-based, and N-based) with their development progresses in disinfection/sterilization are summarized with a list of synthesis and design. Among them, the widely used silver nanoparticles (AgNPs) are considered as the most effective bacterial agents in the type of nanomaterials at present and has been reported for inactivation of viruses, fungi, protozoa. Some methodologies against (1) disinfection by-products (DBPs) in traditional sterilization, (2) noble metal nanoparticles (NPs) agglomeration and release, (3) toxic metal leaching, (4) solar spectral response broadening, and (5) photogenerated e-/h+ pairs recombination are reviewed and discussed in this field, namely (1) alternative techniques and nanomaterials, (2) supporter anchoring effect, (3) nonmetal functional nanomaterials, (4) element doping, and (5) heterojunction constructing. The feasible strategies in the perspective of NDST are proposed to involve (1) non-noble metal disinfectors, (2) multi-functional nanomaterials, (3) multi-component nanocomposite innovation, and (4) hybrid techniques for disinfection/sterilization system. It is promising to achieve 100% bactericidal efficiency for 108 CFU/mL within a short time of less than 30 min.


Assuntos
Nanopartículas Metálicas , Nanocompostos , Antibacterianos , Desinfecção/métodos , Óxidos , Prata , Tecnologia
5.
ACS Appl Mater Interfaces ; 13(26): 30542-30555, 2021 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-34156821

RESUMO

This paper reports the fabrication of photothermal cryogels for freshwater production via the solar-driven evaporation of seawater. Photothermal cryogels were prepared via in situ oxidative polymerization of pyrrole with ammonium persulfate on preformed poly(sodium acrylate) (PSA) cryogels. We found that the pyrrole concentration used in the fabrication process has a significant effect on the final PSA/PPy cryogels (PPCs), causing the as-formed polypyrrole (PPy) layer on the PPC to evolve from nanoparticles to lamellar sheets and to consolidated thin films. PPC fabricated using the lowest pyrrole concentration (i.e., PPC10) displays the best solar-evaporation efficiency compared to the other samples, which is further improved by switching the operative mode from floating to standing. Specifically, in the latter case, the apparent solar evaporation rate and solar-to-vapor conversion efficiency reach 1.41 kg m-2 h-1 and 96.9%, respectively, due to the contribution of evaporation from the exposed lateral surfaces. The distillate obtained from the condensed vapor, generated via solar evaporation of a synthetic seawater through PPC10, shows an at least 99.99% reduction of Na while all the other elements are reduced to a subppm level. We attribute the superior solar evaporation and desalination performance of PPC10 to its (i) higher photoabsorption efficiency, (ii) higher heat localization effect, (iii) open porous structure that facilitates vapor removal, (iv) rough pore surface that increases the surface area for light absorption and water evaporation, and (v) higher water-absorption capacity to ensure efficient water replenishment to the evaporative sites. It is anticipated that the gained know-how from this study would offer insightful guidelines to better designs of polymer-based 3D photothermal materials for solar evaporation as well as for other emerging solar-related applications.

6.
ACS Appl Mater Interfaces ; 12(9): 10307-10316, 2020 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-32058681

RESUMO

The accelerated increase in freshwater demand, particularly among populations displaced in remote locations where conventional water sources and the infrastructure required to produce potable water may be completely absent, highlights the urgent need in creating additional freshwater supply from untapped alternative sources via energy-efficient solutions. Herein, we present a hydrophilic and self-floating photothermal foam that can generate potable water from seawater and atmospheric moisture via solar-driven evaporation at its interface. Specifically, the foam shows an excellent solar-evaporation rate of 1.89 kg m-2 h-1 with a solar-to-vapor conversion efficiency of 92.7% under 1-Sun illumination. The collected water is shown to be suitable for potable use because when synthetic seawater samples (3.5 wt %) are used, the foam is able to cause at least 99.99% of salinity reduction. The foam can also be repeatedly used in multiple hydration-dehydration cycles, consisting of moisture absorption or water collection, followed by solar-driven evaporation; in each cycle, 1 g of the foam can harvest 250-1770 mg of water. To the best of our knowledge, this is the first report of a material that integrates all the desirable properties for solar evaporation, water collection, and atmospheric-water harvesting. The lightweight and versatility of the foam suggest that the developed foams can be a potent solution for water efficiency, especially for off-grid situations.

7.
J Colloid Interface Sci ; 461: 104-113, 2016 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-26397916

RESUMO

This study investigated the effects of dissolved organic matter (DOM) and various electrolytes commonly found in environmental aqueous matrices on the physicochemical properties and bactericidal efficacy of silver nanoparticles (AgNPs), which are immobilized on cryogels (or PSA/AgNP cryogel). The AgNPs in the PSA/AgNP cryogel that were exposed to different media underwent morphological transformation in terms of particle size and structure. In addition, the presence of DOM and electrolytes increased the release of dissolved Ag. The biological uptake of Ag species (determined as the total Ag in exposed cells) increased in the presence of DOM, but decreased in the presence of electrolytes. The presence of electrolytes did not result in any significant reduction in the bactericidal activity. Although an initial increase of the DOM to 2.5 mg-C L(-1) attenuated the bactericidal efficacy of the immobilized AgNPs, an increase in the DOM concentration beyond 5 mg-C L(-1) enhanced the bactericidal efficacy. This study found that the bactericidal activity of the immobilized AgNPs is less sensitive to the solution chemistry relative to the free AgNPs. This suggests that immobilizing the AgNPs in a supporting material is a good strategy to preserve their efficacy for disinfection in various aqueous matrices.


Assuntos
Antibacterianos/farmacologia , Criogéis/farmacologia , Escherichia coli/efeitos dos fármacos , Nanopartículas Metálicas/química , Prata/farmacologia , Adsorção , Antibacterianos/química , Criogéis/química , Relação Dose-Resposta a Droga , Testes de Sensibilidade Microbiana , Tamanho da Partícula , Prata/química , Soluções , Relação Estrutura-Atividade , Propriedades de Superfície
8.
Water Res ; 47(11): 3773-81, 2013 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-23726714

RESUMO

We report a study to explore new materials and a new concept for temperature driven quasi-continuous desalination using hydrogels as draw agents in forward osmosis (FO). This concept is enabled by the design and preparation of thermally responsive hydrogels having a semi-interpenetrating network (semi-IPN) structure. Thermally responsive semi-IPN hydrogels were synthesized by polymerization of N-isopropylacrylamide (NIPAm) in the presence of polysodium acrylate (PSA) or polyvinyl alcohol (PVA). Their functions as draw agents in FO were systematically studied and compared with hydrogels prepared from the PNIPAm homopolymer or the NIPAM-SA copolymer. While the semi-IPN hydrogels displayed the desirable balanced thermally responsive swelling and dewatering behavior, the NIPAm-SA copolymer hydrogels were found to have poor dewatering behavior, making them unsuitable for a continuous temperature driven desalination process. At 40 °C, the semi-IPN hydrogels rapidly release nearly 100% of the water absorbed during the FO drawing process carried out at room temperature. Results clearly indicate the potential of semi-IPN hydrogels as semi-solid draw agents in the FO process, in which quasi-continuous desalination could be achieved by cyclic heating and cooling within a moderate temperature change.


Assuntos
Hidrogéis/química , Osmose , Purificação da Água/métodos , Acrilamidas/química , Resinas Acrílicas/química , Álcool de Polivinil/química , Temperatura
9.
Water Res ; 46(10): 3125-51, 2012 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-22521949

RESUMO

Access to safe drinking water is one of the first priorities following a disaster. However, providing drinking water to the affected population (AP) is challenging due to severe contamination and lack of access to infrastructure. An onsite treatment system for the AP is a more sustainable solution than transporting bottled water. Emergency water technologies (WTs) that are modular, mobile or portable are suitable for emergency relief. This paper reviews WTs including membrane technologies that are suitable for use in emergencies. Physical, chemical, thermal- and light-based treatment methods, and membrane technologies driven by different driving forces such as pressure, temperature and osmotic gradients are reviewed. Each WT is evaluated by ten mutually independent criteria: costs, ease of deployment, ease of use, maintenance, performance, potential acceptance, energy requirements, supply chain requirements, throughput and environmental impact. A scoring system based on these criteria is presented. A methodology for emergency WT selection based on compensatory multi-criteria analysis is developed and discussed. Finally, critical research needs are identified.


Assuntos
Emergências , Purificação da Água/métodos , Abastecimento de Água , Planejamento em Desastres , Água Potável/normas , Qualidade da Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA