Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Nature ; 582(7810): 78-83, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32494067

RESUMO

Human evolutionary history is rich with the interbreeding of divergent populations. Most humans outside of Africa trace about 2% of their genomes to admixture from Neanderthals, which occurred 50-60 thousand years ago1. Here we examine the effect of this event using 14.4 million putative archaic chromosome fragments that were detected in fully phased whole-genome sequences from 27,566 Icelanders, corresponding to a range of 56,388-112,709 unique archaic fragments that cover 38.0-48.2% of the callable genome. On the basis of the similarity with known archaic genomes, we assign 84.5% of fragments to an Altai or Vindija Neanderthal origin and 3.3% to Denisovan origin; 12.2% of fragments are of unknown origin. We find that Icelanders have more Denisovan-like fragments than expected through incomplete lineage sorting. This is best explained by Denisovan gene flow, either into ancestors of the introgressing Neanderthals or directly into humans. A within-individual, paired comparison of archaic fragments with syntenic non-archaic fragments revealed that, although the overall rate of mutation was similar in humans and Neanderthals during the 500 thousand years that their lineages were separate, there were differences in the relative frequencies of mutation types-perhaps due to different generation intervals for males and females. Finally, we assessed 271 phenotypes, report 5 associations driven by variants in archaic fragments and show that the majority of previously reported associations are better explained by non-archaic variants.


Assuntos
Introgressão Genética/genética , Genoma Humano/genética , Genômica , Mutação , Homem de Neandertal/genética , Animais , Feminino , Estudos de Associação Genética , Haploidia , Humanos , Islândia , Masculino , Fenótipo , Filogenia
2.
Hum Mol Genet ; 33(1): 38-47, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-37740403

RESUMO

Breast cancer (BC) risk is suspected to be linked to thyroid disorders, however observational studies exploring the association between BC and thyroid disorders gave conflicting results. We proposed an alternative approach by investigating the shared genetic risk factors between BC and several thyroid traits. We report a positive genetic correlation between BC and thyroxine (FT4) levels (corr = 0.13, p-value = 2.0 × 10-4) and a negative genetic correlation between BC and thyroid-stimulating hormone (TSH) levels (corr = -0.09, p-value = 0.03). These associations are more striking when restricting the analysis to estrogen receptor-positive BC. Moreover, the polygenic risk scores (PRS) for FT4 and hyperthyroidism are positively associated to BC risk (OR = 1.07, 95%CI: 1.00-1.13, p-value = 2.8 × 10-2 and OR = 1.04, 95%CI: 1.00-1.08, p-value = 3.8 × 10-2, respectively), while the PRS for TSH is inversely associated to BC risk (OR = 0.93, 95%CI: 0.89-0.97, p-value = 2.0 × 10-3). Using the PLACO method, we detected 49 loci associated to both BC and thyroid traits (p-value < 5 × 10-8), in the vicinity of 130 genes. An additional colocalization and gene-set enrichment analyses showed a convincing causal role for a known pleiotropic locus at 2q35 and revealed an additional one at 8q22.1 associated to both BC and thyroid cancer. We also found two new pleiotropic loci at 14q32.33 and 17q21.31 that were associated to both TSH levels and BC risk. Enrichment analyses and evidence of regulatory signals also highlighted brain tissues and immune system as candidates for obtaining associations between BC and TSH levels. Overall, our study sheds light on the complex interplay between BC and thyroid traits and provides evidence of shared genetic risk between those conditions.


Assuntos
Neoplasias da Mama , Glândula Tireoide , Humanos , Feminino , Neoplasias da Mama/genética , Tireotropina/genética , Tiroxina/genética , Fatores de Risco , Estratificação de Risco Genético
3.
Mov Disord ; 38(4): 604-615, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36788297

RESUMO

BACKGROUND: Epidemiological studies that examined the association between Parkinson's disease (PD) and cancers led to inconsistent results, but they face a number of methodological difficulties. OBJECTIVE: We used results from genome-wide association studies (GWASs) to study the genetic correlation between PD and different cancers to identify common genetic risk factors. METHODS: We used individual data for participants of European ancestry from the Courage-PD (Comprehensive Unbiased Risk Factor Assessment for Genetics and Environment in Parkinson's Disease; PD, N = 16,519) and EPITHYR (differentiated thyroid cancer, N = 3527) consortia and summary statistics of GWASs from iPDGC (International Parkinson Disease Genomics Consortium; PD, N = 482,730), Melanoma Meta-Analysis Consortium (MMAC), Breast Cancer Association Consortium (breast cancer), the Prostate Cancer Association Group to Investigate Cancer Associated Alterations in the Genome (prostate cancer), International Lung Cancer Consortium (lung cancer), and Ovarian Cancer Association Consortium (ovarian cancer) (N comprised between 36,017 and 228,951 for cancer GWASs). We estimated the genetic correlation between PD and cancers using linkage disequilibrium score regression. We studied the association between PD and polymorphisms associated with cancers, and vice versa, using cross-phenotypes polygenic risk score (PRS) analyses. RESULTS: We confirmed a previously reported positive genetic correlation of PD with melanoma (Gcorr = 0.16 [0.04; 0.28]) and reported an additional significant positive correlation of PD with prostate cancer (Gcorr = 0.11 [0.03; 0.19]). There was a significant inverse association between the PRS for ovarian cancer and PD (odds ratio [OR] = 0.89 [0.84; 0.94]). Conversely, the PRS of PD was positively associated with breast cancer (OR = 1.08 [1.06; 1.10]) and inversely associated with ovarian cancer (OR = 0.95 [0.91; 0.99]). The association between PD and ovarian cancer was mostly driven by rs183211 located in an intron of the NSF gene (17q21.31). CONCLUSIONS: We show evidence in favor of a contribution of pleiotropic genes to the association between PD and specific cancers. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA.


Assuntos
Neoplasias Pulmonares , Melanoma , Neoplasias Ovarianas , Doença de Parkinson , Neoplasias da Próstata , Humanos , Masculino , Feminino , Doença de Parkinson/epidemiologia , Doença de Parkinson/genética , Estudo de Associação Genômica Ampla , Predisposição Genética para Doença/genética , Polimorfismo de Nucleotídeo Único/genética , Melanoma/epidemiologia , Melanoma/genética , Fatores de Risco
4.
Int J Cancer ; 148(12): 2935-2946, 2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-33527407

RESUMO

Incidence of differentiated thyroid carcinoma (DTC) varies considerably between ethnic groups, with particularly high incidence rates in Pacific Islanders. DTC is one of the cancers with the highest familial risk suggesting a major role of genetic risk factors, but only few susceptibility loci were identified so far. In order to assess the contribution of known DTC susceptibility loci and to identify new ones, we conducted a multiethnic genome-wide association study (GWAS) in individuals of European ancestry and of Oceanian ancestry from Pacific Islands. Our study included 1554 cases/1973 controls of European ancestry and 301 cases/348 controls of Oceanian ancestry from seven population-based case-control studies participating to the EPITHYR consortium. All participants were genotyped using the OncoArray-500K Beadchip (Illumina). We confirmed the association with the known DTC susceptibility loci at 2q35, 8p12, 9q22.33 and 14q13.3 in the European ancestry population and suggested two novel signals at 1p31.3 and 16q23.2, which were associated with thyroid-stimulating hormone levels in previous GWAS. We additionally replicated an association with 5p15.33 reported previously in Chinese and European populations. Except at 1p31.3, all associations were in the same direction in the population of Oceanian ancestry. We also observed that the frequencies of risk alleles at 2q35, 5p15.33 and 16q23.2 were significantly higher in Oceanians than in Europeans. However, additional GWAS and epidemiological studies in Oceanian populations are needed to fully understand the highest incidence observed in these populations.


Assuntos
Estudo de Associação Genômica Ampla/métodos , Havaiano Nativo ou Outro Ilhéu do Pacífico/genética , Polimorfismo de Nucleotídeo Único , Neoplasias da Glândula Tireoide/etnologia , População Branca/genética , Adulto , Idoso , Estudos de Casos e Controles , Cromossomos Humanos/genética , Feminino , Frequência do Gene , Predisposição Genética para Doença , Humanos , Masculino , Pessoa de Meia-Idade , Ilhas do Pacífico/etnologia , Neoplasias da Glândula Tireoide/genética
5.
bioRxiv ; 2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38496565

RESUMO

A wide diversity of mating systems occur in nature, with frequent evolutionary transitions in mating-compatibility mechanisms. Basidiomycete fungi typically have two mating-type loci controlling mating compatibility, HD and PR, usually residing on different chromosomes. In Microbotryum anther-smut fungi, there have been repeated events of linkage between the two mating-type loci through chromosome fusions, leading to large non-recombining regions. By generating high-quality genome assemblies, we found that two sister Microbotryum species parasitizing Dianthus plants, M. superbum and M. shykoffianum, as well as the distantly related M. scorzonarae, have their HD and PR mating-type loci on different chromosomes, but with the PR mating-type chromosome fused with part of the ancestral HD chromosome. Furthermore, progressive extensions of recombination suppression have generated evolutionary strata. In all three species, rearrangements suggest the existence of a transient stage of HD-PR linkage by whole chromosome fusion, and, unexpectedly, the HD genes lost their function. In M. superbum, multiple natural diploid strains were homozygous, and the disrupted HD2 gene was hardly expressed. Mating tests confirmed that a single genetic factor controlled mating compatibility (i.e. PR) and that haploid strains with identical HD alleles could mate and produce infectious hyphae. The HD genes have therefore lost their function in the control of mating compatibility in these Microbotryum species. While the loss of function of PR genes in mating compatibility has been reported in a few basidiomycete fungi, these are the first documented cases for the loss of mating-type determination by HD genes in heterothallic fungi. The control of mating compatibility by a single genetic factor is beneficial under selfing and can thus be achieved repeatedly, through evolutionary convergence in distant lineages, involving different genomic or similar pathways.

6.
Nat Commun ; 14(1): 3990, 2023 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-37414752

RESUMO

A major part of the human Y chromosome consists of palindromes with multiple copies of genes primarily expressed in testis, many of which have been claimed to affect male fertility. Here we examine copy number variation in these palindromes based on whole genome sequence data from 11,527 Icelandic men. Using a subset of 7947 men grouped into 1449 patrilineal genealogies, we infer 57 large scale de novo copy number mutations affecting palindrome 1. This corresponds to a mutation rate of 2.34 × 10-3 mutations per meiosis, which is 4.1 times larger than our phylogenetic estimate of the mutation rate (5.72 × 10-4), suggesting that de novo mutations on the Y are lost faster than expected under neutral evolution. Although simulations indicate a selection coefficient of 1.8% against non-reference copy number carriers, we do not observe differences in fertility among sequenced men associated with their copy number genotype, but we lack statistical power to detect differences resulting from weak negative selection. We also perform association testing of a diverse set of 341 traits to palindromic copy number without any significant associations. We conclude that large-scale palindrome copy number variation on the Y chromosome has little impact on human phenotype diversity.


Assuntos
Variações do Número de Cópias de DNA , Evolução Molecular , Humanos , Masculino , Variações do Número de Cópias de DNA/genética , Filogenia , Cromossomo Y , Cromossomos Humanos Y/genética , Fenótipo
7.
Evol Lett ; 6(2): 203-216, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35386833

RESUMO

Sexual dimorphisms are widespread in animals and plants, for morphological as well as physiological traits. Understanding the genetic basis of sexual dimorphism and its evolution is crucial for understanding biological differences between the sexes. Genetic variants with sex-antagonistic effects on fitness are expected to segregate in populations at the early phases of sexual dimorphism emergence. Detecting such variants is notoriously difficult, and the few genome-scan methods employed so far have limited power and little specificity. Here, we propose a new framework to detect a signature of sexually antagonistic (SA) selection. We rely on trio datasets where sex-biased transmission distortions can be directly tracked from parents to offspring, and identify signals of SA transmission distortions in genomic regions. We report the genomic location of six candidate regions detected in human populations as potentially under sexually antagonist selection. We find an enrichment of genes associated with embryonic development within these regions. Last, we highlight two candidate regions for SA selection in humans.

8.
Genetics ; 209(3): 907-920, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29769284

RESUMO

Ampliconic genes are multicopy, with the majority found on sex chromosomes and enriched for testis-expressed genes. While ampliconic genes have been associated with the emergence of hybrid incompatibilities, we know little about their copy number distribution and their turnover in human populations. Here, we explore the evolution of human X- and Y-linked ampliconic genes by investigating copy number variation (CNV) and coding variation between populations using the Simons Genome Diversity Project. We develop a method to assess CNVs using the read depth on modified X and Y chromosome targets containing only one repetition of each ampliconic gene. Our results reveal extensive standing variation in copy number both within and between human populations for several ampliconic genes. For the Y chromosome, we can infer multiple independent amplifications and losses of these gene copies even within closely related Y haplogroups, that diversified < 50,000 years ago. Moreover, X- and Y-linked ampliconic genes seem to have a faster amplification dynamic than autosomal multicopy genes. Looking at expression data from another study, we also find that X- and Y-linked ampliconic genes with extensive CNV are significantly more expressed than genes with no CNV during meiotic sex chromosome inactivation (for both X and Y) and postmeiotic sex chromosome repression (for the Y chromosome only). While we cannot rule out that the XY-linked ampliconic genes are evolving neutrally, this study gives insights into the distribution of copy number within human populations and demonstrates an extremely fast turnover in copy number of these regions.


Assuntos
Cromossomos Humanos X/genética , Cromossomos Humanos Y/genética , Dosagem de Genes , Genes Ligados ao Cromossomo X , Genes Ligados ao Cromossomo Y , Biologia Computacional/métodos , Evolução Molecular , Feminino , Genética Populacional , Humanos , Masculino , Meiose , Família Multigênica
9.
Genome Biol Evol ; 8(5): 1489-500, 2016 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-27189992

RESUMO

Sexually antagonistic (SA) selection, a form of selection that can occur when both sexes have different fitness optima for a trait, is a major force shaping the evolution of organisms. A seminal model developed by Rice (Rice WR. 1984. Sex chromosomes and the evolution of sexual dimorphism. Evolution 38:735-742.) predicts that the X chromosome should be a hotspot for the accumulation of loci under SA selection as compared with the autosomes. Here, we propose a methodological framework designed to detect a specific signature of SA selection on viability, differences in allelic frequencies between the sexes. Applying this method on genome-wide single nucleotide polymorphism (SNP) data in human populations where no sex-specific population stratification could be detected, we show that there are overall significantly more SNPs exhibiting differences in allelic frequencies between the sexes on the X chromosome as compared with autosomes, supporting the predictions of Rice's model. This pattern is consistent across populations and is robust to correction for potential biases such as differences in linkage disequilibrium, sample size, and genotyping errors between chromosomes. Although SA selection is not the only factor resulting in allelic frequency differences between the sexes, we further show that at least part of the identified X-linked loci is caused by such a sex-specific processes.


Assuntos
Cromossomos Humanos X/genética , Polimorfismo de Nucleotídeo Único/genética , Seleção Genética/genética , Caracteres Sexuais , Feminino , Frequência do Gene/genética , Genoma Humano , Genótipo , Humanos , Desequilíbrio de Ligação , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA