Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sci Total Environ ; 917: 170461, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38286290

RESUMO

Five parabens (PBs) i.e., Methylparaben (MP), Ethylparaben (EP), Isopropylparaben (iPrP), Isobutylparaben (iBuP), Benzylparaben (BzP), and their parent compound i.e., para-hydroxy Benzoic Acid (pHBA), were studied both in vitro and in silico. Specifically, we determined their retention on several both protein- (Human Serum Albumin and α1-acidic glycoprotein) and (phospho) lipid- (immobilized artificial membrane (IAM)) based biomimetic stationary phases to evaluate their penetration potential through the biomembranes and their possible distribution in the body. The IAM phases were based either on phosphatidylcholine (PC) analogues i.e., PC.MG and PC.DD2 or on sphingomyelin (SPH). We also assessed their viability effect on breast cancer cells (MCF-7) via MTT assay subjecting the cells to five different PB concentrations i.e., 100 µM, 10 µM, 1 µM, 0.1 µM and 0.01 µM. Finally, their pharmacokinetics and toxicity were assessed by the ADMET Predictor™ software. Isopropylparaben was found to be more active than 17ß estradiol (E2) employed as positive control, on the screened cell line inducing cell proliferation up to 150 % more of untreated cells. Other analogues showed only a slight/moderate cell proliferation activity, with parabens having longer/branched side chain showing, on average, a higher proliferation rate. Significant linear direct relationships (for PC.DD2 r2 = 0.89, q2 = 0.86, for SPH r2 = 0.89, q2 = 0.85, for both P value < 0.05) were observed between the difference in proliferative effect between the readout and the control at 0.01 µM concentration and the retention on the IAM phases measured at pH 5.0 for all compounds but pHBA, which is the only analyte of the dataset supporting a carboxylic acid moiety. IAM affinity data measured at pH 7.0 were found to be related to the effective human jejunal permeability as predicted by the software ADMET® Predictor, which is relevant when PBs are added to pharmaceutical and food commodities.


Assuntos
Biomimética , Parabenos , Humanos , Parabenos/toxicidade , Sobrevivência Celular , Cromatografia Líquida/métodos , Membranas Artificiais
2.
Part Fibre Toxicol ; 2: 11, 2005 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-16332254

RESUMO

BACKGROUND: Alveolar macrophages are a key cell in dealing with particles deposited in the lungs and in determining the subsequent response to that particle exposure. Nanoparticles are considered a potential threat to the lungs and the mechanism of pulmonary response to nanoparticles is currently under intense scrutiny. The type II alveolar epithelial cell has previously been shown to release chemoattractants which can recruit alveolar macrophages to sites of particle deposition. The aim of this study was to assess the responses of a type II epithelial cell line (L-2) to both fine and nanoparticle exposure in terms of secretion of chemotactic substances capable of inducing macrophage migration. RESULTS: Exposure of type II cells to carbon black nanoparticles resulted in significant release of macrophage chemoattractant compared to the negative control and to other dusts tested (fine carbon black and TiO2 and nanoparticle TiO2) as measured by macrophage migration towards type II cell conditioned medium. SDS-PAGE analysis of the conditioned medium from particle treated type II cells revealed that a higher number of protein bands were present in the conditioned medium obtained from type II cells treated with nanoparticle carbon black compared to other dusts tested. Size-fractionation of the chemotaxin-rich supernatant determined that the chemoattractants released from the epithelial cells were between 5 and 30 kDa in size. CONCLUSION: The highly toxic nature and reactive surface chemistry of the carbon black nanoparticles has very likely induced the type II cell line to release pro-inflammatory mediators that can potentially induce migration of macrophages. This could aid in the rapid recruitment of inflammatory cells to sites of particle deposition and the subsequent removal of the particles by phagocytic cells such as macrophages and neutrophils. Future studies in this area could focus on the exact identity of the substance(s) released by the type II cells in response to particle exposure.

3.
PLoS One ; 8(2): e56263, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23457541

RESUMO

Using an ovine model of polycystic ovary syndrome (PCOS), (pregnant ewes injected with testosterone propionate (TP) (100 mg twice weekly) from day (d)62 to d102 of d147 gestation (maternal injection - MI-TP)), we previously reported female offspring with normal glucose tolerance but hyperinsulinemia. We therefore examined insulin signalling and pancreatic morphology in these offspring using quantitative (Q) RT-PCR and western blotting. In addition the fetal pancreatic responses to MI-TP, and androgenic and estrogenic contributions to such responses (direct fetal injection (FI) of TP (20 mg) or diethylstilbestrol (DES) (20 mg) at d62 and d82 gestation) were assessed at d90 gestation. Fetal plasma was assayed for insulin, testosterone and estradiol, pancreatic tissue was cultured, and expression of key ß-cell developmental genes was assessed by QRT-PCR. In female d62MI-TP offspring insulin signalling was unaltered but there was a pancreatic phenotype with increased numbers of ß-cells (P<0.05). The fetal pancreas expressed androgen receptors in islets and genes involved in ß-cell development and function (PDX1, IGF1R, INSR and INS) were up-regulated in female fetuses after d62MI-TP treatment (P<0.05-0.01). In addition the d62MI-TP pancreas showed increased insulin secretion under euglycaemic conditions (P<0.05) in vitro. The same effects were not seen in the male fetal pancreas or when MI-TP was started at d30, before the male programming window. As d62MI-TP increased both fetal plasma testosterone (P<0.05) and estradiol concentrations (P<0.05) we assessed the relative contribution of androgens and estrogens. FI-TP (commencing d62) (not FI-DES treatment) caused elevated basal insulin secretion in vitro and the genes altered by d62MI-TP treatment were similarly altered by FI-TP but not FI-DES. In conclusion, androgen over-exposure alters fetal pancreatic development and ß-cell numbers in offspring. These data suggest that that there may be a primary pancreatic phenotype in models of PCOS, and that there may be a distinct male and female pancreas.


Assuntos
Androgênios/farmacologia , Feto/efeitos dos fármacos , Feto/embriologia , Pâncreas/efeitos dos fármacos , Pâncreas/embriologia , Síndrome do Ovário Policístico/embriologia , Androgênios/administração & dosagem , Animais , Estradiol/metabolismo , Estrogênios/farmacologia , Feminino , Feto/metabolismo , Feto/patologia , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Insulina/metabolismo , Células Secretoras de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/patologia , Masculino , Exposição Materna/efeitos adversos , Pâncreas/metabolismo , Pâncreas/patologia , Síndrome do Ovário Policístico/metabolismo , Síndrome do Ovário Policístico/patologia , Gravidez , Ovinos , Transdução de Sinais/efeitos dos fármacos , Propionato de Testosterona/administração & dosagem , Propionato de Testosterona/farmacologia
4.
Cell Biol Toxicol ; 24(3): 243-52, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17846904

RESUMO

Increased levels of particulate air pollution (PM10) have been implicated as a causal agent in pulmonary disease exacerbation and increased deaths from respiratory and cardiovascular disorders. The exact mechanism by which PM10 drives toxicity in the lung is still unknown, but studies have focused on inhibition of macrophage function and impaired alveolar clearance mechanisms. To assess the effects of PM10 on pulmonary macrophage clearance mechanisms ex vivo, Wistar rats were instilled with 125 or 250 microg of PM10 collected from the North Kensington, London. Control rats were instilled with sterile saline. The rats were sacrificed after 18 h and a bronchoalveolar lavage (BAL) was performed. Macrophages isolated from the BAL fluid were assessed for ability to migrate towards a positive chemoattractant (ZAS) ex vivo and to perform phagocytosis. Macrophages isolated from the PM10-exposed rats showed inhibition of potential to migrate. Macrophage phagocytic ability ex vivo was also significantly reduced by the presence of PM10 inside the cells. This study indicates that acute PM10 exposure diminishes macrophage motility and phagocytosis in a manner that could prove deleterious to particle clearance from the alveolar region of the lung. Decreased particle clearance promotes inflammation, and hence, warrants further investigation in relation to the effects of chronic PM10 exposure on macrophage clearance mechanisms and establishing the mechanisms behind decreased macrophage migration.


Assuntos
Macrófagos Alveolares/efeitos dos fármacos , Animais , Movimento Celular , Citocinas/metabolismo , Ensaio de Imunoadsorção Enzimática , Macrófagos Alveolares/citologia , Macrófagos Alveolares/metabolismo , Masculino , Tamanho da Partícula , Fagocitose , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA