Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
BMC Genomics ; 24(1): 28, 2023 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-36650457

RESUMO

BACKGROUND: Aglaonema commutatum 'Red Valentine', as a foliage ornamental plant, is widely used for interior and exterior decoration because of its easy cultivation and management. However, reduced proportion of red foliage during large-scale production of A. commutatum seedlings is a frequent occurrence, which has considerable implications on the plant's ornamental and market value. However, the molecular mechanisms underlying this phenomenon remain unclear. RESULTS: To explore the molecular basis of the variation in leaf color of A. commutatum Red Valentine, we performed transcriptome sequencing with the Illumina platform using two different varieties of A. commutatum, namely Red Valentine and a green mutant, at three different stages of leaf development. We annotated 63,621 unigenes and 14,186 differentially expressed genes by pairwise comparison. Furthermore, we identified 26 anthocyanin biosynthesis structural genes. The transcript per million (TPM) values were significantly higher for Red Valentine than for the green mutant in all three developmental stages, consistent with the high anthocyanin content of Red Valentine leaves. We detected positive transcription factors that may be involved in the regulation of anthocyanin biosynthesis using BLAST and through correlation analysis. Downregulation of these transcription factors may downregulate the expression of anthocyanin genes. We obtained full-length cDNA of the anthocyanin biosynthesis and regulatory genes and constructed phylogenetic trees to ensure accuracy of the analysis. CONCLUSIONS: Our study provides insights into the molecular mechanisms underlying leaf variation in A. commutatum Red Valentine and may be used to facilitate the breeding of ornamental cultivars with high anthocyanin levels.


Assuntos
Antocianinas , Transcriptoma , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Melhoramento Vegetal , Perfilação da Expressão Gênica , Folhas de Planta/metabolismo , Regulação da Expressão Gênica de Plantas
2.
BMC Plant Biol ; 23(1): 594, 2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-38012575

RESUMO

BACKGROUND: Cultivated Hippeastrum × hybridum is a popular ornamental plant with large and colorful flowers, long flowering duration, and high commercial value. As its main ornamental feature, its flower color is related to the anthocyanin content in the tepals. However, the molecular regulatory mechanisms of anthocyanin biosynthesis in H. × hybridum have not yet been elucidated. RESULTS: In the present study, 12 cDNA libraries of four stages of H.× hybridum 'Royal Velvet' tepal development were used for RNA-seq, obtaining 79.83 gigabases (GB) of clean data. The data were assembled into 148,453 unigenes, and 11,262 differentially expressed genes were identified. Forty key enzymes participating in anthocyanin biosynthesis were investigated, and the results showed that most of the anthocyanin structural genes were expressed at low levels in S1 and were markedly upregulated in S2 and S3. The expression profiles of 12 selected genes were verified by qRT-PCR. Furthermore, the R2R3-MYB transcription factor (TF), HpMYB1, involved in the regulation of anthocyanin biosynthesis was identified by sequence, expression pattern, and subcellular localization analyses. Its overexpression in tobacco significantly increased the anthocyanin levels in various tissues and activated anthocyanin-related genes. CONCLUSIONS: Using RNA-seq technology, we successfully identified a potential R2R3-MYB gene, HpMYB1, that regulates anthocyanin biosynthesis in H.× hybridum 'Royal Velvet'. Our findings provide basic transcript information and valuable transcriptome data for further identification of key genes involved in anthocyanin biosynthesis and can be applied in the artificial breeding of new H. × hybridum cultivars with enhanced ornamental value.


Assuntos
Antocianinas , Proteínas de Plantas , Antocianinas/metabolismo , RNA-Seq , Proteínas de Plantas/metabolismo , Melhoramento Vegetal , Fatores de Transcrição/metabolismo , Flores/metabolismo , Regulação da Expressão Gênica de Plantas
3.
Planta ; 258(3): 54, 2023 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-37515637

RESUMO

MAIN CONCLUSION: Santalum album (E,E)-α-farnesene synthase catalyzes FPP into (E,E)-α-farnesene. Overexpression of the SaAFS gene positively improved cold stress tolerance through JA biosynthesis and signaling pathways in Arabidopsis. Volatile terpenoids are released from plants that suffer negative effects following exposure to various biotic and abiotic stresses. Recent studies revealed that (E,E)-α-farnesene synthase (AFS) plays a significant role in a plant's defence against biotic attack. However, little is known about whether AFS contributes to plant resistance to cold stress. In this study, a SaAFS gene was isolated from Indian sandalwood (Santalum album L.) and functionally characterized. The SaAFS protein mainly converts farnesyl diphosphate to (E,E)-α-farnesene. SaAFS was clustered into the AFS clade from angiosperms, suggesting a highly conserved enzyme. SaAFS displayed a significant response to cold stress and methyl jasmonate. SaAFS overexpression (OE) in Arabidopsis enhanced cold tolerance by increasing proline content, reducing malondialdehyde content, electrolyte leakage, and accumulating reactive oxygen species. Transcriptomic analysis revealed that upregulated genes related to stress response and JA biosynthesis and signaling were detected in SaAFS-OE lines compared with wild type plants that were exposed to cold stress. Endogenous JA and jasmonoyl-isoleucine content increased significantly in SaAFS-OE lines exposed to cold stress. Collectively considered, these results suggest that the SaAFS gene is a positive regulator during cold stress tolerance via JA biosynthesis and signaling pathways.


Assuntos
Arabidopsis , Óleos Voláteis , Santalum , Arabidopsis/metabolismo , Santalum/genética , Santalum/metabolismo , Ciclopentanos/metabolismo , Óleos Voláteis/metabolismo , Regulação da Expressão Gênica de Plantas , Plantas Geneticamente Modificadas/metabolismo
4.
BMC Genomics ; 22(1): 806, 2021 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-34749655

RESUMO

BACKGROUND: Paphiopedilum, commonly known as slipper orchid, is an important genus of orchid family with prominent horticultural value. Compared with conventional methods such as tillers and in vitro shoots multiplication, induction and regeneration of protocorm-like bodies (PLBs) is an effective micropropagation method in Paphiopedilum. The PLB initiation efficiency varies among species, hybrids and varieties, which leads to only a few Paphiopedilum species can be large-scale propagated through PLBs. So far, little is known about the mechanisms behind the initiation and maintenance of PLB in Paphiopedilum. RESULTS: A protocol to induce PLB development from seed-derived protocorms of Paphiopedilum SCBG Huihuang90 (P. SCBG Prince × P. SCBG Miracle) was established. The morphological characterization of four key PLB developmental stages showed that significant polarity and cell size gradients were observed within each PLB. The endogenous hormone level was evaluated. The increase in the levels of indoleacetic acid (IAA) and jasmonic acid (JA) accompanying the PLBs differentiation, suggesting auxin and JA levels were correlated with PLB development. Gibberellic acid (GA) decreased to a very low level, indicated that GA inactivation may be necessary for shoot apical meristem (SAM) development. Comparative transcriptomic profiles of four different developmental stages of P. SCBG Huihuang90 PLBs explore key genes involved in PLB development. The numbers of differentially expressed genes (DEGs) in three pairwise comparisons (A vs B, B vs C, C vs D) were 1455, 349, and 3529, respectively. KEGG enrichment analysis revealed that DEGs were implicated in secondary metabolite metabolism and photosynthesis. DEGs related to hormone metabolism and signaling, somatic embryogenesis, shoot development and photosynthesis were discussed in detail. CONCLUSION: This study is the first report on PLB development in Paphiopedilum using transcriptome sequencing, which provides useful information to understand the mechanisms of PLB development.


Assuntos
Orchidaceae , Transcriptoma , Orchidaceae/genética , Reguladores de Crescimento de Plantas , Sementes
5.
BMC Genomics ; 21(1): 524, 2020 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-32727352

RESUMO

BACKGROUNDS: Paphiopedilum is an important genus of the orchid family Orchidaceae and has high horticultural value. The wild populations are under threat of extinction because of overcollection and habitat destruction. Mature seeds of most Paphiopedilum species are difficult to germinate, which severely restricts their germplasm conservation and commercial production. The factors inhibiting germination are largely unknown. RESULTS: In this study, large amounts of non-methylated lignin accumulated during seed maturation of Paphiopedilum armeniacum (P. armeniacum), which negatively correlates with the germination rate. The transcriptome profiles of P. armeniacum seed at different development stages were compared to explore the molecular clues for non-methylated lignin synthesis. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis showed that a large number of genes associated with phenylpropanoid biosynthesis and phenylalanine metabolism during seed maturation were differentially expressed. Several key genes in the lignin biosynthetic pathway displayed different expression patterns during the lignification process. PAL, 4CL, HCT, and CSE upregulation was associated with C and H lignin accumulation. The expression of CCoAOMT, F5H, and COMT were maintained at a low level or down-regulated to inhibit the conversion to the typical G and S lignin. Quantitative real-time RT-PCR analysis confirmed the altered expression levels of these genes in seeds and vegetative tissues. CONCLUSIONS: This work demonstrated the plasticity of natural lignin polymer assembly in seed and provided a better understanding of the molecular mechanism of seed-specific lignification process.


Assuntos
Lignina , Orchidaceae , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Germinação/genética , Lignina/metabolismo , Orchidaceae/metabolismo , Sementes/genética , Sementes/metabolismo , Transcriptoma
6.
Int J Mol Sci ; 21(24)2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-33334056

RESUMO

Paphiopedilum armeniacum is a rare orchid native to China with high ornamental value. The germination of P. armeniacum seeds is difficult, especially for the mature seeds, which is the major limitation for their large-scale reproduction. This study explored the reasons for seed germination inhibition from the aspects of the important plant endogenous hormone-abscisic acid (ABA). The major endogenous hormone contents of seeds were determined at different developmental stages. The ABA content was 5.8 ng/g in 73 days after pollination (DAP) for the immature seeds, peaked at 14.6 ng/g in 129 DAP seeds, and dropped to 2.6 ng/g in the late mature stage of the 150 DAP seeds. The reduction of ABA content in the mature seed suggests a possible contribution to the increased expression of CYP707A, an ABA catabolism gene. The germination rate of the immature seeds was reduced to 9% from 69% when 5 µg/mL ABA was added to the Hyponex N026 germination medium. The result showed that ABA can inhibit the germination of P. armeniacum immature seeds. However, for the heavily lignified mature seeds, reduction in endogenous ABA level does not result in an increase in the germination rate. Lignin accumulation in the seed coat imposes the physical dormancy for P. armeniacum. In summary, the germination of P. armeniacum is regulated by both ABA and lignin accumulation.


Assuntos
Ácido Abscísico/farmacologia , Germinação/efeitos dos fármacos , Orchidaceae/efeitos dos fármacos , Orchidaceae/crescimento & desenvolvimento , Desenvolvimento Vegetal/efeitos dos fármacos , Sementes/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Modelos Biológicos , Reguladores de Crescimento de Plantas/biossíntese , Sementes/anatomia & histologia , Transcriptoma
7.
Int J Mol Sci ; 22(1)2020 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-33374823

RESUMO

In this paper, the development of the Paphiopedilum Maudiae embryo sac at different developmental stages after pollination was assessed by confocal laser scanning microscopy. The mature seeds of P. Maudiae consisted of an exopleura and a spherical embryo, but without an endosperm, while the inner integument cells were absorbed by the developing embryo. The P. Maudiae embryo sac exhibited an Allium type of development. The time taken for the embryo to develop to a mature sac was 45-50 days after pollination (DAP) and most mature embryo sacs had completed fertilization and formed zygotes by about 50-54 DAP. In planta transformation was achieved by injection of the ovaries by Agrobacterium, resulting in 38 protocorms or seedlings after several rounds of hygromycin selection, corresponding to 2, 7, 5, 1, 3, 4, 9, and 7 plantlets from Agrobacterium-mediated ovary-injection at 30, 35, 42, 43, 45, 48, 50, and 53 DAP, respectively. Transformation efficiency was highest at 50 DAP (2.54%), followed by 2.48% at 53 DAP and 2.45% at 48 DAP. Four randomly selected hygromycin-resistant plants were GUS-positive after PCR analysis. Semi-quantitative PCR and quantitative real-time PCR analysis revealed the expression of the hpt gene in the leaves of eight hygromycin-resistant seedlings following Agrobacterium-mediated ovary-injection at 30, 35, 42, 43, 45, 48, 50, and 53 DAP, while hpt expression was not detected in the control. The best time to inject P. Maudiae ovaries in planta with Agrobacterium is 48-53 DAP, which corresponds to the period of fertilization. This protocol represents the first genetic transformation protocol for any Paphiopedilum species and will allow for expanded molecular breeding programs to introduce useful and interesting genes that can expand its ornamental and horticulturally important characteristics.


Assuntos
Agrobacterium tumefaciens/genética , Técnicas de Transferência de Genes , Orchidaceae/genética , Transformação Genética , Agrobacterium tumefaciens/patogenicidade , Flores/genética , Flores/crescimento & desenvolvimento , Flores/metabolismo , Germinação , Orchidaceae/microbiologia , Orchidaceae/fisiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Polinização , Transgenes
8.
BMC Genomics ; 20(1): 724, 2019 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-31601194

RESUMO

BACKGROUND: Clerodendrum inerme (L.) Gaertn, a halophyte, usually grows on coastal beaches as an important mangrove plant. The salt-tolerant mechanisms and related genes of this species that respond to short-term salinity stress are unknown for us. The de novo transcriptome of C. inerme roots was analyzed using next-generation sequencing technology to identify genes involved in salt tolerance and to better understand the response mechanisms of C. inerme to salt stress. RESULTS: Illumina RNA-sequencing was performed on root samples treated with 400 mM NaCl for 0 h, 6 h, 24 h, and 72 h to investigate changes in C. inerme in response to salt stress. The de novo assembly identified 98,968 unigenes. Among these unigenes, 46,085 unigenes were annotated in the NCBI non-redundant protein sequences (NR) database, 34,756 sequences in the Swiss-Prot database and 43,113 unigenes in the evolutionary genealogy of genes: Non-supervised Orthologous Groups (eggNOG) database. 52 Gene Ontology (GO) terms and 31 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were matched to those unigenes. Most differentially expressed genes (DEGs) related to the GO terms "single-organism process", "membrane" and "catalytic activity" were significantly enriched while numerous DEGs related to the plant hormone signal transduction pathway were also significantly enriched. The detection of relative expression levels of 9 candidate DEGs by qRT-PCR were basically consistent with fold changes in RNA sequencing analysis, demonstrating that transcriptome data can accurately reflect the response of C. inerme roots to salt stress. CONCLUSIONS: This work revealed that the response of C. inerme roots to saline condition included significant alteration in response of the genes related to plant hormone signaling. Besides, our findings provide numerous salt-tolerant genes for further research to improve the salt tolerance of functional plants and will enhance research on salt-tolerant mechanisms of halophytes.


Assuntos
Clerodendrum/crescimento & desenvolvimento , Perfilação da Expressão Gênica/métodos , Estresse Salino/genética , Clerodendrum/genética , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Ontologia Genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Análise de Sequência de RNA
9.
BMC Plant Biol ; 19(1): 115, 2019 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-30922222

RESUMO

BACKGROUND: It is well known that aromatic essential oils extracted from the heartwood of Santalum album L. have wide economic value. However, little is known about the role of terpenoids in response to various adverse environmental stresses as other plants do in the form of signals during plant-environment interactions. RESULTS: In this study, trace amounts of volatiles consisting of α-santalene, epi-ß-santalene, ß-santalene, α-santalol, ß-santalol, (E)-α-bergamotene, (E)-ß-farnesene and ß-bisabolene were found in the leaves of mature S. album trees. We identified more than 40 candidate terpene synthase (TPS) unigenes by mining publicly-available RNA-seq data and characterized the enzymes encoded by three cDNAs: one mono-TPS catalyzes the formation of mostly α-terpineol, and two multifunctional sesqui-TPSs, one of which produces (E)-α-bergamotene and sesquisabinene as major products and another which catalyzes the formation of (E)-ß-farnesene, (E)-nerolidol and (E,E)-farnesol as main products. Metabolite signatures and gene expression studies confirmed that santalol content is closely related with santalene synthase (SaSSY) transcripts in heartwood, which is key enzyme responsible for santalol biosynthesis. However, the expression of three new SaTPS genes differed significantly from SaSSY in the essential oil-producing heartwood. Increased activities of antioxidant enzymes, superoxide dismutase, catalase, peroxidase and ascorbate peroxidase, were detected in different tissues of S. album plants after applying 1 mM methyl jasmonate (MeJA) and 1 mM salicylic acid (SA), or exposure to 4°C, 38°C and high light intensity. MeJA and SA dramatically induced the expression of SaTPS1 and SaTPS2 in leaves. SaTPS1 to 3 transcripts were differentially activated among different tissues under adverse temperature and light stresses. In contrast, almost all SaSSY transcripts decreased in response to these environmental stresses, unlike SaTPS1 to 3. CONCLUSIONS: Multifunctional enzymes were biochemically characterized, including one chloroplastic mono-TPS and two cytosolic sesqui-TPSs in sandalwood. Our results suggest the ecological importance of these three new SaTPS genes in defensive response to biotic attack and abiotic stresses in S. album.


Assuntos
Alquil e Aril Transferases/genética , Proteínas de Plantas/genética , Santalum/fisiologia , Estresse Fisiológico/genética , Acetatos/farmacologia , Alquil e Aril Transferases/metabolismo , Ciclopentanos/farmacologia , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Luz , Família Multigênica , Oxilipinas/farmacologia , Filogenia , Folhas de Planta/química , Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo , Ácido Salicílico/farmacologia , Santalum/efeitos dos fármacos , Santalum/genética , Temperatura , Terpenos/análise , Terpenos/química , Terpenos/metabolismo , Compostos Orgânicos Voláteis/análise , Compostos Orgânicos Voláteis/química
10.
Int J Mol Sci ; 20(22)2019 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-31766135

RESUMO

WRKY proteins are a large superfamily of transcription factors that are involved in diverse biological processes including development, as well as biotic and abiotic stress responses in plants. WRKY family proteins have been extensively characterized and analyzed in many plant species, including Arabidopsis, rice, and poplar. However, knowledge on WRKY transcription factors in Santalum album is scarce. Based on S. album genome and transcriptome data, 64 SaWRKY genes were identified in this study. A phylogenetic analysis based on the structures of WRKY protein sequences divided these genes into three major groups (I, II, III) together with WRKY protein sequences from Arabidopsis. Tissue-specific expression patterns showed that 37 SaWRKY genes were expressed in at least one of five tissues (leaves, roots, heartwood, sapwood, or the transition zone), while the remaining four genes weakly expressed in all of these tissues. Analysis of the expression profiles of the 42 SaWRKY genes after callus was initiated by salicylic acid (SA) and methyl jasmonate (MeJA) revealed that 25 and 24 SaWRKY genes, respectively, were significantly induced. The function of SaWRKY1, which was significantly up-regulated by SA and MeJA, was analyzed. SaWRKY1 was localized in the nucleus and its overexpression improved salt tolerance in transgenic Arabidopsis. Our study provides important information to further identify the functions of SaWRKY genes and to understand the roles of SaWRKY family genes involved in the development and in SA- and MeJA-mediated stress responses.


Assuntos
Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Santalum/genética , Fatores de Transcrição/genética , Filogenia , Tolerância ao Sal , Santalum/fisiologia , Estresse Fisiológico , Transcriptoma
11.
Lipids Health Dis ; 16(1): 137, 2017 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-28701173

RESUMO

BACKGROUND: A great number of studies reported that 12/15-lipoxygenase (12/15-LO) played an important role in atherosclerosis. And its arachidonic acid(AA) metabolite, 15(S)-hydroperoxy-5,8,11,13-(Z,Z,Z,E)-eicosatetraenoic acid (15(S)-HETE), is demonstrated to mediate endothelial dysfunction. 15-oxo-5,8,11,13-(Z,Z,Z,E)-eicosatetraenoic acid (15-oxo-ETE) was formed from 15-hydroxyprostaglandin dehydrogenase (PGDH)-mediated oxidation of 15(S)-HETE. However, relatively little is known about the biological effects of 15-oxo-ETE in cardiovascular disease. Here, we explore the likely role of 15-lipoxygenase (LO)-1-mediated AA metabolism,15-oxo-ETE, in the early pathogenesis of atherosclerosis. METHODS: The 15-oxo-ETE level in serum was detected by means of liquid chromatography and online tandem mass spectrometry (LC-MS/MS). And the underlying mechanisms were illuminated by molecular techniques, including immunoblotting, MTT assay, immunocytochemistry and Immunohistochemistry. RESULTS: Increased 15-oxo-ETE level is found in in patients with acute myocardial infarction (AMI). After 15-oxo-ETE treatment, Human umbilical vein endothelial cells (HUVECs) showed more attractive to monocytes, whereas monocyte adhesion is suppressed when treated with PKC inhibitor. In ex vivo study, exposure of arteries from C57 mice and ApoE-/-mice to 15-oxo-ETE led to significantly increased E-selectin expression and monocyte adhesion. CONCLUSIONS: This is the first report that 15-oxo-ETE promotes early pathological process of atherosclerosis by accelerating E-selectin expression and monocyte adhesion. 15-oxo-ETE -induced monocyte adhesion is partly attributable to activation of PKC.


Assuntos
Ácidos Araquidônicos/sangue , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Monócitos/citologia , Monócitos/metabolismo , Idoso , Adesão Celular/fisiologia , Linhagem Celular , Cromatografia Líquida , Feminino , Células Endoteliais da Veia Umbilical Humana , Humanos , Immunoblotting , Imuno-Histoquímica , Masculino , Pessoa de Meia-Idade , Espectrometria de Massas em Tandem
12.
Planta ; 243(4): 847-87, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26745967

RESUMO

MAIN CONCLUSION: Sustainable resource preservation of Santalum species that yield commercially important forest products is needed. This review provides an understanding of their basic biology, propagation, hemi-parasitic nature, reproductive biology, and biotechnology. Many species of the genus Santalum (Santalaceae) have been exploited unremittingly for centuries, resulting in the extinction of one and the threatened status of three other species. This reduction in biodiversity of sandalwood has resulted from the commercial exploitation of its oil-rich fragrant heartwood. In a bid to conserve the remaining germplasm, biotechnology provides a feasible, and effective, means of propagating members of this genus. This review provides a detailed understanding of the biological mechanisms underlying the success or failure of traditional propagation, including a synopsis of the process of hemi-parasitism in S. album, and of the suitability of host plants to sustain the growth of seedlings and plants under forestry production. For the mass production of economically important metabolites, and to improve uniformity of essential oils, the use of clonal material of similar genetic background for cultivation is important. This review summarizes traditional methods of sandalwood production with complementary and more advanced in vitro technologies to provide a basis for researchers, conservationists and industry to implement sustainable programs of research and development for this revered genus.


Assuntos
Técnicas de Embriogênese Somática de Plantas/métodos , Santalum/fisiologia , Técnicas de Cultura de Tecidos/métodos , Biotecnologia/métodos , Agricultura Florestal/métodos , Especificidade de Hospedeiro , Santalum/genética , Plântula/crescimento & desenvolvimento , Autoincompatibilidade em Angiospermas
13.
Prev Med Rep ; 43: 102790, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38975279

RESUMO

Objective: When chatting, people often forget what they want to say, that is, they suffer from subjective memory complaints (SMCs). This research examines the Association between sleep duration and self-reported SMC in a sample representing the entire United States. Methods: We examined data from 5567 individuals (aged 20-80) who participated in the National Health and Nutrition Examination Survey (2015-2018) to evaluate the association between sleep duration and SMC. Odds ratios (ORs) and a restricted cubic spline (RCS) curve were calculated with multiple logistic regression, and subgroup analysis was performed. Results: Approximately 5.8 % (3 2 3) reported SMC, and most are older people (1 6 3). RCS analysis treating sleep duration as a continuous variable revealed a J-shaped curve association between sleep duration and SMC. Self-reported sleep duration was significantly linked to a 33 % elevated risk of SMC (OR, 1.33; 95 % confidence interval [CI], 1.23-1.43; P < 0.001). In the group analysis, individuals who slept more than 8 h per day had a greater association of experiencing SMC than those who slept for 6-8 h/day (OR, 1.75; 95 % CI, 1.36-2.23; P < 0.001). In the analysis of age groups, the stable association between sleep duration and SMC was observed only in the 60-80 age bracket (OR, 1.59; 95 % CI, 1.09-2.33; P < 0.001). Conclusions: We found that people with self-report sleep duration exceeding 8 h are more likely to experience SMC, especially older adults. Improving sleep health may be an effective strategy for preventing SMC and cognitive impairment.

14.
Nanoscale ; 16(8): 4148-4156, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38348698

RESUMO

The escalating interest in low-dimensional perovskites stems from their tunable optoelectronic traits and robust stability. The pursuit of multifaceted optoelectronic devices holds substantial importance for energy-efficient and space-constrained systems. This investigation showcases the realization of multifunctional two-dimensional perovskite solar cells, incorporating transient light detection and resistive switching functions within a single device, achievable by facile external bias adjustments. Serving as a photodetector, the device exhibits commendable self-powered photodetection attributes, including an exceptionally low dark current density of 1 nA mm-2, a remarkable specific detectivity of 7.67 × 1012 Jones, a swift response time of 0.60 µs, and an expansive linear dynamic range of 72 dB. As a memristor, it showcases enduring performance across 4 × 102 cycles, a substantial on/off ratio of 106, and a rapid operation time of less than 1 µs. This endeavor unveils a pioneering avenue for advancing high-performance, air-stable multifunctional two-dimensional perovskite electronics.

15.
Front Biosci (Landmark Ed) ; 28(4): 78, 2023 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-37114532

RESUMO

BACKGROUND: Betaine aldehyde dehydrogenase (BADH) catalyzes the synthesis of glycine betaine and is considered to be a type of osmoregulator, so it can play a role in plants' responses to abiotic stresses. METHODS: In this study, a novel HuBADH gene from Hylocereus undatus (pitaya) was cloned, identified, and sequenced. The full-length cDNA included a 1512 bp open reading frame that encoded a 54.17 kDa protein consisting of 503 amino acids. Four oxidation-related stress-responsive marker genes (FSD1, CSD1, CAT1, and APX2) were analyzed by Quantitative real-time reverse transcription (qRT-PCR) in wild type (WT) and transgenic A. thaiana overexpression lines under NaCl stress. RESULTS: HuBADH showed high homology (79-92%) with BADH of several plants. The HuBADH gene was genetically transformed into Arabidopsis thaliana and overexpressed in transgenic lines, which accumulated less reactive oxygen species than WT plants, and had higher activities of antioxidant enzymes under NaCl stress (i.e., 300 mM). All four marker genes were significantly upregulated in WT and HuBADH-overexpressing transgenic A. thaliana plants under salt stress. Glycine betaine (GB) content was 32-36% higher in transgenic A. thaliana lines than in WT in the control (70-80% in NaCl stress). CONCLUSIONS: Our research indicates that HuBADH in pitaya plays a positive modulatory role when plants are under salt stress.


Assuntos
Arabidopsis , Betaína , Betaína/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Cloreto de Sódio/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Estresse Fisiológico/genética , Betaína-Aldeído Desidrogenase/genética , Betaína-Aldeído Desidrogenase/metabolismo , Estresse Salino , Regulação da Expressão Gênica de Plantas
16.
Gene ; 851: 146762, 2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-35933050

RESUMO

The commercial value of Santalum album L. lies in its aromatic heartwood and essential oil. Sesquiterpenes are the main components of sandal essential oil, and these are synthesized through the plant's mevalonate (MVA) and methylerythritol phosphate (MEP) pathways. In this study, the first key rate-limiting enzyme, 1-deoxy-d-xylulose-5-phosphate synthase (SaDXS), was investigated to provide a theoretical molecular basis for the sandalwood MEP sesquiterpene biosynthetic pathway. The biofunctions of SaDXS were also analyzed. SaDXS promoters were successfully cloned from a seven-year-old S. album tree. SaDXS1A/1B promoter activity was verified by a ß-glucuronidase (GUS) assay and by analyzing cis-acting elements of the promoters, which carried light- and methyl jasmonate (MeJA)-responsive signals. In an experiment involving yellow S. album seedlings, exposure to light upregulated SaDXS1A/1B expression and increased chlorophyll and carotenoid contents when overexpressed in Arabidopsis thaliana. Analysis of the expression of SaDXS1A/1B and SaSSy, key genes of santalol biosynthesis, revealed SaDXS1A expression in all tissues whereas SaDXS1B was expressed in tissues that contained photosynthetic pigments, such as stems, leaves and flowers. Sandal seedlings exogenously treated with two hormones, MeJA and ethylene, revealed similar expression patterns for SaDXS1A/1B and SaSSy. Sandal seedlings were treated with an inhibitor of DXS, clomazone, but showed no significant changes in the contents of α-santalene, ß-santalene and α-santalol between treatment and control groups. These results suggest that SaDXS1A/1B play a role in the synthesis of sandalwood sesquiterpenes, providing carbon for downstream secondary metabolites. SaDXS1A/1B also play a role in the biosynthesis of chlorophyll, carotenoids, and primary metabolites.


Assuntos
Óleos Voláteis , Santalum , Sesquiterpenos , Santalum/genética , Santalum/metabolismo , Sesquiterpenos/metabolismo , Óleos Voláteis/metabolismo , Clorofila , Clonagem Molecular
17.
J Plant Physiol ; 280: 153866, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36399836

RESUMO

Sandalwood (Santalum album L.) is a hemi-parasitic tree species famous for its santalol and santalene, which are extracted from its heartwood and roots. The ability to understand root functionality within its branched root system would benefit the regulation of sandalwood growth and enhance the commercial value of sandalwood. Phenotypic and anatomical evidence in this study indicated that seed germination stage 4 (SG4) seemed pivotal for lateral root (LR) morphogenesis. Small RNA (sRNA) high-throughput sequencing of root tissues at three sub-stages of SG4 (lateral root primordia initiation (LRPI), lateral root primordia development (LRPD), and lateral root primordia emergence (LRPE)) was performed to identify microRNAs (miRNAs) associated with LR development. A total of 135 miRNAs, including 70 differentially expressed miRNAs (DEMs), were screened. Ten DEMs were selected to investigate transcript abundance in different organs or developmental stages. Among 100 negative DEM-mRNA interaction pairs, four targets (Sa-miR166m_2, 408d, 858a, and novel_Sa-miR8) were selected for studying cleavage sites by 5' RLM-RACE validation. The expression mode of the four miRNA-mRNA pairs was investigated after indole-3-acetic acid (IAA) treatment. IAA enhanced the abundance of homeobox-leucine-zipper protein 32 (HOX32), laccase 12 (LAC12), myeloblastosis86 (MYB86), and pectin methylesterase inhibitor6 (PMEI6) target transcripts by reducing the expression of Sa-miR166m_2, 408d, 858a, and novel_Sa-miR8 in the first 10 min. A schematic model of miRNA-regulated LR development is proposed for this hemi-parasitic species. This novel genetic information for improving sandalwood root growth and development may allow for the cultivation of fast-growing and high-yielding plantations.


Assuntos
MicroRNAs , Santalum , Sesquiterpenos , Santalum/genética , Santalum/metabolismo , Plântula/metabolismo , RNA Mensageiro/metabolismo , Sesquiterpenos/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo
18.
Sci Data ; 10(1): 921, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38129455

RESUMO

Santalum album is a well-known aromatic and medicinal plant that is highly valued for the essential oil (EO) extracted from its heartwood. In this study, we present a high-quality chromosome-level genome assembly of S. album after integrating PacBio Sequel, Illumina HiSeq paired-end and high-throughput chromosome conformation capture sequencing technologies. The assembled genome size is 207.39 M with a contig N50 of 7.33 M and scaffold N50 size of 18.31 M. Compared with three previously published sandalwood genomes, the N50 length of the genome assembly was longer. In total, 94.26% of the assembly was assigned to 10 pseudo-chromosomes, and the anchor rate far exceeded that of a recently released value. BUSCO analysis yielded a completeness score of 94.91%. In addition, we predicted 23,283 protein-coding genes, 89.68% of which were functionally annotated. This high-quality genome will provide a foundation for sandalwood functional genomics studies, and also for elucidating the genetic basis of EO biosynthesis in S. album.


Assuntos
Genoma de Planta , Óleos Voláteis , Santalum , Sesquiterpenos , Cromossomos , Genômica , Filogenia , Santalum/genética
19.
Front Plant Sci ; 13: 886313, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35928704

RESUMO

Aglaonema commutatum is one of the most popular foliage plants with abundant leaf phenotypes; therefore, anthocyanin coloration is a vital economic trait in A. commutatum. However, the molecular mechanisms underlying anthocyanin biosynthesis and its regulation remain unclear. In this study, AcMYB1 and AcbHLH1, transcription factor genes related to an R2R3-myeloblast (MYB) and a basic helix-loop-helix (bHLH), respectively, were isolated from A. commutatum "Red Valentine" and functionally characterized. AcMYB1 and AcbHLH1 were found to interact by Y2H and BiFC assay. AcMYB1 was grouped into the AN2 subgroup and shared high homology with the known regulators of anthocyanin biosynthesis. Gene expression analysis showed that both AcMYB1 and AcbHLH1 have similar expression patterns to anthocyanin structural genes and correlate with anthocyanin distribution in different tissues of A. commutatum. Light strongly promoted anthocyanin accumulation by upregulating the expression of anthocyanin-related genes in A. commutatum leaves. Ectopic expression of AcMYB1 in tobacco remarkably increased anthocyanin accumulation in both vegetative and reproductive tissues at various developmental stages. These results provide insights into the regulation of anthocyanin biosynthesis in A. commutatum and are useful for breeding new A. commutatum cultivars with enhanced ornamental value.

20.
Life (Basel) ; 12(7)2022 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-35888105

RESUMO

Santalum album L., a semi-parasitic evergreen tree, contains economically important essential oil, rich in sesquiterpenoids, such as (Z) α- and (Z) ß-santalol. However, their transcriptional regulations are not clear. Several studies of other plants have shown that basic-helix-loop-helix (bHLH) transcription factors (TFs) were involved in participating in the biosynthesis of sesquiterpene synthase genes. Herein, bHLH TF genes with similar expression patterns and high expression levels were screened by co-expression analysis, and their full-length ORFs were obtained. These bHLH TFs were named SaMYC1, SaMYC3, SaMYC4, SaMYC5, SabHLH1, SabHLH2, SabHLH3, and SabHLH4. All eight TFs had highly conserved bHLH domains and SaMYC1, SaMYC3, SaMYC4, and SaMYC5, also had highly conserved MYC domains. It was indicated that the eight genes belonged to six subfamilies of the bHLH TF family. Among them, SaMYC1 was found in both the nucleus and the cytoplasm, while SaMYC4 was only localized in the cytoplasm and the remaining six TFs were localized in nucleus. In a yeast one-hybrid experiment, we constructed decoy vectors pAbAi-SSy1G-box, pAbAi-CYP2G-box, pAbAi-CYP3G-box, and pAbAi-CYP4G-box, which had been transformed into yeast. We also constructed pGADT7-SaMYC1 and pGADT7-SabHLH1 capture vectors and transformed them into bait strains. Our results showed that SaMYC1 could bind to the G-box of SaSSy, and the SaCYP736A167 promoter, which SaSSy proved has acted as a key enzyme in the synthesis of santalol sesquiterpenes and SaCYP450 catalyzed the ligation of santalol sesquiterpenes into terpene. We have also constructed pGreenII 62-SK-SaMYC1, pGreenII 0800-LUC-SaSSy and pGreenII 0800-LUC-SaCYP736A167 via dual-luciferase fusion expression vectors and transformed them into Nicotiana benthamiana using an Agrobacterium-mediated method. The results showed that SaMYC1 was successfully combined with SaSSy or SaCYP736A167 promoter and the LUC/REN value was 1.85- or 1.55-fold higher, respectively, than that of the control group. Therefore, we inferred that SaMYC1 could activate both SaSSy and SaCYP736A167 promoters.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA