Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 182
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Pharmacol Res ; 203: 107174, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38580185

RESUMO

The emergence of immune checkpoint inhibitors (ICIs) has revolutionized the clinical treatment for tumor. However, the low response rate of ICIs remains the major obstacle for curing patients and effective approaches for patients with primary or secondary resistance to ICIs remain lacking. In this study, immune stimulating agent unmethylated CG-enriched (CpG) oligodeoxynucleotide (ODN) was locally injected into the tumor to trigger a robust immune response to eradicate cancer cells, while anti-CD25 antibody was applied to remove immunosuppressive regulatory T cells, which further enhanced the host immune activity to attack tumor systematically. The combination of CpG and anti-CD25 antibody obtained notable regression in mouse melanoma model. Furthermore, rechallenge of tumor cells in the xenograft model has resulted in smaller tumor volume, which demonstrated that the combinational treatment enhanced the activity of memory T cells. Remarkably, this combinational therapy presented significant efficacy on multiple types of tumors as well and was able to prevent relapse of tumor partially. Taken together, our combinational immunotherapy provides a new avenue to enhance the clinical outcomes of patients who are insensitive or resistant to ICIs treatments.


Assuntos
Oligodesoxirribonucleotídeos , Linfócitos T Reguladores , Animais , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/efeitos dos fármacos , Oligodesoxirribonucleotídeos/uso terapêutico , Oligodesoxirribonucleotídeos/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Feminino , Humanos , Linhagem Celular Tumoral , Vacinas Anticâncer/imunologia , Vacinas Anticâncer/uso terapêutico , Subunidade alfa de Receptor de Interleucina-2/imunologia , Melanoma Experimental/imunologia , Melanoma Experimental/tratamento farmacológico , Melanoma Experimental/terapia , Imunoterapia/métodos , Neoplasias/imunologia , Neoplasias/tratamento farmacológico , Neoplasias/terapia , Vacinação , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico
2.
Acta Pharmacol Sin ; 45(6): 1224-1236, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38467717

RESUMO

The root of Aconitum carmichaelii Debx. (Fuzi) is an herbal medicine used in China that exerts significant efficacy in rescuing patients from severe diseases. A key toxic compound in Fuzi, aconitine (AC), could trigger unpredictable cardiotoxicities with high-individualization, thus hinders safe application of Fuzi. In this study we investigated the individual differences of AC-induced cardiotoxicities, the biomarkers and underlying mechanisms. Diversity Outbred (DO) mice were used as a genetically heterogeneous model for mimicking individualization clinically. The mice were orally administered AC (0.3, 0.6, 0.9 mg· kg-1 ·d-1) for 7 d. We found that AC-triggered cardiotoxicities in DO mice shared similar characteristics to those observed in clinic patients. Most importantly, significant individual differences were found in DO mice (variation coefficients: 34.08%-53.17%). RNA-sequencing in AC-tolerant and AC-sensitive mice revealed that hemoglobin subunit beta (HBB), a toxic-responsive protein in blood with 89% homology to human, was specifically enriched in AC-sensitive mice. Moreover, we found that HBB overexpression could significantly exacerbate AC-induced cardiotoxicity while HBB knockdown markedly attenuated cell death of cardiomyocytes. We revealed that AC could trigger hemolysis, and specifically bind to HBB in cell-free hemoglobin (cf-Hb), which could excessively promote NO scavenge and decrease cardioprotective S-nitrosylation. Meanwhile, AC bound to HBB enhanced the binding of HBB to ABHD5 and AMPK, which correspondingly decreased HDAC-NT generation and led to cardiomyocytes death. This study not only demonstrates HBB achievement a novel target of AC in blood, but provides the first clue for HBB as a novel biomarker in determining the individual differences of Fuzi-triggered cardiotoxicity.


Assuntos
Proteínas Quinases Ativadas por AMP , Aconitina , Cardiotoxicidade , Histona Desacetilases , Animais , Camundongos , Cardiotoxicidade/metabolismo , Cardiotoxicidade/etiologia , Histona Desacetilases/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Masculino , Humanos , Aconitum/química , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Medicamentos de Ervas Chinesas/farmacologia
3.
Cell Mol Life Sci ; 80(12): 350, 2023 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-37930428

RESUMO

Triple-negative breast cancer (TNBC) is a highly aggressive subtype of breast cancer. Currently, standard treatment options for TNBC are limited to surgery, adjuvant chemotherapy, and radiotherapy. However, these treatment methods are associated with a higher risk of intrinsic or acquired recurrence. Antibody-drug conjugates (ADCs) have emerged as a useful and promising class of cancer therapeutics. ADCs, also known as "biochemical missiles", use a monoclonal antibody (mAb) to target tumor antigens and deliver a cytotoxic drug payload. Currently, several ADCs clinical studies are underway worldwide, including sacituzumab govitecan (SG), which was recently approved by the FDA for the treatment of TNBC. However, due to the fact that only a small portion of TNBC patients respond to ADC therapy and often develop resistance, growing evidence supports the use of ADCs in combination with other treatment strategies to treat TNBC. In this review, we described the current utilization of ADCs and discussed the prospects of ADC combination therapy for TNBC.


Assuntos
Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Terapia Combinada , Agressão , Anticorpos Monoclonais
4.
Addict Biol ; 29(3): e13376, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38488699

RESUMO

A network meta-analysis (NMA) including randomized controlled trials (RCTs) was conducted to evaluate the effects of different interventions on smoking cessation. Studies were collected from online databases including PubMed, EMBASE, Cochrane Library, and Web of Science based on inclusion and exclusion criteria. Eligible studies were further examined in the NMA to compare the effect of 14 interventions on smoking cessation. Thirty-four studies were examined in the NMA, including a total of 14 interventions and 28 733 participants. The results showed that health education (HE; odds ratio ([OR] = 200.29, 95% CI [1.62, 24 794.61])), other interventions (OI; OR = 29.79, 95% CI [1.07, 882.17]) and multimodal interventions (MUIs; OR = 100.16, 95% CI [2.06, 4867.24]) were better than self-help material (SHM). HE (OR = 243.31, 95% CI [1.39, 42531.33]), MUI (OR = 121.67, 95% CI [1.64, 9004.86]) and financial incentive (FI; OR = 14.09, 95% CI [1.21, 164.31]) had positive effects on smoking cessation rate than smoking cessation or quitting APP (QA). Ranking results showed that HE (83.6%) and motivation interviewing (MI; 69.6%) had better short-term effects on smoking cessation. HE and MUI provided more smoking cessation benefits than SHM and QA. FI was more effective at quitting smoking than QA. Also, HE and MI were more likely to be optimal smoking cessation interventions.


Assuntos
Abandono do Hábito de Fumar , Humanos , Abandono do Hábito de Fumar/métodos , Metanálise em Rede , Fumar , Dispositivos para o Abandono do Uso de Tabaco , Terapia Comportamental
5.
Acta Pharmacol Sin ; 44(12): 2504-2524, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37482570

RESUMO

Sinomenine (SIN) is an isoquinoline alkaloid isolated from Sinomenii Caulis, a traditional Chinese medicine used to treat rheumatoid arthritis (RA). Clinical trials have shown that SIN has comparable efficacy to methotrexate in treating patients with RA but with fewer adverse effects. In this study, we explored the anti-inflammatory effects and therapeutic targets of SIN in LPS-induced RAW264.7 cells and in collagen-induced arthritis (CIA) mice. LPS-induced RAW264.7 cells were pretreated with SIN (160, 320, 640 µM); and CIA mice were administered SIN (25, 50 and 100 mg·kg-1·d-1, i.p.) for 30 days. We first conducted a solvent-induced protein precipitation (SIP) assay in LPS-stimulated RAW264.7 cells and found positive evidence for the direct binding of SIN to guanylate-binding protein 5 (GBP5), which was supported by molecular simulation docking, proteomics, and binding affinity assays (KD = 3.486 µM). More importantly, SIN treatment markedly decreased the expression levels of proteins involved in the GBP5/P2X7R-NLRP3 pathways in both LPS-induced RAW264.7 cells and the paw tissue of CIA mice. Moreover, the levels of IL-1ß, IL-18, IL-6, and TNF-α in both the supernatant of inflammatory cells and the serum of CIA mice were significantly reduced. This study illustrates a novel anti-inflammatory mechanism of SIN; SIN suppresses the activity of NLRP3-related pathways by competitively binding GBP5 and downregulating P2X7R protein expression, which ultimately contributes to the reduction of IL-1ß and IL-18 production. The binding specificity of SIN to GBP5 and its inhibitory effect on GBP5 activity suggest that SIN has great potential as a specific GBP5 antagonist.


Assuntos
Artrite Experimental , Artrite Reumatoide , Humanos , Camundongos , Animais , Artrite Experimental/induzido quimicamente , Artrite Experimental/tratamento farmacológico , Interleucina-18/efeitos adversos , Receptores Purinérgicos P2X7/uso terapêutico , Proteína 3 que Contém Domínio de Pirina da Família NLR , Lipopolissacarídeos/farmacologia , Transdução de Sinais , Artrite Reumatoide/tratamento farmacológico , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Proteínas de Ligação ao GTP
6.
J Pathol ; 255(4): 412-424, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34410012

RESUMO

ABCB11 encodes the bile salt export pump (BSEP), a key regulator in maintaining bile acid (BA) homeostasis. Although inherited ABCB11 mutations have previously been linked to primary liver cancer, whether ABCB11 deficiency leads to liver cancer remains unknown. Here, we analyzed ABCB11 mRNA expression levels in liver tumor specimens [29 with hepatocellular carcinoma (HCC), one with intrahepatic cholangiocarcinoma (ICC), and one with mixed HCC/ICC] with adjacent normal specimens and published human datasets. Liver tissues obtained from Abcb11-deficient (Abcb11-/- ) mice and wild-type mice at different ages were compared by histologic, RNA-sequencing, and BA analyses. ABCB11 was significantly downregulated in human liver tumors compared with normal controls. Abcb11-/- mice demonstrated progressive intrahepatic cholestasis and liver fibrosis, and spontaneously developed HCC and ICC over 12 months of age. Abcb11 deficiency increased BAs in the liver and serum in mice, most of which are farnesoid X receptor (FXR) antagonists/non-agonists. Accordingly, the hepatic expression and transcriptional activity of FXR were downregulated in Abcb11-/- mouse livers. Administration of the FXR agonist obeticholic acid reduced liver injury and tumor incidence in Abcb11-/- mice. In conclusion, ABCB11 is aberrantly downregulated and plays a vital role in liver carcinogenesis. The cholestatic liver injury and liver tumors developed in Abcb11-/- mice are associated with increased FXR antagonist BAs and thereby decreased activation of FXR. FXR activation might be a therapeutic strategy in ABCB11 deficiency diseases. © 2021 The Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Assuntos
Membro 11 da Subfamília B de Transportadores de Cassetes de Ligação de ATP/metabolismo , Carcinogênese/metabolismo , Neoplasias Hepáticas/patologia , Receptores Citoplasmáticos e Nucleares/metabolismo , Animais , Ácidos e Sais Biliares/metabolismo , Ácido Quenodesoxicólico/análogos & derivados , Ácido Quenodesoxicólico/farmacologia , Regulação para Baixo , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Transdução de Sinais/fisiologia
7.
Acta Pharmacol Sin ; 43(7): 1843-1856, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34845369

RESUMO

Ras has long been viewed as a promising target for cancer therapy. Farnesylthiosalicylic acid (FTS), as the only Ras inhibitor has ever entered phase II clinical trials, has yielded disappointing results due to its strong hydrophobicity, poor tumor-targeting capacity, and low therapeutic efficiency. Thus, enhancing hydrophilicity and tumor-targeting capacity of FTS for improving its therapeutic efficacy is of great significance. In this study we conjugated FTS with a cancer-targeting small molecule dye IR783 and characterized the anticancer properties of the conjugate FTS-IR783. We showed that IR783 conjugation greatly improved the hydrophilicity, tumor-targeting and therapeutic potential of FTS. After a single oral administration in Balb/c mice, the relative bioavailability of FTS-IR783 was increased by 90.7% compared with FTS. We demonstrated that organic anion transporting polypeptide (OATP) and endocytosis synergistically drove the uptake of the FTS-IR783 conjugate in breast cancer MDA-MB-231 cells, resulting in superior tumor-targeting ability of the conjugate both in vitro and in vivo. We further revealed that FTS-IR783 conjugate could bind with and directly activate AMPK rather than affecting Ras, and subsequently regulate the TSC2/mTOR signaling pathway, thus achieving 2-10-fold increased anti-cancer therapeutic efficacy against 6 human breast cancer cell lines compared to FTS both in vivo and in vitro. Overall, our data highlights a promising approach for the modification of the anti-tumor drug FTS using IR783 and makes it possible to return FTS back to the clinic with a better efficacy.


Assuntos
Antineoplásicos , Neoplasias da Mama , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Farneseno Álcool/análogos & derivados , Farneseno Álcool/farmacologia , Farneseno Álcool/uso terapêutico , Feminino , Humanos , Camundongos , Salicilatos , Proteínas ras/metabolismo , Proteínas ras/uso terapêutico
8.
Chem Biodivers ; 19(12): e202200401, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36210339

RESUMO

Non-alcoholic fatty liver disease (NAFLD) is the commonest reason for chronic liver diseases in the world and is commonly related to the hepatic manifestation of the metabolic syndrome. Non-alcoholic steatohepatitis (NASH) is a deteriorating form of NAFLD, which can eventually develop into fibrosis, cirrhosis, and liver cancer. The reason for NAFLD/NASH development is complicated, such as liver lipid metabolism, oxidative stress, inflammatory response, apoptosis and autophagy, liver fibrosis and gut microbiota. Apart from bariatric surgery and lifestyle changes, officially approved drug therapy for NAFLD/NASH treatment is lacking. Salidroside (SDS) is a phenolic compound extensively distributed in the tubers of Rhodiola plants, which possesses many significant biological activities. This review summarized the related targets regulated by SDS in treating NAFLD/NASH. It is indicated that SDS could improve the status of NAFLD/NASH by ameliorating abnormal lipid metabolism, inhibiting oxidative stress, regulating apoptosis and autophagy, reducing inflammatory response, alleviating fibrosis and regulating gut microbiota. In conclusion, although the multiple bioactivities of SDS have been confirmed, the clinical data are inadequate and need to become the focus of attention in the later study.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Humanos , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Fígado/metabolismo , Glucosídeos/farmacologia , Glucosídeos/uso terapêutico , Cirrose Hepática/tratamento farmacológico , Fibrose
9.
Mol Cancer ; 20(1): 43, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33648498

RESUMO

BACKGROUND: Chemotherapeutic resistance is the main cause of clinical treatment failure and poor prognosis in triple-negative breast cancer (TNBC). There is no research on chemotherapeutic resistance in TNBC from the perspective of circular RNAs (circRNAs). METHODS: TNBC-related circRNAs were identified based on the GSE101124 dataset. Quantitative reverse transcription PCR was used to detect the expression level of circWAC in TNBC cells and tissues. Then, in vitro and in vivo functional experiments were performed to evaluate the effects of circWAC in TNBC. RESULTS: CircWAC was highly expressed in TNBC and was associated with worse TNBC patient prognosis. Subsequently, it was verified that downregulation of circWAC can increase the sensitivity of TNBC cells to paclitaxel (PTX) in vitro and in vivo. The expression of miR-142 was negatively correlated with circWAC in TNBC. The interaction between circWAC and miR-142 in TNBC cells was confirmed by RNA immunoprecipitation assays, luciferase reporter assays, pulldown assays, and fluorescence in situ hybridization. Mechanistically, circWAC acted as a miR-142 sponge to relieve the repressive effect of miR-142 on its target WWP1. In addition, the overall survival of TNBC patients with high expression of miR-142 was significantly better than that of patients with low expression of miR-142, and these results were verified in public databases. MiR-142 regulated the expression of WWP1 and the activity of the PI3K/AKT pathway. It was confirmed that WWP1 is highly expressed in TNBC and that the prognosis of patients with high WWP1 expression is poor. CONCLUSIONS: CircWAC/miR-142/WWP1 form a competing endogenous RNA (ceRNA) network to regulate PI3K/AKT signaling activity in TNBC cells and affect the chemosensitivity of cells.


Assuntos
Resistencia a Medicamentos Antineoplásicos , MicroRNAs/genética , RNA Circular/genética , Neoplasias de Mama Triplo Negativas/patologia , Ubiquitina-Proteína Ligases/genética , Regulação para Cima , Animais , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Humanos , Células MCF-7 , Camundongos , Transplante de Neoplasias , Paclitaxel/farmacologia , Paclitaxel/uso terapêutico , Fosfatidilinositol 3-Quinases/metabolismo , Prognóstico , Transdução de Sinais/efeitos dos fármacos , Análise de Sobrevida , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Regulação para Cima/efeitos dos fármacos
10.
Pharmacol Res ; 170: 105723, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34116210

RESUMO

FAT atypical cadherin 4 (FAT4) has been identified as a tumor suppressor in lung cancers. However, no agent for lung cancer treatment targeting FAT4 has been used in the clinic. Jujuboside A (JUA) is a major active compound in Semen Ziziphi Spinosae. Semen Ziziphi Spinosae is a traditional Chinese herbal medicine used clinically for tumor treatment to improve patients' quality of life. However, the anti-lung cancer activity and the underlying mechanisms of JUA are not yet fully understood. Here, we demonstrated the anti-lung cancer activity of JUA in two lung cancer mice models and three non-small cell lung cancer (NSCLC) cell lines, and further illustrated its underlying mechanisms. JUA suppressed the occurrence and development of lung cancer and extended mice survival in vivo, and suppressed NSCLC cell activities through cell cycle arrest, proliferation suppression, stemness inhibition and senescence promotion. Moreover, JUA directly bound with and activated FAT4, subsequently activating FAT4-HIPPO signaling and inhibiting YAP nuclear translocation. Knockdown of FAT4 diminished JUA's effects on HIPPO signaling, YAP nuclear translocation, cell proliferation and cellular senescence. In conclusion, JUA significantly suppressed NSCLC tumorigenesis by regulating FAT4-HIPPO-YAP signaling. Our findings suggest that JUA is a novel FAT4 activator that can be developed as a promising NSCLC therapeutic agent targeting the FAT4-HIPPO-YAP pathway.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Caderinas/agonistas , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Via de Sinalização Hippo/efeitos dos fármacos , Neoplasias Pulmonares/tratamento farmacológico , Saponinas/farmacologia , Proteínas Supressoras de Tumor/agonistas , Proteínas de Sinalização YAP/metabolismo , Transporte Ativo do Núcleo Celular , Animais , Caderinas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Senescência Celular/efeitos dos fármacos , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Camundongos , Proteínas Supressoras de Tumor/metabolismo
11.
Anticancer Drugs ; 31(6): 558-566, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32304412

RESUMO

Tamoxifen is the main adjuvant endocrine therapeutic agent for patients with estrogen receptor positive breast cancer. However, the resistance to tamoxifen has become a serious clinical challenge and the underlying mechanisms are still poorly understood. TRAF4 is a member of tumor necrosis factor receptor-associated factor family and its role in tamoxifen resistance has not been found. In this study, we aimed to explore the roles of TRAF4 in tamoxifen-treated breast cancer and tamoxifen resistance. Through high-throughput sequencing and differential gene expression analyses, TRAF4 was identified as the research object in this study. The prognosis significance of TRAF4 was studied based on 155 tamoxifen-treated breast cancer patients obtained from Gene Expression Omnibus (GEO) database. We then investigated the TRAF4 expression level in tamoxifen-resistant and the tamoxifen-sensitive breast cancer cell lines with western blot and real-time quantitative PCR. The loss- and gain-of-function assay of TRAF4 in a tamoxifen-resistant cell line was evaluated using colony formation experiments and cell count kit-8 assay. We identified that TRAF4 was overexpressed in tamoxifen-resistant breast cancer cell line and TRAF4 overexpression was associated with worse overall survival (hazard ratio = 2.538, P = 0.017) and cancer-specific survival (hazard ratio = 2.713, P = 0.036) in tamoxifen-treated patients. Knockdown of TRAF4 reversed tamoxifen resistance, while overexpression of TRAF4 increased tamoxifen resistance, which confirmed the role of TRAF4 in tamoxifen resistance. Taken together, our study demonstrated that TRAF4 could be a novel prognostic biomarker for tamoxifen-treated breast cancer patients and a potential therapeutic target for tamoxifen resistance.


Assuntos
Antineoplásicos Hormonais/uso terapêutico , Biomarcadores Tumorais/metabolismo , Neoplasias da Mama/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos , Fator 4 Associado a Receptor de TNF/metabolismo , Tamoxifeno/uso terapêutico , Idoso , Apoptose , Biomarcadores Tumorais/genética , Neoplasias da Mama/enzimologia , Neoplasias da Mama/patologia , Proliferação de Células , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Prognóstico , Taxa de Sobrevida , Fator 4 Associado a Receptor de TNF/genética , Células Tumorais Cultivadas
12.
Sensors (Basel) ; 20(21)2020 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-33167410

RESUMO

Accurate registration is an essential prerequisite for analysis and applications involving remote sensing imagery. It is usually difficult to extract enough matching points for inter-band registration in hyperspectral imagery due to the different spectral responses for land features in different image bands. This is especially true for non-adjacent bands. The inconsistency in geometric distortion caused by topographic relief also makes it inappropriate to use a single affine transformation relationship for the geometric transformation of the entire image. Currently, accurate registration between spectral bands of Zhuhai-1 satellite hyperspectral imagery remains challenging. In this paper, a full-spectrum registration method was proposed to address this problem. The method combines the transfer strategy based on the affine transformation relationship between adjacent spectrums with the differential correction from dense Delaunay triangulation. Firstly, the scale-invariant feature transform (SIFT) extraction method was used to extract and match feature points of adjacent bands. The RANdom SAmple Consensus (RANSAC) algorithm and the least square method is then used to eliminate mismatching point pairs to obtain fine matching point pairs. Secondly, a dense Delaunay triangulation was constructed based on fine matching point pairs. The affine transformation relation for non-adjacent bands was established for each triangle using the affine transformation relation transfer strategy. Finally, the affine transformation relation was used to perform differential correction for each triangle. Three Zhuhai-1 satellite hyperspectral images covering different terrains were used as experiment data. The evaluation results showed that the adjacent band registration accuracy ranged from 0.2 to 0.6 pixels. The structural similarity measure and cosine similarity measure between non-adjacent bands were both greater than 0.80. Moreover, the full-spectrum registration accuracy was less than 1 pixel. These registration results can meet the needs of Zhuhai-1 hyperspectral imagery applications in various fields.

13.
Nano Lett ; 19(3): 1577-1586, 2019 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-30798604

RESUMO

Soft and magnetic resonance imaging (MRI) compatible neural electrodes enable stable chronic electrophysiological measurements and anatomical or functional MRI studies of the entire brain without electrode interference with MRI images. These properties are important for many studies, ranging from a fundamental neurophysiological study of functional MRI signals to a chronic neuromodulatory effect investigation of therapeutic deep brain stimulation. Here we develop soft and MRI compatible neural electrodes using carbon nanotube (CNT) fibers with a diameter from 20 µm down to 5 µm. The CNT fiber electrodes demonstrate excellent interfacial electrochemical properties and greatly reduced MRI artifacts than PtIr electrodes under a 7.0 T MRI scanner. With a shuttle-assisted implantation strategy, we show that the soft CNT fiber electrodes can precisely target specific brain regions and record high-quality single-unit neural signals. Significantly, they are capable of continuously detecting and isolating single neuronal units from rats for up to 4-5 months without electrode repositioning, with greatly reduced brain inflammatory responses as compared to their stiff metal counterparts. In addition, we show that due to their high tensile strength, the CNT fiber electrodes can be retracted controllably postinsertion, which provides an effective and convenient way to do multidepth recording or potentially selecting cells with particular response properties. The chronic recording stability and MRI compatibility, together with their small size, provide the CNT fiber electrodes unique research capabilities for both basic and applied neuroscience studies.

14.
Mol Cancer ; 18(1): 87, 2019 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-30979372

RESUMO

BACKGROUND: Long noncoding RNAs (lncRNAs) have emerged as critical players in cancer progression, but their functions in colorectal cancer (CRC) metastasis have not been systematically clarified. METHODS: lncRNA expression profiles in matched normal and CRC tissue were checked using microarray analysis. The biological roles of a novel lncRNA, namely RP11-138 J23.1 (RP11), in development of CRC were checked both in vitro and in vivo. Its association with clinical progression of CRC was further analyzed. RESULTS: RP11 was highly expressed in CRC tissues, and its expression increased with CRC stage in patients. RP11 positively regulated the migration, invasion and epithelial mesenchymal transition (EMT) of CRC cells in vitro and enhanced liver metastasis in vivo. Post-translational upregulation of Zeb1, an EMT-related transcription factor, was essential for RP11-induced cell dissemination. Mechanistically, the RP11/hnRNPA2B1/mRNA complex accelerated the mRNA degradation of two E3 ligases, Siah1 and Fbxo45, and subsequently prevented the proteasomal degradation of Zeb1. m6A methylation was involved in the upregulation of RP11 by increasing its nuclear accumulation. Clinical analysis showed that m6A can regulate the expression of RP11, further, RP11 regulated Siah1-Fbxo45/Zeb1 was involved in the development of CRC. CONCLUSIONS: m6A-induced lncRNA RP11 can trigger the dissemination of CRC cells via post-translational upregulation of Zeb1. Considering the high and specific levels of RP11 in CRC tissues, our present study paves the way for further investigations of RP11 as a predictive biomarker or therapeutic target for CRC.


Assuntos
Adenosina/análogos & derivados , Neoplasias Colorretais/genética , Regulação Neoplásica da Expressão Gênica , Neoplasias Hepáticas/genética , RNA Longo não Codificante/genética , Homeobox 1 de Ligação a E-box em Dedo de Zinco/genética , Adenosina/metabolismo , Animais , Sequência de Bases , Linhagem Celular Tumoral , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/mortalidade , Neoplasias Colorretais/patologia , Transição Epitelial-Mesenquimal , Proteínas F-Box/genética , Proteínas F-Box/metabolismo , Feminino , Ribonucleoproteínas Nucleares Heterogêneas Grupo A-B/genética , Ribonucleoproteínas Nucleares Heterogêneas Grupo A-B/metabolismo , Humanos , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/mortalidade , Neoplasias Hepáticas/secundário , Metástase Linfática , Masculino , Camundongos , Camundongos Nus , Estadiamento de Neoplasias , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Conformação de Ácido Nucleico , RNA Longo não Codificante/metabolismo , Transdução de Sinais , Análise de Sobrevida , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto , Homeobox 1 de Ligação a E-box em Dedo de Zinco/metabolismo
15.
Mol Pharm ; 15(12): 5602-5614, 2018 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-30376625

RESUMO

Glucuronidation is a major process of drug metabolism and elimination that generally governs drug efficacy and toxicity. Publications have demonstrated that efflux transporters control intracellular glucuronidation metabolism. However, it is still unclear whether and how efflux transporters interact with UDP-glucuronosyltransferases (UGTs) in subcellular organelles. In this study, kaempferol, a model fluorescent flavonoid, was used to investigate the interplay of glucuronidation with transport at the subcellular level. Human recombinant UGTs and microsomes were utilized to characterize the in vitro glucuronidation kinetics of kaempferol. The inhibition of UGTs and efflux transporters on the subcellular disposition of kaempferol were determined visually and quantitatively in Caco-2/TC7 cells. The knockout of transporters on the subcellular accumulation of kaempferol in liver and intestine were evaluated visually. ROS and Nrf2 were assayed to evaluate the pharmacological activities of kaempferol. The results showed that UGT1A9 is the primary enzyme responsible for kaempferol glucuronidation. Visual and quantitative data showed that the UGT1A9 inhibitor carvacrol caused a significant rise in subcellular aglycone and reduction in subcellular glucuronides of kaempferol. The inhibition and knockout of transporters, such as P-glycoprotein (P-gp), breast cancer resistance protein (BCRP), and multidrug resistance-associated proteins (MRPs), exhibited a marked increase in subcellular kaempferol and decrease in its subcellular glucuronides. Correspondingly, inhibition of UGT1A9 and transporters led to increased kaempferol and, consequently, a significantly enhanced ROS scavenging efficiency and nuclear translocation of Nrf2. In conclusion, the interplay of efflux transporters (P-gp, BCRP, and MRPs) and UGTs govern the subcellular exposure and corresponding pharmacological activity of kaempferol.


Assuntos
Glucuronídeos/metabolismo , Glucuronosiltransferase/metabolismo , Quempferóis/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Animais , Células CACO-2 , Cimenos , Glucuronosiltransferase/antagonistas & inibidores , Humanos , Intestinos/citologia , Proteínas de Membrana Transportadoras/genética , Camundongos Knockout , Microssomos/metabolismo , Monoterpenos/farmacologia , Fator 2 Relacionado a NF-E2/metabolismo , Espécies Reativas de Oxigênio/metabolismo , UDP-Glucuronosiltransferase 1A
16.
Pharmacol Res ; 129: 318-328, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29199082

RESUMO

DACT2, a tumor suppressor gene in various tumors, is frequently down-regulated via hypermethylation. We found DACT2 gene expressions were dramatically silenced (P = 0.002, n = 8) in our clinical colorectal cancer (CRC) tissues, and TCGA data revealed DACT2 hypermethylation correlated to CRC poor prognosis (P = 0.0129, HR = 0.2153, n = 248). Thus, by screening twelve nutritional compounds, we aimed to find out an effective DACT2 epigenetic stimulator to determine whether DACT2 epigenetic restoration could reverse CRC tumorigenesis. We found that kaempferol significantly increased DACT2 expressions up to 3.47-fold in three CRC cells (HCT116, HT29, and YB5). Furthermore, kaempferol remarkably decreased DACT2 methylation (range: 19.58%-67.00%, P < 0.01), while increased unmethylated DACT2 by 13.72-fold (P < 0.01) via directly binding to DNA methyltransferases DNMT1. By epigenetic reactivating DACT2 transcription, kaempferol notably inhibited nuclear ß-catenin expression to inactivate Wnt/ß-catenin pathway, which consequently restricted CRC cells proliferation and migration. Moreover, in AOM/DSS-induced CRC tumorigenesis, kaempferol-demethylated DACT2 effectively decreased tumor load (range: 50.00%-73.52%, P < 0.05). By determining the chemopreventive and chemotherapeutic efficacy of a novel DACT2 demethylating stimulator, we demonstrated that DACT2 epigenetic restoration could successfully slow down and reverse CRC tumorigenesis.


Assuntos
Proteínas de Transporte/genética , Neoplasias Colorretais/genética , Proteínas de Neoplasias/genética , Proteínas Adaptadoras de Transdução de Sinal , Animais , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/prevenção & controle , Epigênese Genética , Humanos , Quempferóis/farmacologia , Masculino , Camundongos Endogâmicos C57BL
17.
Pharm Res ; 35(6): 114, 2018 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-29637468

RESUMO

PURPOSE: To systematically investigate tissue distribution and gender-specific protein expression of Cytochrome P450 (Cyps) in five mouse genotypes with a background of Friend virus B (FVB). METHODS: The Cyps were extracted from the tissue S9 fractions of the main metabolic organs and then absolutely quantified by applying the UHPLC-MS/MS method. RESULTS: The liver had the highest expression of Cyps, followed by the small intestine and kidney. In the liver, Cyp1a2, Cyp2c29, Cyp2c39, Cyp2d22, Cyp2e1, and Cyp3a11 were the main isoforms. Cyp1a2 and Cyp2c29 were male-specific, while Cyp2c39 was female-specific. Compared with the expression in Wild-type (WT) FVB mice, the expression of Cyp1a2, Cyp1b1, Cyp2d22, and Cyp3a25 significantly decreased in female efflux transporter (ET) knockout mice. In the small intestine, Cyp2c29 and Cyp3a11 were the major isoforms. Knockout of ET didn't alter the expression levels of most Cyps. However, female ET knockout mice presented higher Cyp2c29 expression than WT FVB mice. The Cyp7a1 expression was markedly decreased in ET knockout mice except Bcrp1-/- mice. In the kidney, Cyp2e1 was the main isoform and exhibited male specificity. Knockout of ET slightly affected the protein expression of Cyps in the brain, heart, lung, spleen and stomach. CONCLUSIONS: A comprehensive understanding of the distribution characteristics and gender-specific expression of Cyps in major metabolic organs of WT and ET knockout FVB mice should contribute to a better understanding of drug efficacy and toxicity, and drug-drug interactions.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Transportadores de Cassetes de Ligação de ATP/genética , Animais , Sistema Enzimático do Citocromo P-450/genética , Feminino , Genótipo , Intestino Delgado/metabolismo , Isoenzimas/genética , Isoenzimas/metabolismo , Fígado/metabolismo , Masculino , Camundongos , Camundongos Knockout , Modelos Animais , Fatores Sexuais , Distribuição Tecidual/genética
18.
Biopharm Drug Dispos ; 39(7): 344-353, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30016542

RESUMO

This study aimed to reveal age-related changes in the expression and activity of seven hepatic drug metabolizing enzymes (DMEs) in male wild-type and breast cancer resistance protein knockout (Bcrp1-/- ) FVB mice. The protein expression of four cytochrome P450 (Cyps) (Cyp3a11, 2d22, 2e1, and 1a2), and three UDP-glucuronosyltransferases (Ugts) (Ugt1a1, 1a6a, and 1a9) in liver microsomes of wild-type and Bcrp1-/- FVB mice at different ages were determined using a validated ultra high performance liquid chromatography with tandem mass spectrometry (UHPLC-MS/MS) method. The activities and mRNA levels of these DMEs were measured using the probe substrates method and real-time PCR, respectively. In the liver of wild-type FVB mice, Cyp3a11, 2d22, 2e1, 1a2, Ugt1a1, and 1a6a displayed maximum protein levels at 6-9 weeks of age. Cyp1a2, Ugt1a1, 1a6a, and 1a9 showed maximum activities at 6-9 weeks of age, whereas Cyp3a11, 2d22, and 2e1 showed maximum activities in 1-3-week-old mice. Additionally, most of the DMEs showed maximum mRNA levels in 17-week-old mice liver. Compared with wild-type FVB mice, the protein levels of these DMEs showed no significant changes in Bcrp1-/- FVB mice liver. However, the activity of Cyp2e1 was increased and that of Cyp2d22 was decreased. In conclusion, the seven hepatic DMEs in FVB mice liver showed significant alterations in an isoform-specific manner with increased age. Although the protein levels of these DMEs showed no significant changes, the activities of Cyp2e1 and 2d22 were changed in Bcrp1-/- mice.


Assuntos
Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Envelhecimento/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Glucuronosiltransferase/metabolismo , Microssomos Hepáticos/metabolismo , Animais , Sistema Enzimático do Citocromo P-450/genética , Glucuronosiltransferase/genética , Masculino , Camundongos Knockout , RNA Mensageiro/metabolismo
19.
Hepatobiliary Pancreat Dis Int ; 17(3): 214-219, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29735301

RESUMO

BACKGROUND: Several studies have reported that apolipoprotein A5 (APOA5) is involved in the development of non-alcoholic fatty liver disease (NAFLD). However, no research has been performed regarding the association between APOA5 polymorphisms and the risk of NAFLD. This study aimed to explore the association between APOA5 gene polymorphisms and NAFLD in a Chinese Han population. METHODS: Genotypes of the SNPs (rs10750097, rs1263173, rs17120035, rs3135507 and rs662799) of APOA5 in 232 NAFLD patients and 188 healthy controls were determined using polymerase chain reaction (PCR) analysis. Clinical characteristics were measured using biochemical methods. RESULTS: The five single nucleotide polymorphisms (SNPs) (rs10750097, rs1263173, rs17120035, rs3135507 and rs662799) of APOA5 showed no significant association with NAFLD (P > 0.05). The rs10750097 with G allele showed a higher serum level of alkaline phosphatase (ALP) compared with C allele in overall series and NAFLD patients (P < 0.05). The rs1263173(A/A) carriers showed a higher level of glucose compared to the non-carriers in overall series (P < 0.05). The rs17120035(T/T) carriers showed a lower plasma TG level in overall series and NAFLD patients (P < 0.05), and the rs662799(G/G) carriers showed higher levels of plasma triglyceride (TG), ALP, and lower level of high-density lipoprotein (HDL) compared to non-carriers in NAFLD patients (P < 0.05). No significant difference were observed on the clinic parameters of APOA5 rs3135507(T/T) carriers in both group of overall series and NAFLD patients (P > 0.05). CONCLUSIONS: The five SNPs (rs10750097, rs1263173, rs17120035, rs3135507 and rs662799) of APOA5 gene are not associated with the risk of NAFLD in the Chinese Han population. The genotypes of rs10750097(G/G), rs1263173(A/A), rs17120035(T/T), and rs662799(G/G) performed a significant effect on clinic characteristics in overall series and NAFLD patients, indicating that these polymorphisms may be associated with NAFLD.


Assuntos
Apolipoproteína A-V/genética , Hepatopatia Gordurosa não Alcoólica/genética , Polimorfismo de Nucleotídeo Único , Adulto , Fosfatase Alcalina/sangue , Povo Asiático/genética , Biomarcadores/sangue , Glicemia/metabolismo , Estudos de Casos e Controles , China/epidemiologia , Feminino , Frequência do Gene , Estudos de Associação Genética , Predisposição Genética para Doença , Heterozigoto , Homozigoto , Humanos , Lipoproteínas HDL/sangue , Masculino , Pessoa de Meia-Idade , Hepatopatia Gordurosa não Alcoólica/sangue , Hepatopatia Gordurosa não Alcoólica/diagnóstico , Hepatopatia Gordurosa não Alcoólica/etnologia , Fenótipo , Fatores de Risco , Triglicerídeos/sangue
20.
J Cell Mol Med ; 21(5): 860-870, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28165192

RESUMO

Natural killer (NK) cells play an important role in preventing cancer development. NK group 2 member D (NKG2D) is an activating receptor expressed in the membrane of NK cells. Tumour cells expressing NKG2DL become susceptible to an immune-dependent rejection mainly mediated by NK cells. The paradoxical roles of transforming growth factor beta (TGF-ß) in regulation of NKG2DL are presented in many studies, but the mechanism is unclear. In this study, we showed that TGF-ß up-regulated the expression of NKG2DLs in both PC3 and HepG2 cells. The up-regulation of NKG2DLs was characterized by increasing the expression of UL16-binding proteins (ULBPs) 1 and 2. TGF-ß treatment also increased the expression of transcription factor SP1. Knockdown of SP1 significantly attenuated TGF-ß-induced up-regulation of NKG2DLs in PC3 and HepG2 cells, suggesting that SP1 plays a key role in TGF-ß-induced up-regulation of NKG2DLs. TGF-ß treatment rapidly increased SP1 protein expression while not mRNA level. It might be due to that TGF-ß can elevate SP1 stability by activating PI3K/AKT signalling pathway, subsequently inhibiting GSK-3ß activity and decreasing the association between SP1 and GSK-3ß. Knockdown of GSK-3ß further verified our findings. Taken together, these results revealed that AKT/GSK-3ß-mediated stabilization of SP1 is required for TGF-ß induced up-regulation of NKG2DLs. Our study provided valuable evidence for exploring the tumour immune modulation function of TGF-ß.


Assuntos
Glicogênio Sintase Quinase 3 beta/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores Semelhantes a Lectina de Células NK/metabolismo , Fator de Transcrição Sp1/metabolismo , Fator de Crescimento Transformador beta/farmacologia , Regulação para Cima/efeitos dos fármacos , Células Hep G2 , Humanos , Modelos Biológicos , Fosfatidilinositol 3-Quinases/metabolismo , Estabilidade Proteica/efeitos dos fármacos , Transporte Proteico/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA