Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Mol Ecol ; 33(1): e17190, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37909668

RESUMO

After the domestication of goats around 10,000 years before the present (BP), humans transported goats far beyond the range of their wild ancestor, the bezoar goat. This brought domestic goats into contact with many wild goat species such as ibex and markhor, enabling introgression between domestic and wild goats. To investigate this, while shedding light on the taxonomic status of wild and domestic goats, we analysed genome-wide SNP data of 613 specimens from 14 taxonomic units, including Capra hircus, C. pyrenaica, C. ibex (from Switzerland, Austria, Germany and Slovenia), C. aegagrus aegagrus, C. a. cretica, C. h. dorcas, C. caucasica caucasica, C. c. severtzovi, C. c. cylindricornis, C. falconeri, C. sibirica sibirica, C. s. alaiana and C. nubiana, as well as Oreamnos americanus (mountain goat) as an outgroup. To trace gene flow between domestic and wild goats, we integrated genotype data of local goat breeds from the Alps as well as from countries such as Spain, Greece, Türkiye, Egypt, Sudan, Iran, Russia (Caucasus and Altai) and Pakistan. Our phylogenetic analyses displayed a clear separation between bezoar-type and ibex-type clades with wild goats from the Greek islands of Crete and Youra clustered within domestic goats, confirming their feral origin. Our analyses also revealed gene flow between the lineages of Caucasian tur and domestic goats that most likely occurred before or during early domestication. Within the clade of domestic goats, analyses inferred gene flow between African and Iberian goats. The detected events of introgression were consistent with previous reports and offered interesting insights into the historical relationships among domestic and wild goats.


Assuntos
Bezoares , Animais , Humanos , Filogenia , Genótipo , Bezoares/genética , Cabras/genética , Genoma/genética
2.
Mol Phylogenet Evol ; 197: 108091, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38719080

RESUMO

Cryptic diversity poses a great obstacle in our attempts to assess the current biodiversity crisis and may hamper conservation efforts. The gekkonid genus Mediodactylus, a well-known case of hidden species and genetic diversity, has been taxonomically reclassified several times during the last decade. Focusing on the Mediterranean populations, a recent study within the M. kotschyi species complex using classic mtDNA/nuDNA markers suggested the existence of five distinct species, some being endemic and some possibly threatened, yet their relationships have not been fully resolved. Here, we generated genome-wide SNPs (using ddRADseq) and applied molecular species delimitation approaches and population genomic analyses to further disentangle these relationships. Τhe most extensive nuclear dataset, so far, encompassing 2,360 loci and âˆ¼ 699,000 bp from across the genome of Mediodactylus gecko, enabled us to resolve previously obscure phylogenetic relationships among the five, recently elevated, Mediodactylus species and to support the hypothesis that the taxon includes several new, undescribed species. Population genomic analyses within each of the proposed species showed strong genetic structure and high levels of genetic differentiation among populations.


Assuntos
Lagartos , Filogenia , Filogeografia , Animais , Região do Mediterrâneo , Lagartos/genética , Lagartos/classificação , Polimorfismo de Nucleotídeo Único , Variação Genética , Genética Populacional , DNA Mitocondrial/genética , Análise de Sequência de DNA
3.
Mol Biol Evol ; 39(1)2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34718699

RESUMO

The Mediterranean Basin has experienced extensive change in geology and climate over the past six million years. Yet, the relative importance of key geological events for the distribution and genetic structure of the Mediterranean fauna remains poorly understood. Here, we use population genomic and phylogenomic analyses to establish the evolutionary history and genetic structure of common wall lizards (Podarcis muralis). This species is particularly informative because, in contrast to other Mediterranean lizards, it is widespread across the Iberian, Italian, and Balkan Peninsulas, and in extra-Mediterranean regions. We found strong support for six major lineages within P. muralis, which were largely discordant with the phylogenetic relationship of mitochondrial DNA. The most recent common ancestor of extant P. muralis was likely distributed in the Italian Peninsula, and experienced an "Out-of-Italy" expansion following the Messinian salinity crisis (∼5 Mya), resulting in the differentiation into the extant lineages on the Iberian, Italian, and Balkan Peninsulas. Introgression analysis revealed that both inter- and intraspecific gene flows have been pervasive throughout the evolutionary history of P. muralis. For example, the Southern Italy lineage has a hybrid origin, formed through admixture between the Central Italy lineage and an ancient lineage that was the sister to all other P. muralis. More recent genetic differentiation is associated with the onset of the Quaternary glaciations, which influenced population dynamics and genetic diversity of contemporary lineages. These results demonstrate the pervasive role of Mediterranean geology and climate for the evolutionary history and population genetic structure of extant species.


Assuntos
Lagartos , Metagenômica , Animais , DNA Mitocondrial/genética , Variação Genética , Lagartos/genética , Filogenia , Filogeografia
4.
Mol Biol Evol ; 39(10)2022 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-36063436

RESUMO

As viral genomic imprints in host genomes, endogenous viral elements (EVEs) shed light on the deep evolutionary history of viruses, ancestral host ranges, and ancient viral-host interactions. In addition, they may provide crucial information for calibrating viral evolutionary timescales. In this study, we conducted a comprehensive in silico screening of a large data set of available mammalian genomes for EVEs deriving from members of the viral family Flaviviridae, an important group of viruses including well-known human pathogens, such as Zika, dengue, or hepatitis C viruses. We identified two novel pestivirus-like EVEs in the reference genome of the Indochinese shrew (Crocidura indochinensis). Homologs of these novel EVEs were subsequently detected in vivo by molecular detection and sequencing in 27 shrew species, including 26 species representing a wide distribution within the Crocidurinae subfamily and one in the Soricinae subfamily on different continents. Based on this wide distribution, we estimate that the integration event occurred before the last common ancestor of the subfamily, about 10.8 million years ago, attesting to an ancient origin of pestiviruses and Flaviviridae in general. Moreover, we provide the first description of Flaviviridae-derived EVEs in mammals even though the family encompasses numerous mammal-infecting members. This also suggests that shrews were past and perhaps also current natural reservoirs of pestiviruses. Taken together, our results expand the current known Pestivirus host range and provide novel insight into the ancient evolutionary history of pestiviruses and the Flaviviridae family in general.


Assuntos
Pestivirus , Vírus , Infecção por Zika virus , Zika virus , Animais , Evolução Molecular , Genoma Viral , Humanos , Pestivirus/genética , Filogenia , Musaranhos/genética , Vírus/genética , Zika virus/genética
5.
Mol Ecol ; 31(5): 1375-1388, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34894026

RESUMO

The study of insular populations was key in the development of evolutionary theory. The successful colonisation of an island depends on the geographic context, and specific characteristics of the organism and the island, but also on stochastic processes. As a result, apparently identical islands may harbour populations with contrasting histories. Here, we use whole genome sequences of 65 barn owls to investigate the patterns of inbreeding and genetic diversity of insular populations in the eastern Mediterranean Sea. We focus on Crete and Cyprus, islands with similar size, climate and distance to mainland, that provide natural replicates for a comparative analysis of the impacts of microevolutionary processes on isolated populations. We show that barn owl populations from each island have a separate origin, Crete being genetically more similar to other Greek islands and mainland Greece, and Cyprus more similar to the Levant. Further, our data show that their respective demographic histories following colonisation were also distinct. On the one hand, Crete harbours a small population and maintains very low levels of gene flow with neighbouring populations. This has resulted in low genetic diversity, strong genetic drift, increased relatedness in the population and remote inbreeding. Cyprus, on the other hand, appears to maintain enough gene flow with the mainland to avoid such an outcome. Our study provides a comparative population genomic analysis of the effects of neutral processes on a classical island-mainland model system. It provides empirical evidence for the role of stochastic processes in determining the fate of diverging isolated populations.


Assuntos
Estrigiformes , Animais , Evolução Biológica , Fluxo Gênico , Deriva Genética , Variação Genética/genética , Genômica , Estrigiformes/genética
6.
Dis Aquat Organ ; 152: 127-138, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36519684

RESUMO

In the early 2000s, numerous cases of European amphibian population declines and mass die-offs started to emerge. Investigating those events led to the discovery that wild European amphibians were confronted with grave disease threats caused by introduced pathogens, namely the amphibian and the salamander chytrid fungi Batrachochytrium dendrobatidis (Bd) and B. salamandrivorans (Bsal) and ranaviruses. In Greece, Bd was previously documented among wild amphibian populations in 2 different locations and 3 different species. However, no disease-related mass declines or mortality events have been reported. In this work, we build upon previous findings with new, subsequently obtained data, resulting in a 225-sample dataset of 14 species from 17 different locations throughout Greece, in order to examine the occurrence status of all 3 pathogens responsible for emerging infectious diseases in European amphibians. No positive samples for Bsal or ranavirus were recorded in any location. We confirmed the presence of Bd in 4 more localities and in 4 more species, including 1 urodelan (Macedonian crested newt Triturus macedonicus) and 1 introduced anuran (American bullfrog Lithobates catesbeianus). All insular localities were negative for Bd, except for Crete, where Bd was identified in 2 different locations. Again, no mass declines or die-offs were recorded in any Bd-positive area or elsewhere. However, given the persistence of Bd across Greece over the past ~20 yr, monitoring efforts should continue, and ideally be further expanded.


Assuntos
Quitridiomicetos , Doenças Transmissíveis Emergentes , Micoses , Ranavirus , Animais , Batrachochytrium , Grécia/epidemiologia , Micoses/epidemiologia , Micoses/veterinária , Micoses/microbiologia , Anfíbios/microbiologia , Doenças Transmissíveis Emergentes/veterinária , Rana catesbeiana
7.
Mol Phylogenet Evol ; 159: 107121, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33609707

RESUMO

Wall lizards of the genus Podarcis (Sauria, Lacertidae) are the predominant reptile group in southern Europe, including 24 recognized species. Mitochondrial DNA data have shown that, with the exception of P. muralis, the Podarcis species distributed in the Balkan peninsula form a species group that is further sub-divided into two subgroups: the one of "P. tauricus" consisting of P. tauricus, P. milensis, P. gaigeae, and P. melisellensis, and the other of "P. erhardii" comprising P. erhardii, P. levendis, P. cretensis, and P. peloponnesiacus. In an attempt to explore the Balkan Podarcis phylogenomic relationships, assess the levels of genetic structure and to re-evaluate the number of extant species, we employed phylogenomic and admixture approaches on ddRADseq (double digested Restriction site Associated DNA sequencing) genomic data. With this efficient Next Generation Sequencing approach, we were able to obtain a large number of genomic loci randomly distributed throughout the genome and use them to resolve the previously obscure phylogenetic relationships among the different Podarcis species distributed in the Balkans. The obtained phylogenomic relationships support the monophyly of both aforementioned subgroups and revealed several divergent lineages within each subgroup, stressing the need for taxonomic re-evaluation of Podarcis' species in Balkans. The phylogenomic trees and the species delimitation analyses confirmed all recently recognized species (P. levendis, P. cretensis, and P. ionicus) and showed the presence of at least two more species, one in P. erhardii and the other in P. peloponnesiacus.


Assuntos
Especiação Genética , Genética Populacional , Lagartos/classificação , Filogenia , Animais , Península Balcânica , DNA Mitocondrial/genética , Genômica , Metagenômica , Análise de Sequência de DNA
8.
Mol Ecol ; 28(13): 3257-3270, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31254307

RESUMO

Cryptic phylogeographic diversifications provide unique models to examine the role of phylogenetic divergence on the evolution of reproductive isolation, without extrinsic factors such as ecological and behavioural differentiation. Yet, to date very few comparative studies have been attempted within such radiations. Here, we characterize a new speciation continuum in a group of widespread Eurasian amphibians, the Pelobates spadefoot toads, by conducting multilocus (restriction site associated DNA sequencing and mitochondrial DNA) phylogenetic, phylogeographic and hybrid zone analyses. Within the P. syriacus complex, we discovered species-level cryptic divergences (>5 million years ago [My]) between populations distributed in the Near-East (hereafter P. syriacus sensu stricto [s.s.]) and southeastern Europe (hereafter P. balcanicus), each featuring deep intraspecific lineages. Altogether, we could scale hybridizability to divergence time along six different stages, spanning from sympatry without gene flow (P. fuscus and P. balcanicus, >10 My), parapatry with highly restricted hybridization (P. balcanicus and P. syriacus s.s., >5 My), narrow hybrid zones (~15 km) consistent with partial reproductive isolation (P. fuscus and P. vespertinus, ~3 My), to extensive admixture between Pleistocene and refugial lineages (≤2 My). This full spectrum empirically supports a gradual build up of reproductive barriers through time, reversible up until a threshold that we estimate at ~3 My. Hence, cryptic phylogeographic lineages may fade away or become reproductively isolated species simply depending on the time they persist in allopatry, and without definite ecomorphological divergence.


Assuntos
Anuros/classificação , Especiação Genética , Genética Populacional , Isolamento Reprodutivo , Animais , Teorema de Bayes , DNA Mitocondrial/genética , Europa (Continente) , Fluxo Gênico , Hibridização Genética , Oriente Médio , Filogenia , Filogeografia , Análise de Sequência de DNA , Simpatria
9.
Mol Phylogenet Evol ; 138: 193-204, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31129348

RESUMO

The evolutionary history of taxa with limited overseas dispersal abilities is considered to be majorly influenced by vicariant events constituting them as model organisms for the interpretation of evolutionary processes. An excellent candidate are the wall lizards of the genus Podarcis exhibiting an impressive level of genetic and morphological diversification and harboring several cases of recently discovered cryptic diversity. In this study, we investigated the effect of palaeogeographic events on the wall lizards' biodiversity patterns in the Aegean (Greece) as well as the evolutionary processes that acted both in space and time. To accomplish that we studied a group of three endemic Podarcis species (i.e., P. cretensis, P. levendis, and P. peloponnesiacus) both at the intra and interspecific levels employing mitochondrial and nuclear DNA sequence data as well as microsatellites. Furthermore, presence information coupled with bioclimatic data (i.e., species distribution modeling, and niche similarity analyses) shed light on the necessary ecological factors for the species' occurrence. These approaches revealed yet another case of cryptic diversity for this group of lizards, with the existence of two slightly overlapping lineages within P. peloponnesiacus and highly structured populations within P. cretensis. Species diversification occurred during the Pliocene with P. peloponnesiacus divergence into the two lineages dating back to 1.86 Mya. Furthermore, temperature and precipitation related environmental parameters were the most important ones regarding the current distribution of the studied species. Based on the results, we propose a more detailed phylogeographic scenario where both the paleogeography of the area and several environmental parameters have shaped the genetic diversity and the current distribution pattern of this species group.


Assuntos
Lagartos/classificação , Filogenia , Filogeografia , Animais , Península Balcânica , Biodiversidade , DNA Mitocondrial/genética , Variação Genética , Genética Populacional , Grécia , Lagartos/genética , Repetições de Microssatélites/genética , Especificidade da Espécie , Fatores de Tempo
10.
BMC Evol Biol ; 18(1): 67, 2018 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-29720079

RESUMO

BACKGROUND: Debated aspects in speciation research concern the amount of gene flow between incipient species under secondary contact and the modes by which post-zygotic isolation accumulates. Secondary contact zones of allopatric lineages, involving varying levels of divergence, provide natural settings for comparative studies, for which the Aegean (Eastern Mediterranean) geography offers unique scenarios. In Palearctic green toads (Bufo viridis subgroup or Bufotes), Plio-Pleistocene (~ 2.6 Mya) diverged species show a sharp transition without contemporary gene flow, while younger lineages, diverged in the Lower-Pleistocene (~ 1.9 Mya), admix over tens of kilometers. Here, we conducted a fine-scale multilocus phylogeographic analysis of continental and insular green toads from the Aegean, where a third pair of taxa, involving Mid-Pleistocene diverged (~ 1.5 Mya) mitochondrial lineages, earlier tentatively named viridis and variabilis, (co-)occurs. RESULTS: We discovered a new lineage, endemic to Naxos (Central Cyclades), while coastal islands and Crete feature weak genetic differentiation from the continent. In continental Greece, both lineages, viridis and variabilis, form a hybrid swarm, involving massive mitochondrial and nuclear admixture over hundreds of kilometers, without obvious selection against hybrids. CONCLUSIONS: The genetic signatures of insular Aegean toads appear governed by bathymetry and Quaternary sea level changes, resulting in long-term isolation (Central Cyclades: Naxos) and recent land-bridges (coastal islands). Conversely, Crete has been isolated since the end of the Messinian salinity crisis (5.3 My) and Cretan populations thus likely result from human-mediated colonization, at least since Antiquity, from Peloponnese and Anatolia. Comparisons of green toad hybrid zones support the idea that post-zygotic hybrid incompatibilities accumulate gradually over the genome. In this radiation, only one million years of divergence separate a scenario of complete reproductive isolation, from a secondary contact resulting in near panmixia.


Assuntos
Biodiversidade , Bufonidae/classificação , Ilhas , Filogeografia , Animais , Sequência de Bases , Núcleo Celular/genética , DNA Mitocondrial/genética , Fluxo Gênico , Deriva Genética , Genética Populacional , Genoma , Grécia , Funções Verossimilhança , Mitocôndrias/genética , Filogenia , Isolamento Reprodutivo , Análise de Sequência de DNA
11.
Mol Phylogenet Evol ; 125: 177-187, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29555295

RESUMO

Kotschy's Gecko, Mediodactylus kotschyi, is a small gecko native to southeastern Europe and the Levant. It displays great morphological variation with a large number of morphologically recognized subspecies. However, it has been suggested that it constitutes a species complex of several yet unrecognized species. In this study, we used multilocus sequence data (three mitochondrial and three nuclear gene fragments) to estimate the phylogenetic relationships of 174 specimens from 129 sampling localities, covering a substantial part of the distribution range of the species. Our results revealed high genetic diversity of M. kotschyi populations and contributed to our knowledge about the phylogenetic relationships and the estimation of the divergence times between them. Diversification within M. kotschyi began approximately 15 million years ago (Mya) in the Middle Miocene, whereas the diversification within most of the major clades have been occurred in the last 5 Mya. Species delimitation analysis suggests there exists five species within the complex, and we propose to tentatively recognize the following taxa as full species: M. kotschyi (mainland Balkans, most of Aegean islands, and Italy), M. orientalis (Levant, Cyprus, southern Anatolia, and south-eastern Aegean islands), M. danilewskii (Black Sea region and south-western Anatolia), M. bartoni (Crete), and M. oertzeni (southern Dodecanese Islands). This newly recognized diversity underlines the complex biogeographical history of the Eastern Mediterranean region.


Assuntos
Loci Gênicos , Variação Genética , Lagartos/classificação , Lagartos/genética , Filogenia , Animais , Teorema de Bayes , DNA Mitocondrial/genética , Geografia , RNA Ribossômico 16S/genética , Alinhamento de Sequência , Especificidade da Espécie , Fatores de Tempo
12.
Mol Phylogenet Evol ; 125: 100-115, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29574273

RESUMO

The Balkan Peninsula constitutes a biodiversity hotspot with high levels of species richness and endemism. The complex geological history of the Balkans in conjunction with the climate evolution are hypothesized as the main drivers generating this biodiversity. We investigated the phylogeography, historical demography, and population structure of closely related wall-lizard species from the Balkan Peninsula and southeastern Europe to better understand diversification processes of species with limited dispersal ability, from Late Miocene to the Holocene. We used several analytical methods integrating genome-wide SNPs (ddRADseq), microsatellites, mitochondrial and nuclear DNA data, as well as species distribution modelling. Phylogenomic analysis resulted in a completely resolved species level phylogeny, population level analyses confirmed the existence of at least two cryptic evolutionary lineages and extensive within species genetic structuring. Divergence time estimations indicated that the Messinian Salinity Crisis played a key role in shaping patterns of species divergence, whereas intraspecific genetic structuring was mainly driven by Pliocene tectonic events and Quaternary climatic oscillations. The present work highlights the effectiveness of utilizing multiple methods and data types coupled with extensive geographic sampling to uncover the evolutionary processes that shaped the species over space and time.


Assuntos
Lagartos/classificação , Modelos Biológicos , Filogeografia , Animais , Península Balcânica , Teorema de Bayes , Biodiversidade , Calibragem , DNA Mitocondrial/genética , Variação Genética , Genética Populacional , Genômica , Haplótipos/genética , Lagartos/genética , Repetições de Microssatélites/genética , Filogenia , Especificidade da Espécie
13.
Mol Phylogenet Evol ; 106: 6-17, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27640951

RESUMO

The monophyletic species subgroup of Podarcis tauricus is distributed in the western and southern parts of the Balkans, and includes four species with unresolved and unstudied inter- and intra-specific phylogenetic relationships. Using sequence data from two mitochondrial and three nuclear genes and applying several phylogenetic methods and species delimitation approaches to an extensive dataset, we have reconstructed the phylogeny of the Podarcis wall lizards in the Balkans, and re-investigated the taxonomic status of the P. tauricus species subgroup. Multilocus analyses revealed that the aforementioned subgroup consists of five major clades, with P. melisellensis as its most basal taxon. Monophyly of P. tauricus sensu stricto is not supported, with one of the subspecies (P. t. ionicus) displaying great genetic diversity (hidden diversity or cryptic species). It comprises five, geographically distinct, subclades with genetic distances on the species level. Species delimitation approaches revealed nine species within the P. tauricus species subgroup (P. melisellensis, P. gaigeae, P. milensis, and six in the P. tauricus complex), underlining the necessity of taxonomic re-evaluation. We thus synonymize some previously recognized subspecies in this subgroup, elevate P. t. tauricus and P. g. gaigeae to the species level and suggest a distinct Albanian-Greek clade, provisionally named as the P. ionicus species complex. The latter clade comprises five unconfirmed candidate species that call for comprehensive studies in the future.


Assuntos
Lagartos/classificação , Animais , Península Balcânica , DNA/química , DNA/isolamento & purificação , DNA/metabolismo , DNA Mitocondrial/classificação , DNA Mitocondrial/genética , Variação Genética , Lagartos/genética , Filogenia , Filogeografia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
14.
Mol Phylogenet Evol ; 103: 199-214, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27404043

RESUMO

Morphological and DNA data support that the East Mediterranean snake-eyed skink Ablepharus kitaibelii represents a species complex that includes four species A. kitaibelii, A. budaki, A. chernovi, and A. rueppellii, highlighting the need of its taxonomic reevaluation. Here, we used Bayesian and Maximum Likelihood methods to estimate the phylogenetic relationships of all members of the complex based on two mitochondrial (cyt b, 16S rRNA) and two nuclear markers (MC1R, and NKTR) and using Chalcides, Eumeces, and Eutropis as outgroups. The biogeographic history of the complex was also investigated through the application of several phylogeographic (BEAST) and biogeographic (BBM) analyses. Paleogeographic and paleoclimatic data were used to support the inferred phylogeographic patterns. The A. kitaibelli species complex exhibits high genetic diversity, revealing cases of hidden diversity and cases of non-monophyletic species such as A. kitaibelii and A. budaki. Our results indicate that A. pannonicus branches off first and a group that comprises specimens of A. kitaibelli and A. budaki from Kastelorizo Island group (southeast Greece) and southwest Turkey, respectively is differentiated from the rest A. kitaibelli and A. budaki populations and may represent a new species. The estimated divergence times place the origin of the complex in the Middle Miocene (∼16Mya) and the divergence of most currently recognized species in the Late Miocene. The inferred ancestral distribution suggests that the complex originated in Anatolia, supposing that several vicariance and dispersal events that are related with the formation of the Mid-Aegean Trench, the Anatolian Diagonal and the orogenesis of the mountain chains in southern and eastern Anatolia have led to current distribution pattern of A. kitaibelii species complex in the Balkans and Middle East.


Assuntos
Lagartos/classificação , Animais , Península Balcânica , Teorema de Bayes , Citocromos b/classificação , Citocromos b/genética , Citocromos b/metabolismo , DNA/química , DNA/isolamento & purificação , DNA/metabolismo , DNA Mitocondrial/classificação , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Variação Genética , Grécia , Funções Verossimilhança , Lagartos/genética , Filogenia , Filogeografia , RNA Ribossômico 16S/classificação , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/metabolismo , Receptor Tipo 1 de Melanocortina/classificação , Receptor Tipo 1 de Melanocortina/genética , Receptor Tipo 1 de Melanocortina/metabolismo , Receptores Imunológicos/classificação , Receptores Imunológicos/genética , Receptores Imunológicos/metabolismo , Alinhamento de Sequência , Análise de Sequência de DNA , Turquia
15.
Genetica ; 144(2): 191-202, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26961232

RESUMO

The Egyptian weasel (Mustela subpalmata) is a small mustelid with a distribution restricted to the lower Nile Valley and the Nile Delta. Traditionally considered a subspecies of the least weasel (M. nivalis), it is currently recognized as a separate species based on morphology. Here we present the first genetic assessment of the taxonomic status of the Egyptian weasel by comparing mitochondrial DNA (Cytochrome b gene and control region) sequences to those of least weasels from the western Palearctic, with a focus on the Mediterranean region. Our results provide no evidence to support the view that the Egyptian weasel is genetically distinct from the least weasel, as we found that, for both Cytochrome b and control region, haplotypes were shared between the two taxa. Specifically, the Cytochrome b and control region haplotypes detected in the Egyptian weasel were also present in M. nivalis from Turkey and Malta, two populations genetically analysed here for the first time. Our results suggest that the Egyptian weasel is distinct from the least weasel populations currently living in the Maghreb, which were inferred to be the result of an earlier colonization of North Africa, but the genetic data alone do not allow us to determine whether the Egyptian weasel is native or introduced. Nevertheless, the observed genetic patterns, together with the weasel fossil record in Israel and the unique commensal lifestyle of the Egyptian weasel, are consistent with the hypothesis that the Egyptian population is a relict of past range expansion from the Levant into Egypt. We suggest that the large size and characteristic sexual dimorphism of the Egyptian weasel are likely to represent ecotypic variation, but genomic studies are required to clarify the extent of its functional genetic divergence.


Assuntos
DNA Mitocondrial/genética , Genética Populacional , Mustelidae/genética , Filogenia , Animais , Teorema de Bayes , Citocromos b/genética , Egito , Haplótipos , Região do Mediterrâneo , Análise de Sequência de DNA
16.
J Therm Biol ; 61: 55-60, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27712661

RESUMO

Environmental temperatures considerably affect the reptilian ability for thermoregulation and harsh climatic conditions may impose a highly effective body temperature regulation to lizards. Such demanding conditions are more common to extreme mainland habitats (e.g. deserts or mountains). To the contrary, islands have more benign climate conditions thanks to the thermal buffering effect of the surrounding sea. However, this favorable effect may be eliminated in small size islets where the scarcity of thermal shelters and exposure to high winds create challenging conditions. Here we investigate the impact of a tough islet habitat on the thermoregulation of Podarcis levendis, a lacertid lizard endemic to two rocky islets in the north Cretan Sea, Greece. To evaluate the thermoregulatory effectiveness of P. levendis we measured operative and body temperatures in the field and the preferred body temperatures in the lab. Analyses of the thermal data revealed an accurate, precise, and effective thermoregulator, achieving very high thermoregulation values (E =0.91, de¯-db¯ =7.6). This high effectiveness comes to compensate living in an inhospitable habitat as the operative temperatures denote (de =7.79). Our findings, together with the limited published literature, suggested the lack of a general pattern for all insular lizards and indicated a possible deviation for islet habitats.


Assuntos
Regulação da Temperatura Corporal , Lagartos/fisiologia , Aclimatação , Animais , Comportamento Animal , Temperatura Corporal , Ecossistema , Ilhas do Mediterrâneo , Temperatura
17.
BMC Evol Biol ; 15: 155, 2015 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-26253600

RESUMO

BACKGROUND: Hybridization between incipient species is expected to become progressively limited as their genetic divergence increases and reproductive isolation proceeds. Amphibian radiations and their secondary contact zones are useful models to infer the timeframes of speciation, but empirical data from natural systems remains extremely scarce. Here we follow this approach in the European radiation of tree frogs (Hyla arborea group). We investigated a natural hybrid zone between two lineages (Hyla arborea and Hyla orientalis) of Mio-Pliocene divergence (~5 My) for comparison with other hybrid systems from this group. RESULTS: We found concordant geographic distributions of nuclear and mitochondrial gene pools, and replicated narrow transitions (~30 km) across two independent transects, indicating an advanced state of reproductive isolation and potential local barriers to dispersal. This result parallels the situation between H. arborea and H. intermedia, which share the same amount of divergence with H. orientalis. In contrast, younger lineages show much stronger admixture at secondary contacts. CONCLUSIONS: Our findings corroborate the negative relationship between hybridizability and divergence time in European tree frogs, where 5 My are necessary to achieve almost complete reproductive isolation. Speciation seems to progress homogeneously in this radiation, and might thus be driven by gradual genome-wide changes rather than single speciation genes. However, the timescale differs greatly from that of other well-studied amphibians. General assumptions on the time necessary for speciation based on evidence from unrelated taxa may thus be unreliable. In contrast, comparative hybrid zone analyses within single radiations such as our case study are useful to appreciate the advance of speciation in space and time.


Assuntos
Especiação Genética , Ranidae/classificação , Ranidae/genética , Animais , DNA Mitocondrial/genética , Hibridização Genética , Isolamento Reprodutivo , Análise de Sequência de DNA
18.
BMC Genomics ; 16: 1115, 2015 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-26714643

RESUMO

BACKGROUND: The current extensive use of the domestic goat (Capra hircus) is the result of its medium size and high adaptability as multiple breeds. The extent to which its genetic variability was influenced by early domestication practices is largely unknown. A common standard by which to analyze maternally-inherited variability of livestock species is through complete sequencing of the entire mitogenome (mitochondrial DNA, mtDNA). RESULTS: We present the first extensive survey of goat mitogenomic variability based on 84 complete sequences selected from an initial collection of 758 samples that represent 60 different breeds of C. hircus, as well as its wild sister species, bezoar (Capra aegagrus) from Iran. Our phylogenetic analyses dated the most recent common ancestor of C. hircus to ~460,000 years (ka) ago and identified five distinctive domestic haplogroups (A, B1, C1a, D1 and G). More than 90 % of goats examined were in haplogroup A. These domestic lineages are predominantly nested within C. aegagrus branches, diverged concomitantly at the interface between the Epipaleolithic and early Neolithic periods, and underwent a dramatic expansion starting from ~12-10 ka ago. CONCLUSIONS: Domestic goat mitogenomes descended from a small number of founding haplotypes that underwent domestication after surviving the last glacial maximum in the Near Eastern refuges. All modern haplotypes A probably descended from a single (or at most a few closely related) female C. aegagrus. Zooarchaelogical data indicate that domestication first occurred in Southeastern Anatolia. Goats accompanying the first Neolithic migration waves into the Mediterranean were already characterized by two ancestral A and C variants. The ancient separation of the C branch (~130 ka ago) suggests a genetically distinct population that could have been involved in a second event of domestication. The novel diagnostic mutational motifs defined here, which distinguish wild and domestic haplogroups, could be used to understand phylogenetic relationships among modern breeds and ancient remains and to evaluate whether selection differentially affected mitochondrial genome variants during the development of economically important breeds.


Assuntos
Genoma Mitocondrial/genética , Cabras/genética , Animais , DNA Mitocondrial/genética , Feminino , Variação Genética/genética , Haplótipos/genética , Dados de Sequência Molecular , Filogenia
19.
Proc Biol Sci ; 282(1821): 20151992, 2015 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-26702042

RESUMO

Amniote vertebrates possess various mechanisms of sex determination, but their variability is not equally distributed. The large evolutionary stability of sex chromosomes in viviparous mammals and birds was believed to be connected with their endothermy. However, some ectotherm lineages seem to be comparably conserved in sex determination, but previously there was a lack of molecular evidence to confirm this. Here, we document a stability of sex chromosomes in advanced snakes based on the testing of Z-specificity of genes using quantitative PCR (qPCR) across 37 snake species (our qPCR technique is suitable for molecular sexing in potentially all advanced snakes). We discovered that at least part of sex chromosomes is homologous across all families of caenophidian snakes (Acrochordidae, Xenodermatidae, Pareatidae, Viperidae, Homalopsidae, Colubridae, Elapidae and Lamprophiidae). The emergence of differentiated sex chromosomes can be dated back to about 60 Ma and preceded the extensive diversification of advanced snakes, the group with more than 3000 species. The Z-specific genes of caenophidian snakes are (pseudo)autosomal in the members of the snake families Pythonidae, Xenopeltidae, Boidae, Erycidae and Sanziniidae, as well as in outgroups with differentiated sex chromosomes such as monitor lizards, iguanas and chameleons. Along with iguanas, advanced snakes are therefore another example of ectothermic amniotes with a long-term stability of sex chromosomes comparable with endotherms.


Assuntos
Cromossomos Sexuais , Serpentes/genética , Animais , Evolução Biológica , Feminino , Lagartos/genética , Masculino , Filogenia , Processos de Determinação Sexual/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA