Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Opt Soc Am A Opt Image Sci Vis ; 39(6): 1007-1013, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-36215530

RESUMO

Achieving the desired optical response from a multilayer thin-film structure over a broad range of wavelengths and angles of incidence can be challenging. An advanced thin-film structure can consist of multiple materials with different thicknesses and numerous layers. Design and optimization of complex thin-film structures with multiple variables is a computationally heavy problem that is still under active research. To enable fast and easy experimentation with new optimization techniques, we propose the Python package Transfer Matrix Method - Fast (TMM-Fast), which enables parallelized computation of reflection and transmission of light at different angles of incidence and wavelengths through the multilayer thin film. By decreasing computational time, generating datasets for machine learning becomes feasible, and evolutionary optimization can be used effectively. Additionally, the subpackage TMM-Torch allows us to directly compute analytical gradients for local optimization by using PyTorch Autograd functionality. Finally, an OpenAI Gym environment is presented, which allows the user to train new reinforcement learning agents on the problem of finding multilayer thin-film configurations.

2.
Sci Rep ; 12(1): 5226, 2022 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-35347188

RESUMO

Over the last decades, light-emitting diodes (LED) have replaced common light bulbs in almost every application, from flashlights in smartphones to automotive headlights. Illuminating nightly streets requires LEDs to emit a light spectrum that is perceived as pure white by the human eye. The power associated with such a white light spectrum is not only distributed over the contributing wavelengths but also over the angles of vision. For many applications, the usable light rays are required to exit the LED in forward direction, namely under small angles to the perpendicular. In this work, we demonstrate that a specifically designed multi-layer thin film on top of a white LED increases the power of pure white light emitted in forward direction. Therefore, the deduced multi-objective optimization problem is reformulated via a real-valued physics-guided objective function that represents the hierarchical structure of our engineering problem. Variants of Bayesian optimization are employed to maximize this non-deterministic objective function based on ray tracing simulations. Eventually, the investigation of optical properties of suitable multi-layer thin films allowed to identify the mechanism behind the increased directionality of white light: angle and wavelength selective filtering causes the multi-layer thin film to play ping pong with rays of light.

3.
Nanotechnology ; 21(4): 045707, 2010 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-20009204

RESUMO

We report on a multiple-state switching behavior in the tip height or tunneling current of scanning tunneling microscopy on the Si(111)-7 x 7 surface. This switching is caused by displacement of silicon adatoms under the influence of energetic tunneling electrons. When the tip is fixed over a center adatom, five well-defined levels appear in the measured tip height and tunneling current. These levels are attributed to different electronic structures, depending on the configuration of the center adatoms in the unit cell. We also demonstrate manipulations of the center adatoms by controlling the sample bias.

4.
Adv Mater ; 28(30): 6465-70, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27171481

RESUMO

A giant bandgap reduction in layered GaTe is demonstrated. Chemisorption of oxygen to the Te-terminated surfaces produces significant restructuring of the conduction band resulting in a bandgap below 0.8 eV, compared to 1.65 eV for pristine GaTe. Localized partial recovery of the pristine gap is achieved by thermal annealing, demonstrating that reversible band engineering in layered semiconductors is accessible through their surfaces.

5.
Sci Rep ; 3: 2657, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24029823

RESUMO

Point defects in semiconductors can trap free charge carriers and localize excitons. The interaction between these defects and charge carriers becomes stronger at reduced dimensionalities, and is expected to greatly influence physical properties of the hosting material. We investigated effects of anion vacancies in monolayer transition metal dichalcogenides as two-dimensional (2D) semiconductors where the vacancies density is controlled by α-particle irradiation or thermal-annealing. We found a new, sub-bandgap emission peak as well as increase in overall photoluminescence intensity as a result of the vacancy generation. Interestingly, these effects are absent when measured in vacuum. We conclude that in opposite to conventional wisdom, optical quality at room temperature cannot be used as criteria to assess crystal quality of the 2D semiconductors. Our results not only shed light on defect and exciton physics of 2D semiconductors, but also offer a new route toward tailoring optical properties of 2D semiconductors by defect engineering.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA