Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
PLoS Comput Biol ; 17(12): e1009725, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34962935

RESUMO

The firing of neurons throughout the brain is determined by the precise relations between excitatory and inhibitory inputs, and disruption of their balance underlies many psychiatric diseases. Whether or not these inputs covary over time or between repeated stimuli remains unclear due to the lack of experimental methods for measuring both inputs simultaneously. We developed a new analytical framework for instantaneous and simultaneous measurements of both the excitatory and inhibitory neuronal inputs during a single trial under current clamp recording. This can be achieved by injecting a current composed of two high frequency sinusoidal components followed by analytical extraction of the conductances. We demonstrate the ability of this method to measure both inputs in a single trial under realistic recording constraints and from morphologically realistic CA1 pyramidal model cells. Future experimental implementation of our new method will facilitate the understanding of fundamental questions about the health and disease of the nervous system.


Assuntos
Potenciais de Ação/fisiologia , Região CA1 Hipocampal , Modelos Neurológicos , Neurônios , Animais , Região CA1 Hipocampal/citologia , Região CA1 Hipocampal/fisiologia , Biologia Computacional , Eletrofisiologia , Camundongos , Neurônios/citologia , Neurônios/fisiologia
2.
Epilepsia ; 62(2): 542-556, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33452820

RESUMO

OBJECTIVE: Many antiseizure drugs (ASDs) act on voltage-dependent sodium channels, and the molecular basis of these effects is well established. In contrast, how ASDs act on the level of neuronal networks is much less understood. METHODS: In the present study, we determined the effects of eslicarbazepine (S-Lic) on different types of inhibitory neurons, as well as inhibitory motifs. Experiments were performed in hippocampal slices from both sham-control and chronically epileptic pilocarpine-treated rats. RESULTS: We found that S-Lic causes an unexpected reduction of feed-forward inhibition in the CA1 region at high concentrations (300 µM), but not at lower concentrations (100 µM). Concurrently, 300 but not 100 µM S-Lic significantly reduced maximal firing rates in putative feed-forward interneurons located in the CA1 stratum radiatum of sham-control and epileptic animals. In contrast, feedback inhibition was not inhibited by S-Lic. Instead, application of S-Lic, in contrast to previous data for other drugs like carbamazepine (CBZ), resulted in a lasting potentiation of feedback inhibitory post-synaptic currents (IPSCs) only in epileptic and not in sham-control animals, which persisted after washout of S-Lic. We hypothesized that this plasticity of inhibition might rely on anti-Hebbian potentiation of excitatory feedback inputs onto oriens-lacunosum moleculare (OLM) interneurons, which is dependent on Ca2+ -permeable α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors. Indeed, we show that blocking Ca2+ -permeable AMPA receptors completely prevents upmodulation of feedback inhibition. SIGNIFICANCE: These results suggest that S-Lic affects inhibitory circuits in the CA1 hippocampal region in unexpected ways. In addition, ASD actions may not be sufficiently explained by acute effects on their target channels, rather, it may be necessary to take plasticity of inhibitory circuits into account.


Assuntos
Anticonvulsivantes/farmacologia , Região CA1 Hipocampal/efeitos dos fármacos , Dibenzazepinas/farmacologia , Epilepsia/fisiopatologia , Interneurônios/efeitos dos fármacos , Inibição Neural/efeitos dos fármacos , Células Piramidais/efeitos dos fármacos , Adamantano/análogos & derivados , Adamantano/farmacologia , Animais , Região CA1 Hipocampal/metabolismo , Região CA1 Hipocampal/fisiopatologia , Cálcio/metabolismo , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Epilepsia/induzido quimicamente , Retroalimentação Fisiológica/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Hipocampo/fisiopatologia , Potenciais Pós-Sinápticos Inibidores/efeitos dos fármacos , Interneurônios/metabolismo , Potenciação de Longa Duração , Agonistas Muscarínicos/toxicidade , Plasticidade Neuronal , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Pilocarpina/toxicidade , Ratos , Receptores de AMPA/antagonistas & inibidores , Receptores de AMPA/metabolismo
3.
Nat Commun ; 14(1): 6106, 2023 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-37777512

RESUMO

Neural computation is often traced in terms of either rate- or phase-codes. However, most circuit operations will simultaneously affect information across both coding schemes. It remains unclear how phase and rate coded information is transmitted, in the face of continuous modification at consecutive processing stages. Here, we study this question in the entorhinal cortex (EC)- dentate gyrus (DG)- CA3 system using three distinct computational models. We demonstrate that DG feedback inhibition leverages EC phase information to improve rate-coding, a computation we term phase-to-rate recoding. Our results suggest that it i) supports the conservation of phase information within sparse rate-codes and ii) enhances the efficiency of plasticity in downstream CA3 via increased synchrony. Given the ubiquity of both phase-coding and feedback circuits, our results raise the question whether phase-to-rate recoding is a recurring computational motif, which supports the generation of sparse, synchronous population-rate-codes in areas beyond the DG.


Assuntos
Giro Denteado , Córtex Entorrinal , Giro Denteado/fisiologia , Córtex Entorrinal/fisiologia , Modelos Neurológicos , Hipocampo/fisiologia
4.
Front Neural Circuits ; 14: 16, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32395103

RESUMO

Transgenic Cre-recombinase expressing mouse lines are widely used to express fluorescent proteins and opto-/chemogenetic actuators, making them a cornerstone of modern neuroscience. The investigation of interneurons in particular has benefitted from the ability to genetically target specific cell types. However, the specificity of some Cre driver lines has been called into question. Here, we show that nonspecific expression in a subset of hippocampal neurons can have substantial nonspecific functional effects in a somatostatin-Cre (SST-Cre) mouse line. Nonspecific targeting of CA3 pyramidal cells caused large optogenetically evoked excitatory currents in remote brain regions. Similar, but less severe patterns of nonspecific expression were observed in a widely used SST-IRES-Cre line, when crossed with a reporter mouse line. Viral transduction on the other hand yielded more specific expression but still resulted in nonspecific expression in a minority of pyramidal layer cells. These results suggest that a careful analysis of specificity is mandatory before the use of Cre driver lines for opto- or chemogenetic manipulation approaches.


Assuntos
Região CA3 Hipocampal/citologia , Região CA3 Hipocampal/metabolismo , Integrases/biossíntese , Interneurônios/metabolismo , Optogenética/métodos , Somatostatina/biossíntese , Animais , Região CA3 Hipocampal/química , Expressão Gênica , Integrases/análise , Integrases/genética , Interneurônios/química , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Somatostatina/análise , Somatostatina/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA