Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
N Engl J Med ; 385(8): 707-719, 2021 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-34347949

RESUMO

BACKGROUND: P-element-induced wimpy testis (PIWI)-interacting RNAs (piRNAs) are short (21 to 35 nucleotides in length) and noncoding and are found almost exclusively in germ cells, where they regulate aberrant expression of transposable elements and postmeiotic gene expression. Critical to the processing of piRNAs is the protein poly(A)-specific RNase-like domain containing 1 (PNLDC1), which trims their 3' ends and, when disrupted in mice, causes azoospermia and male infertility. METHODS: We performed exome sequencing on DNA samples from 924 men who had received a diagnosis of nonobstructive azoospermia. Testicular-biopsy samples were analyzed by means of histologic and immunohistochemical tests, in situ hybridization, reverse-transcriptase-quantitative-polymerase-chain-reaction assay, and small-RNA sequencing. RESULTS: Four unrelated men of Middle Eastern descent who had nonobstructive azoospermia were found to carry mutations in PNLDC1: the first patient had a biallelic stop-gain mutation, p.R452Ter (rs200629089; minor allele frequency, 0.00004); the second, a novel biallelic missense variant, p.P84S; the third, two compound heterozygous mutations consisting of p.M259T (rs141903829; minor allele frequency, 0.0007) and p.L35PfsTer3 (rs754159168; minor allele frequency, 0.00004); and the fourth, a novel biallelic canonical splice acceptor site variant, c.607-2A→T. Testicular histologic findings consistently showed error-prone meiosis and spermatogenic arrest with round spermatids of type Sa as the most advanced population of germ cells. Gene and protein expression of PNLDC1, as well as the piRNA-processing proteins PIWIL1, PIWIL4, MYBL1, and TDRKH, were greatly diminished in cells of the testes. Furthermore, the length distribution of piRNAs and the number of pachytene piRNAs was significantly altered in men carrying PNLDC1 mutations. CONCLUSIONS: Our results suggest a direct mechanistic effect of faulty piRNA processing on meiosis and spermatogenesis in men, ultimately leading to male infertility. (Funded by Innovation Fund Denmark and others.).


Assuntos
Azoospermia/genética , Exorribonucleases/genética , Infertilidade Masculina/genética , Meiose/fisiologia , Mutação , RNA Interferente Pequeno/metabolismo , Testículo/patologia , Adulto , Azoospermia/fisiopatologia , Biópsia , Expressão Gênica , Humanos , Masculino , Fenótipo , Reação em Cadeia da Polimerase , RNA Interferente Pequeno/ultraestrutura , Análise de Sequência de RNA , Testículo/metabolismo , Sequenciamento do Exoma
2.
Hum Reprod ; 39(3): 612-622, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38305414

RESUMO

STUDY QUESTION: Do the genetic determinants of idiopathic severe spermatogenic failure (SPGF) differ between generations? SUMMARY ANSWER: Our data support that the genetic component of idiopathic SPGF is impacted by dynamic changes in environmental exposures over decades. WHAT IS KNOWN ALREADY: The idiopathic form of SPGF has a multifactorial etiology wherein an interaction between genetic, epigenetic, and environmental factors leads to the disease onset and progression. At the genetic level, genome-wide association studies (GWASs) allow the analysis of millions of genetic variants across the genome in a hypothesis-free manner, as a valuable tool for identifying susceptibility risk loci. However, little is known about the specific role of non-genetic factors and their influence on the genetic determinants in this type of conditions. STUDY DESIGN, SIZE, DURATION: Case-control genetic association analyses were performed including a total of 912 SPGF cases and 1360 unaffected controls. PARTICIPANTS/MATERIALS, SETTING, METHODS: All participants had European ancestry (Iberian and German). SPGF cases were diagnosed during the last decade either with idiopathic non-obstructive azoospermia (n = 547) or with idiopathic non-obstructive oligozoospermia (n = 365). Case-control genetic association analyses were performed by logistic regression models considering the generation as a covariate and by in silico functional characterization of the susceptibility genomic regions. MAIN RESULTS AND THE ROLE OF CHANCE: This analysis revealed 13 novel genetic association signals with SPGF, with eight of them being independent. The observed associations were mostly explained by the interaction between each lead variant and the age-group. Additionally, we established links between these loci and diverse non-genetic factors, such as toxic or dietary habits, respiratory disorders, and autoimmune diseases, which might potentially influence the genetic architecture of idiopathic SPGF. LARGE SCALE DATA: GWAS data are available from the authors upon reasonable request. LIMITATIONS, REASONS FOR CAUTION: Additional independent studies involving large cohorts in ethnically diverse populations are warranted to confirm our findings. WIDER IMPLICATIONS OF THE FINDINGS: Overall, this study proposes an innovative strategy to achieve a more precise understanding of conditions such as SPGF by considering the interactions between a variable exposome through different generations and genetic predisposition to complex diseases. STUDY FUNDING/COMPETING INTEREST(S): This work was supported by the "Plan Andaluz de Investigación, Desarrollo e Innovación (PAIDI 2020)" (ref. PY20_00212, P20_00583), the Spanish Ministry of Economy and Competitiveness through the Spanish National Plan for Scientific and Technical Research and Innovation (ref. PID2020-120157RB-I00 funded by MCIN/ AEI/10.13039/501100011033), and the 'Proyectos I+D+i del Programa Operativo FEDER 2020' (ref. B-CTS-584-UGR20). ToxOmics-Centre for Toxicogenomics and Human Health, Genetics, Oncology and Human Toxicology, is also partially supported by the Portuguese Foundation for Science and Technology (Projects: UIDB/00009/2020; UIDP/00009/2020). The authors declare no competing interests. TRIAL REGISTRATION NUMBER: N/A.


Assuntos
Azoospermia , Oligospermia , Masculino , Humanos , Estudo de Associação Genômica Ampla , Predisposição Genética para Doença , Azoospermia/genética , Oligospermia/genética , Exposição Ambiental
3.
Dev Biol ; 490: 66-72, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35850260

RESUMO

Male infertility is a common condition affecting at least 7% of men worldwide and is often genetic in origin. Using whole exome sequencing, we recently discovered three hemizygous, likely damaging variants in DDB1- and CUL4-associated factor 12-like protein 1 (DCAF12L1) in men with azoospermia. DCAF12L1 is located on the X-chromosome and as identified by single cell sequencing studies, its expression is enriched in human testes and specifically in Sertoli cells and spermatogonia. However, very little is known about the role of DCAF12L1 in spermatogenesis, thus we generated a knockout mouse model to further explore the role of DCAF12L1 in male fertility. Knockout mice were generated using CRISPR/Cas9 technology to remove the entire coding region of Dcaf12l1 and were assessed for fertility over a broad range of ages (2-8 months of age). Despite outstanding genetic evidence in men, loss of DCAF12L1 had no discernible impact on male fertility in mice, as highlighted by breeding trials, histological assessment of the testis and epididymis, daily sperm production and evaluation of sperm motility using computer assisted methods. This disparity is likely due to the parallel evolution, and subsequent divergence, of DCAF12 family members in mice and men or the presence of compounding environmental factors in men.


Assuntos
Fertilidade , Infertilidade Masculina , Testículo , Animais , Humanos , Masculino , Camundongos , Fator XII/metabolismo , Fertilidade/genética , Infertilidade Masculina/genética , Camundongos Knockout , Motilidade dos Espermatozoides/genética , Espermatogênese/genética
4.
Am J Hum Genet ; 107(2): 342-351, 2020 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-32673564

RESUMO

Male infertility affects ∼7% of men, but its causes remain poorly understood. The most severe form is non-obstructive azoospermia (NOA), which is, in part, caused by an arrest at meiosis. So far, only a few validated disease-associated genes have been reported. To address this gap, we performed whole-exome sequencing in 58 men with unexplained meiotic arrest and identified the same homozygous frameshift variant c.676dup (p.Trp226LeufsTer4) in M1AP, encoding meiosis 1 associated protein, in three unrelated men. This variant most likely results in a truncated protein as shown in vitro by heterologous expression of mutant M1AP. Next, we screened four large cohorts of infertile men and identified three additional individuals carrying homozygous c.676dup and three carrying combinations of this and other likely causal variants in M1AP. Moreover, a homozygous missense variant, c.1166C>T (p.Pro389Leu), segregated with infertility in five men from a consanguineous Turkish family. The common phenotype between all affected men was NOA, but occasionally spermatids and rarely a few spermatozoa in the semen were observed. A similar phenotype has been described for mice with disruption of M1ap. Collectively, these findings demonstrate that mutations in M1AP are a relatively frequent cause of autosomal recessive severe spermatogenic failure and male infertility with strong clinical validity.


Assuntos
Pontos de Checagem do Ciclo Celular/genética , Infertilidade Masculina/genética , Meiose/genética , Mutação/genética , Proteínas/genética , Espermatogênese/genética , Adulto , Alelos , Animais , Azoospermia/genética , Homozigoto , Humanos , Masculino , Camundongos , Fenótipo , Espermatozoides/anormalidades , Testículo/anormalidades , Turquia , Sequenciamento do Exoma/métodos
5.
J Headache Pain ; 24(1): 78, 2023 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-37380951

RESUMO

Migraine is a common and complex neurological disease potentially caused by a polygenic interaction of multiple gene variants. Many genes associated with migraine are involved in pathways controlling the synaptic function and neurotransmitters release. However, the molecular mechanisms underpinning migraine need to be further explored.Recent studies raised the possibility that migraine may arise from the effect of regulatory non-coding variants. In this study, we explored the effect of candidate non-coding variants potentially associated with migraine and predicted to lie within regulatory elements: VAMP2_rs1150, SNAP25_rs2327264, and STX1A_rs6951030. The involvement of these genes, which are constituents of the SNARE complex involved in membrane fusion and neurotransmitter release, underscores their significance in migraine pathogenesis. Our reporter gene assays confirmed the impact of at least two of these non-coding variants. VAMP2 and SNAP25 risk alleles were associated with a decrease and increase in gene expression, respectively, while STX1A risk allele showed a tendency to reduce luciferase activity in neuronal-like cells. Therefore, the VAMP2_rs1150 and SNAP25_rs2327264 non-coding variants affect gene expression, which may have implications in migraine susceptibility. Based on previous in silico analysis, it is plausible that these variants influence the binding of regulators, such as transcription factors and micro-RNAs. Still, further studies exploring these mechanisms would be important to shed light on the association between SNAREs dysregulation and migraine susceptibility.


Assuntos
Transtornos de Enxaqueca , Proteína 2 Associada à Membrana da Vesícula , Humanos , Proteína 2 Associada à Membrana da Vesícula/genética , Fusão de Membrana , Alelos , Transtornos de Enxaqueca/genética , Expressão Gênica , Proteína 25 Associada a Sinaptossoma/genética
6.
Hum Reprod ; 37(7): 1652-1663, 2022 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-35535697

RESUMO

STUDY QUESTION: What is the load, distribution and added clinical value of secondary findings (SFs) identified in exome sequencing (ES) of patients with non-obstructive azoospermia (NOA)? SUMMARY ANSWER: One in 28 NOA cases carried an identifiable, medically actionable SF. WHAT IS KNOWN ALREADY: In addition to molecular diagnostics, ES allows assessment of clinically actionable disease-related gene variants that are not connected to the patient's primary diagnosis, but the knowledge of which may allow the prevention, delay or amelioration of late-onset monogenic conditions. Data on SFs in specific clinical patient groups, including reproductive failure, are currently limited. STUDY DESIGN, SIZE, DURATION: The study group was a retrospective cohort of patients with NOA recruited in 10 clinics across six countries and formed in the framework of the international GEMINI (The GEnetics of Male INfertility Initiative) study. PARTICIPANTS/MATERIALS, SETTING, METHODS: ES data of 836 patients with NOA were exploited to analyze SFs in 85 genes recommended by the American College of Medical Genetics and Genomics (ACMG), Geisinger's MyCode, and Clinical Genome Resource. The identified 6374 exonic variants were annotated with ANNOVAR and filtered for allele frequency, retaining 1381 rare or novel missense and loss-of-function variants. After automatic assessment of pathogenicity with ClinVar and InterVar, 87 variants were manually curated. The final list of confident disease-causing SFs was communicated to the corresponding GEMINI centers. When patient consent had been given, available family health history and non-andrological medical data were retrospectively assessed. MAIN RESULTS AND THE ROLE OF CHANCE: We found a 3.6% total frequency of SFs, 3.3% from the 59 ACMG SF v2.0 genes. One in 70 patients carried SFs in genes linked to familial cancer syndromes, whereas 1 in 60 cases was predisposed to congenital heart disease or other cardiovascular conditions. Retrospective assessment confirmed clinico-molecular diagnoses in several cases. Notably, 37% (11/30) of patients with SFs carried variants in genes linked to male infertility in mice, suggesting that some SFs may have a co-contributing role in spermatogenic impairment. Further studies are needed to determine whether these observations represent chance findings or the profile of SFs in NOA patients is indeed different from the general population. LIMITATIONS, REASONS FOR CAUTION: One limitation of our cohort was the low proportion of non-Caucasian ethnicities (9%). Additionally, as comprehensive clinical data were not available retrospectively for all men with SFs, we were not able to confirm a clinico-molecular diagnosis and assess the penetrance of the specific variants. WIDER IMPLICATIONS OF THE FINDINGS: For the first time, this study analyzed medically actionable SFs in men with spermatogenic failure. With the evolving process to incorporate ES into routine andrology practice for molecular diagnostic purposes, additional assessment of SFs can inform about future significant health concerns for infertility patients. Timely detection of SFs and respective genetic counseling will broaden options for disease prevention and early treatment, as well as inform choices and opportunities regarding family planning. A notable fraction of SFs was detected in genes implicated in maintaining genome integrity, essential in both mitosis and meiosis. Thus, potential genetic pleiotropy may exist between certain adult-onset monogenic diseases and NOA. STUDY FUNDING/COMPETING INTEREST(S): This work was supported by the Estonian Research Council grants IUT34-12 and PRG1021 (M.L. and M.P.); National Institutes of Health of the United States of America grant R01HD078641 (D.F.C., K.I.A. and P.N.S.); National Institutes of Health of the United States of America grant P50HD096723 (D.F.C. and P.N.S.); National Health and Medical Research Council of Australia grant APP1120356 (M.K.O'B., D.F.C. and K.I.A.); Fundação para a Ciência e a Tecnologia (FCT)/Ministério da Ciência, Tecnologia e Inovação grant POCI-01-0145-FEDER-007274 (A.M.L., F.C. and J.G.) and FCT: IF/01262/2014 (A.M.L.). J.G. was partially funded by FCT/Ministério da Ciência, Tecnologia e Ensino Superior (MCTES), through the Centre for Toxicogenomics and Human Health-ToxOmics (grants UID/BIM/00009/2016 and UIDB/00009/2020). M.L.E. is a consultant for, and holds stock in, Roman, Sandstone, Dadi, Hannah, Underdog and has received funding from NIH/NICHD. Co-authors L.K., K.L., L.N., K.I.A., P.N.S., J.G., F.C., D.M.-M., K.A., K.A.J., M.K.O'B., A.M.L., D.F.C., M.P. and M.L. declare no conflict of interest. TRIAL REGISTRATION NUMBER: N/A.


Assuntos
Azoospermia , Infertilidade Masculina , Animais , Azoospermia/diagnóstico , Azoospermia/genética , Exoma , Humanos , Infertilidade Masculina/diagnóstico , Infertilidade Masculina/genética , Masculino , Camundongos , Estudos Retrospectivos
7.
Hum Genet ; 140(1): 217-227, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33211200

RESUMO

Non-obstructive azoospermia (NOA), the lack of spermatozoa in semen due to impaired spermatogenesis affects nearly 1% of men. In about half of cases, an underlying cause for NOA cannot be identified. This study aimed to identify novel variants associated with idiopathic NOA. We identified a nonconsanguineous family in which multiple sons displayed the NOA phenotype. We performed whole-exome sequencing in three affected brothers with NOA, their two unaffected brothers and their father, and identified compound heterozygous frameshift variants (one novel and one extremely rare) in Telomere Repeat Binding Bouquet Formation Protein 2 (TERB2) that segregated perfectly with NOA. TERB2 interacts with TERB1 and Membrane Anchored Junction Protein (MAJIN) to form the tripartite meiotic telomere complex (MTC), which has been shown in mouse models to be necessary for the completion of meiosis and both male and female fertility. Given our novel findings of TERB2 variants in NOA men, along with the integral role of the three MTC proteins in spermatogenesis, we subsequently explored exome sequence data from 1495 NOA men to investigate the role of MTC gene variants in spermatogenic impairment. Remarkably, we identified two NOA patients with likely damaging rare homozygous stop and missense variants in TERB1 and one NOA patient with a rare homozygous missense variant in MAJIN. Available testis histology data from three of the NOA patients indicate germ cell maturation arrest, consistent with mouse phenotypes. These findings suggest that variants in MTC genes may be an important cause of NOA in both consanguineous and outbred populations.


Assuntos
Azoospermia/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ligação a DNA/genética , Meiose/genética , Proteínas de Membrana/genética , Proteínas de Ligação a Telômeros/genética , Telômero/genética , Adulto , Idoso , Exoma/genética , Heterozigoto , Homozigoto , Humanos , Masculino , Mutação de Sentido Incorreto/genética , Fenótipo , Espermatogênese/genética , Testículo/patologia , Sequenciamento do Exoma/métodos
8.
Am J Hum Genet ; 103(2): 200-212, 2018 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-30075111

RESUMO

Infertility affects around 7% of men worldwide. Idiopathic non-obstructive azoospermia (NOA) is defined as the absence of spermatozoa in the ejaculate due to failed spermatogenesis. There is a high probability that NOA is caused by rare genetic defects. In this study, whole-exome sequencing (WES) was applied to two Estonian brothers diagnosed with NOA and Sertoli cell-only syndrome (SCOS). Compound heterozygous loss-of-function (LoF) variants in FANCM (Fanconi anemia complementation group M) were detected as the most likely cause for their condition. A rare maternally inherited frameshift variant p.Gln498Thrfs∗7 (rs761250416) and a previously undescribed splicing variant (c.4387-10A>G) derived from the father introduce a premature STOP codon leading to a truncated protein. FANCM exhibits enhanced testicular expression. In control subjects, immunohistochemical staining localized FANCM to the Sertoli and spermatogenic cells of seminiferous tubules with increasing intensity through germ cell development. This is consistent with its role in maintaining genomic stability in meiosis and mitosis. In the individual with SCOS carrying bi-allelic FANCM LoF variants, none or only faint expression was detected in the Sertoli cells. As further evidence, we detected two additional NOA-affected case subjects with independent FANCM homozygous nonsense variants, one from Estonia (p.Gln1701∗; rs147021911) and another from Portugal (p.Arg1931∗; rs144567652). The study convincingly demonstrates that bi-allelic recessive LoF variants in FANCM cause azoospermia. FANCM pathogenic variants have also been linked with doubled risk of familial breast and ovarian cancer, providing an example mechanism for the association between infertility and cancer risk, supported by published data on Fancm mutant mouse models.


Assuntos
Azoospermia/genética , DNA Helicases/genética , Perda de Heterozigosidade/genética , Adulto , Animais , Neoplasias da Mama/genética , Códon sem Sentido/genética , Feminino , Mutação da Fase de Leitura/genética , Inativação Gênica/fisiologia , Predisposição Genética para Doença/genética , Homozigoto , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Neoplasias Ovarianas/genética , Linhagem , Fenótipo , Espermatozoides/patologia , Testículo/patologia , Sequenciamento do Exoma/métodos
9.
Genet Med ; 22(12): 1956-1966, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32741963

RESUMO

PURPOSE: Azoospermia affects 1% of men and it can be the consequence of spermatogenic maturation arrest (MA). Although the etiology of MA is likely to be of genetic origin, only 13 genes have been reported as recurrent potential causes of MA. METHODS: Exome sequencing in 147 selected MA patients (discovery cohort and two validation cohorts). RESULTS: We found strong evidence for five novel genes likely responsible for MA (ADAD2, TERB1, SHOC1, MSH4, and RAD21L1), for which mouse knockout (KO) models are concordant with the human phenotype. Four of them were validated in the two independent MA cohorts. In addition, nine patients carried pathogenic variants in seven previously reported genes-TEX14, DMRT1, TEX11, SYCE1, MEIOB, MEI1, and STAG3-allowing to upgrade the clinical significance of these genes for diagnostic purposes. Our meiotic studies provide novel insight into the functional consequences of the variants, supporting their pathogenic role. CONCLUSION: Our findings contribute substantially to the development of a pre-testicular sperm extraction (TESE) prognostic gene panel. If properly validated, the genetic diagnosis of complete MA prior to surgical interventions is clinically relevant. Wider implications include the understanding of potential genetic links between nonobstructive azoospermia (NOA) and cancer predisposition, and between NOA and premature ovarian failure.


Assuntos
Azoospermia , Azoospermia/diagnóstico , Azoospermia/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ligação a DNA/genética , Dissecação , Exoma/genética , Humanos , Masculino , Testículo , Sequenciamento do Exoma
10.
PLoS Genet ; 13(9): e1006960, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28934201

RESUMO

While traditional forensic genetics has been oriented towards using human DNA in criminal investigation and civil court cases, it currently presents a much wider application range, including not only legal situations sensu stricto but also and, increasingly often, to preemptively avoid judicial processes. Despite some difficulties, current forensic genetics is progressively incorporating the analysis of nonhuman genetic material to a greater extent. The analysis of this material-including other animal species, plants, or microorganisms-is now broadly used, providing ancillary evidence in criminalistics in cases such as animal attacks, trafficking of species, bioterrorism and biocrimes, and identification of fraudulent food composition, among many others. Here, we explore how nonhuman forensic genetics is being revolutionized by the increasing variety of genetic markers, the establishment of faster, less error-burdened and cheaper sequencing technologies, and the emergence and improvement of models, methods, and bioinformatics facilities.


Assuntos
Bactérias/genética , Genética Forense/tendências , Genômica , Animais , Biologia Computacional/tendências , Análise de Alimentos , Marcadores Genéticos , Humanos , Plantas/genética
11.
Sensors (Basel) ; 20(14)2020 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-32664228

RESUMO

Alzheimer's disease (AD) is the most prevalent cause of dementia, being considered a major health problem, especially in developed countries. Late-onset AD is the most common form of the disease, with symptoms appearing after 65 years old. Genetic determinants of AD risk are vastly unknown, though, ε 4 allele of the ApoE gene has been reported as the strongest genetic risk factor for AD. The objective of this study was to analyze the relationship between brain complexity and the presence of ApoE ε 4 alleles along the AD continuum. For this purpose, resting-state electroencephalography (EEG) activity was analyzed by computing Lempel-Ziv complexity (LZC) from 46 healthy control subjects, 49 mild cognitive impairment subjects, 45 mild AD patients, 44 moderate AD patients and 33 severe AD patients, subdivided by ApoE status. Subjects with one or more ApoE ε 4 alleles were included in the carriers subgroups, whereas the ApoE ε 4 non-carriers subgroups were formed by subjects without any ε 4 allele. Our results showed that AD continuum is characterized by a progressive complexity loss. No differences were observed between AD ApoE ε 4 carriers and non-carriers. However, brain activity from healthy subjects with ApoE ε 4 allele (carriers subgroup) is more complex than from non-carriers, mainly in left temporal, frontal and posterior regions (p-values < 0.05, FDR-corrected Mann-Whitney U-test). These results suggest that the presence of ApoE ε 4 allele could modify the EEG complexity patterns in different brain regions, as the temporal lobes. These alterations might be related to anatomical changes associated to neurodegeneration, increasing the risk of suffering dementia due to AD before its clinical onset. This interesting finding might help to advance in the development of new tools for early AD diagnosis.


Assuntos
Doença de Alzheimer , Apolipoproteína E4 , Eletroencefalografia , Idoso , Alelos , Doença de Alzheimer/diagnóstico , Doença de Alzheimer/genética , Apolipoproteína E4/genética , Predisposição Genética para Doença , Genótipo , Humanos
12.
Mol Biol Evol ; 34(12): 3232-3242, 2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-29029191

RESUMO

During the Neolithic, human populations underwent cultural and technological developments that led to an agricultural revolution. Although the population genetics and evolution of European Neolithic populations have been extensively studied, little is known regarding the Neolithic expansion in North Africa with respect to Europe. One could expect that the different environmental and geological conditions at both shores of the Mediterranean Sea could have led to contrasting expansions. In order to test this hypothesis, we compared the Neolithic expansion in Europe and North Africa accounting for possible migration between them through the Strait of Gibraltar. We analyzed the entire X chromosome of 580 individuals from 20 populations spatially distributed along the North of Africa and Europe. Next, we applied approximate Bayesian computation based on extensive spatially explicit computer simulations to select among alternative scenarios of migration through the Strait of Gibraltar and to estimate population genetics parameters in both expansions. Our results suggest that, despite being more technologically advanced, Neolithic populations did not expand faster than Paleolithic populations, which could be interpreted as a consequence of a more sedentary lifestyle. We detected reciprocal Neolithic migration between the Iberian Peninsula and North Africa through the Strait of Gibraltar. Counterintuitively, we found that the studied Neolithic expansions presented similar levels of carrying capacity and migration, and occurred at comparable speeds, suggesting a similar demic process of substitution of hunter-gatherer populations. Altogether, the Neolithic expansion through both Mediterranean shores was not so different, perhaps because these populations shared similar technical abilities and lifestyle patterns.


Assuntos
Cromossomos Humanos X/genética , Etnicidade/genética , África do Norte/etnologia , Teorema de Bayes , População Negra/genética , DNA Mitocondrial/genética , Europa (Continente)/etnologia , Frequência do Gene , Variação Genética , Genética Populacional/métodos , Humanos , Mar Mediterrâneo/etnologia , Modelos Genéticos , Dinâmica Populacional , População Branca/genética
14.
PLoS Genet ; 9(3): e1003349, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23555275

RESUMO

Gonadal failure, along with early pregnancy loss and perinatal death, may be an important filter that limits the propagation of harmful mutations in the human population. We hypothesized that men with spermatogenic impairment, a disease with unknown genetic architecture and a common cause of male infertility, are enriched for rare deleterious mutations compared to men with normal spermatogenesis. After assaying genomewide SNPs and CNVs in 323 Caucasian men with idiopathic spermatogenic impairment and more than 1,100 controls, we estimate that each rare autosomal deletion detected in our study multiplicatively changes a man's risk of disease by 10% (OR 1.10 [1.04-1.16], p<2 × 10(-3)), rare X-linked CNVs by 29%, (OR 1.29 [1.11-1.50], p<1 × 10(-3)), and rare Y-linked duplications by 88% (OR 1.88 [1.13-3.13], p<0.03). By contrasting the properties of our case-specific CNVs with those of CNV callsets from cases of autism, schizophrenia, bipolar disorder, and intellectual disability, we propose that the CNV burden in spermatogenic impairment is distinct from the burden of large, dominant mutations described for neurodevelopmental disorders. We identified two patients with deletions of DMRT1, a gene on chromosome 9p24.3 orthologous to the putative sex determination locus of the avian ZW chromosome system. In an independent sample of Han Chinese men, we identified 3 more DMRT1 deletions in 979 cases of idiopathic azoospermia and none in 1,734 controls, and found none in an additional 4,519 controls from public databases. The combined results indicate that DMRT1 loss-of-function mutations are a risk factor and potential genetic cause of human spermatogenic failure (frequency of 0.38% in 1306 cases and 0% in 7,754 controls, p = 6.2 × 10(-5)). Our study identifies other recurrent CNVs as potential causes of idiopathic azoospermia and generates hypotheses for directing future studies on the genetic basis of male infertility and IVF outcomes.


Assuntos
Cromossomos Humanos X , Cromossomos Humanos Y , Infertilidade Masculina/genética , Fatores de Transcrição/genética , Povo Asiático/genética , Azoospermia/genética , Azoospermia/fisiopatologia , Variações do Número de Cópias de DNA , Feminino , Fertilização in vitro , Humanos , Infertilidade Masculina/fisiopatologia , Masculino , Mutação , Gravidez , Proteínas de Plasma Seminal , Deleção de Sequência , Espermatogênese/genética
15.
J Urol ; 193(5): 1709-15, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25451826

RESUMO

PURPOSE: We evaluated the impact of WT1 mutations in isolated severe spermatogenic impairment in a population of European ancestry. WT1 was first identified as the gene responsible for Wilms tumor. It was later associated with a plethora of clinical phenotypes often accompanied by urogenital defects and male infertility. The recent finding of WT1 missense mutations in Chinese azoospermic males without major gonadal malformations broadened the phenotypic spectrum of WT1 defects and motivated this study. MATERIALS AND METHODS: We analyzed the WT1 coding region in a cohort of 194 Portuguese patients with nonobstructive azoospermia and in 188 with severe oligozoospermia with increased depth for the exons encoding the regulatory region of the protein. We also analyzed a group of 31 infertile males with a clinical history of unilateral or bilateral cryptorchidism and 1 patient with anorchia. RESULTS: We found 2 WT1 missense substitutions at higher frequency in patients than in controls. 1) A novel variant in exon 1 (p.Pro130Leu) that disrupted a mammalian specific polyproline stretch in the self-association domain was more frequent in azoospermia cases (0.27% vs 0.13%, p = 0.549). 2) A rare variant in a conserved residue in close proximity to the first zinc finger (pCys350Arg) was more frequent in severe oligozoospermia cases (0.80% vs 0.13%, p = 0.113). CONCLUSIONS: Results suggest a role for rare WT1 damaging variants in severe spermatogenic failure in populations of European ancestry. Large multicenter studies are needed to fully assess the contribution of WT1 genetic alterations to male infertility in the absence of other disease phenotypes.


Assuntos
Genes do Tumor de Wilms , Infertilidade Masculina/genética , Mutação , Proteínas WT1/genética , Análise Mutacional de DNA , Humanos , Masculino
16.
Reprod Biomed Online ; 29(3): 388-91, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24912414

RESUMO

This article describes a patient with cryptorchidism and nonobstructive azoospermia presenting a novel microdeletion of approximately 1 Mb at 11p13. It was confirmed by multiplex ligation-dependent probe amplification that this heterozygous deletion spanned nine genes (WT1, EIF3M, CCDC73, PRRG4, QSER1, DEPDC7, TCP11L1, CSTF3 and HIPK3) and positioned the breakpoints within highly homologous repetitive elements. As far as is known, this is the smallest deletion as-yet described encompassing the WT1 gene and was detected only once in a total of 32 Portuguese patients with isolated uni- or bilateral cryptorchidism. These findings suggest that molecular analysis in patients with genitourinary features suggestive of WT1 impairment, namely cryptorchidism and renal abnormalities, may reveal cryptic genetic defects.


Assuntos
Azoospermia/genética , Criptorquidismo/genética , Deleção de Genes , Proteínas WT1/genética , Adulto , Elementos Alu , Cromossomos Humanos Par 11 , Análise Mutacional de DNA , Humanos , Masculino
17.
Brief Funct Genomics ; 23(2): 138-149, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-37254524

RESUMO

Most SNPs associated with complex diseases seem to lie in non-coding regions of the genome; however, their contribution to gene expression and disease phenotype remains poorly understood. Here, we established a workflow to provide assistance in prioritising the functional relevance of non-coding SNPs of candidate genes as susceptibility loci in polygenic neurological disorders. To illustrate the applicability of our workflow, we considered the multifactorial disorder migraine as a model to follow our step-by-step approach. We annotated the overlap of selected SNPs with regulatory elements and assessed their potential impact on gene expression based on publicly available prediction algorithms and functional genomics information. Some migraine risk loci have been hypothesised to reside in non-coding regions and to be implicated in the neurotransmission pathway. In this study, we used a set of 22 non-coding SNPs from neurotransmission and synaptic machinery-related genes previously suggested to be involved in migraine susceptibility based on our candidate gene association studies. After prioritising these SNPs, we focused on non-reported ones that demonstrated high regulatory potential: (1) VAMP2_rs1150 (3' UTR) was predicted as a target of hsa-mir-5010-3p miRNA, possibly disrupting its own gene expression; (2) STX1A_rs6951030 (proximal enhancer) may affect the binding affinity of zinc-finger transcription factors (namely ZNF423) and disturb TBL2 gene expression; and (3) SNAP25_rs2327264 (distal enhancer) expected to be in a binding site of ONECUT2 transcription factor. This study demonstrated the applicability of our practical workflow to facilitate the prioritisation of potentially relevant non-coding SNPs and predict their functional impact in multifactorial neurological diseases.


Assuntos
Transtornos de Enxaqueca , Polimorfismo de Nucleotídeo Único , Humanos , Polimorfismo de Nucleotídeo Único/genética , Estudo de Associação Genômica Ampla , Sequências Reguladoras de Ácido Nucleico/genética , Regulação da Expressão Gênica , Predisposição Genética para Doença , Fatores de Transcrição , Proteínas de Homeodomínio
18.
Life Sci Alliance ; 7(6)2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38570187

RESUMO

The transition zone is a specialised gate at the base of cilia/flagella, which separates the ciliary compartment from the cytoplasm and strictly regulates protein entry. We identified a potential new regulator of the male germ cell transition zone, CEP76. We demonstrated that CEP76 was involved in the selective entry and incorporation of key proteins required for sperm function and fertility into the ciliary compartment and ultimately the sperm tail. In the mutant, sperm tails were shorter and immotile as a consequence of deficits in essential sperm motility proteins including DNAH2 and AKAP4, which accumulated at the sperm neck in the mutant. Severe annulus, fibrous sheath, and outer dense fibre abnormalities were also detected in sperm lacking CEP76. Finally, we identified that CEP76 dictates annulus positioning and structure. This study suggests CEP76 as a male germ cell transition zone protein and adds further evidence to the hypothesis that the spermatid transition zone and annulus are part of the same functional structure.


Assuntos
Infertilidade Masculina , Cauda do Espermatozoide , Humanos , Masculino , Cauda do Espermatozoide/metabolismo , Motilidade dos Espermatozoides/genética , Sêmen , Infertilidade Masculina/genética , Infertilidade Masculina/metabolismo , Mutação/genética
19.
bioRxiv ; 2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-38014244

RESUMO

Dynein complexes are large, multi-unit assemblies involved in many biological processes including male fertility via their critical roles in protein transport and axoneme motility. Previously we identified a pathogenic variant in the dynein gene AXDND1 in an infertile man. Subsequently we identified an additional four potentially compound heterozygous variants of unknown significance in AXDND1 in two additional infertile men. We thus tested the role of AXDND1 in mammalian male fertility by generating a knockout mouse model. Axdnd1-/- males were sterile at all ages but could undergo one round of histologically complete spermatogenesis. Subsequently, a progressive imbalance of spermatogonial commitment to spermatogenesis over self-renewal occurred, ultimately leading to catastrophic germ cell loss, loss of blood-testis barrier patency and immune cell infiltration. Sperm produced during the first wave of spermatogenesis were immotile due to abnormal axoneme structure, including the presence of ectopic vesicles and abnormalities in outer dense fibres and microtubule doublet structures. Sperm output was additionally compromised by a severe spermiation defect and abnormal sperm individualisation. Collectively, our data highlight the essential roles of AXDND1 as a regulator of spermatogonial commitment to spermatogenesis and during the processes of spermiogenesis where it is essential for sperm tail development, release and motility.

20.
Curr Genomics ; 13(8): 623-32, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23730202

RESUMO

With the aid of novel and powerful molecular biology techniques, recent years have witnessed a dramatic increase in the number of studies reporting the involvement of complex structural variants in several genomic disorders. In fact, with the discovery of Copy Number Variants (CNVs) and other forms of unbalanced structural variation, much attention has been directed to the detection and characterization of such rearrangements, as well as the identification of the mechanisms involved in their formation. However, it has long been appreciated that chromosomes can undergo other forms of structural changes - balanced rearrangements - that do not involve quantitative variation of genetic material. Indeed, a particular subtype of balanced rearrangement - inversions - was recently found to be far more common than had been predicted from traditional cytogenetics. Chromosomal inversions alter the orientation of a specific genomic sequence and, unless involving breaks in coding or regulatory regions (and, disregarding complex trans effects, in their close vicinity), appear to be phenotypically silent. Such a surprising finding, which is difficult to reconcile with the classical interpretation of inversions as a mechanism causing subfertility (and ultimately reproductive isolation), motivated a new series of theoretical and empirical studies dedicated to understand their role in human genome evolution and to explore their possible association to complex genetic disorders. With this review, we attempt to describe the latest methodological improvements to inversions detection at a genome wide level, while exploring some of the possible implications of inversion rearrangements on the evolution of the human genome.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA