Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 245
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 169(1): 6-12, 2017 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-28340351

RESUMO

Genome sequencing has revolutionized the diagnosis of genetic diseases. Close collaborations between basic scientists and clinical genomicists are now needed to link genetic variants with disease causation. To facilitate such collaborations, we recommend prioritizing clinically relevant genes for functional studies, developing reference variant-phenotype databases, adopting phenotype description standards, and promoting data sharing.


Assuntos
Pesquisa Biomédica , Genômica , Animais , Análise Mutacional de DNA , Bases de Dados Genéticas , Doença/genética , Projeto Genoma Humano , Humanos , Disseminação de Informação , Modelos Animais
2.
Annu Rev Pharmacol Toxicol ; 63: 43-64, 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36151053

RESUMO

Pharmacology and toxicology are part of a much broader effort to understand the relationship between chemistry and biology. While biomedicine has necessarily focused on specific cases, typically of direct human relevance, there are real advantages in pursuing more systematic approaches to characterizing how health and disease are influenced by small molecules and other interventions. In this context, the zebrafish is now established as the representative screenable vertebrate and, through ongoing advances in the available scale of genome editing and automated phenotyping, is beginning to address systems-level solutions to some biomedical problems. The addition of broader efforts to integrate information content across preclinical model organisms and the incorporation of rigorous analytics, including closed-loop deep learning, will facilitate efforts to create systems pharmacology and toxicology with the ability to continuously optimize chemical biological interactions around societal needs. In this review, we outline progress toward this goal.


Assuntos
Toxicologia , Peixe-Zebra , Animais , Humanos , Peixe-Zebra/genética , Farmacologia em Rede
3.
Circ Res ; 134(1): 46-59, 2024 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-38095085

RESUMO

BACKGROUND: Brugada syndrome is associated with loss-of-function SCN5A variants, yet these account for only ≈20% of cases. A recent genome-wide association study identified a novel locus within MAPRE2, which encodes EB2 (microtubule end-binding protein 2), implicating microtubule involvement in Brugada syndrome. METHODS: A mapre2 knockout zebrafish model was generated using CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats/clustered regularly interspaced short palindromic repeat-associated protein 9) and validated by Western blot. Larval hearts at 5 days post-fertilization were isolated for voltage mapping and immunocytochemistry. Adult fish hearts were used for ECG, patch clamping, and immunocytochemistry. Morpholinos were injected into embryos at 1-cell stage for knockdown experiments. A transgenic zebrafish line with cdh2 tandem fluorescent timer was used to study adherens junctions. Microtubule plus-end tracking and patch clamping were performed in human induced pluripotent stem cell derived cardiomyocytes (iPSC-CMs) with MAPRE2 knockdown and knockout, respectively. RESULTS: Voltage mapping of mapre2 knockout hearts showed a decrease in ventricular maximum upstroke velocity of the action potential and conduction velocity, suggesting loss of cardiac voltage-gated sodium channel function. ECG showed QRS prolongation in adult knockout fish, and patch clamping showed decreased sodium current density in knockout ventricular myocytes and arrhythmias in knockout iPSC-CMs. Confocal imaging showed disorganized adherens junctions and mislocalization of mature Ncad (N-cadherin) with mapre2 loss of function, associated with a decrease of detyrosinated tubulin. MAPRE2 knockdown in iPSC-CMs led to an increase in microtubule growth velocity and distance, indicating changes in microtubule dynamics. Finally, knockdown of ttl encoding tubulin tyrosine ligase in mapre2 knockout larvae rescued tubulin detyrosination and ventricular maximum upstroke velocity of the action potential. CONCLUSIONS: Genetic ablation of mapre2 led to a decrease in voltage-gated sodium channel function, a hallmark of Brugada syndrome, associated with disruption of adherens junctions, decrease of detyrosinated tubulin as a marker of microtubule stability, and changes in microtubule dynamics. Restoration of the detyrosinated tubulin fraction with ttl knockdown led to rescue of voltage-gated sodium channel-related functional parameters in mapre2 knockout hearts. Taken together, our study implicates microtubule dynamics in the modulation of ventricular conduction.


Assuntos
Síndrome de Brugada , Células-Tronco Pluripotentes Induzidas , Canais de Sódio Disparados por Voltagem , Animais , Humanos , Potenciais de Ação , Síndrome de Brugada/genética , Síndrome de Brugada/metabolismo , Estudo de Associação Genômica Ampla , Células-Tronco Pluripotentes Induzidas/metabolismo , Proteínas Associadas aos Microtúbulos/genética , Microtúbulos/metabolismo , Miócitos Cardíacos/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.5/genética , Canal de Sódio Disparado por Voltagem NAV1.5/metabolismo , Tubulina (Proteína)/genética , Tubulina (Proteína)/metabolismo , Canais de Sódio Disparados por Voltagem/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/metabolismo
4.
Cell ; 143(7): 1072-83, 2010 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-21183071

RESUMO

The heart has the ability to grow in size in response to exercise, but little is known about the transcriptional mechanisms underlying physiological hypertrophy. Adult cardiomyocytes have also recently been proven to hold the potential for proliferation, a process that could be of great importance for regenerative medicine. Using a unique RT-PCR-based screen against all transcriptional components, we showed that C/EBPß was downregulated with exercise, whereas the expression of CITED4 was increased. Reduction of C/EBPß in vitro and in vivo resulted in a phenocopy of endurance exercise with cardiomyocyte hypertrophy and proliferation. This proliferation was mediated, at least in part, by the increased CITED4. Importantly, mice with reduced cardiac C/EBPß levels displayed substantial resistance to cardiac failure upon pressure overload. These data indicate that C/EBPß represses cardiomyocyte growth and proliferation in the adult mammalian heart and that reduction in C/EBPß is a central signal in physiologic hypertrophy and proliferation.


Assuntos
Proteína beta Intensificadora de Ligação a CCAAT/metabolismo , Coração/fisiologia , Condicionamento Físico Animal , Animais , Proliferação de Células , Células Cultivadas , Embrião não Mamífero/metabolismo , Regulação da Expressão Gênica , Camundongos , Camundongos Endogâmicos C57BL , Miocárdio/citologia , Miócitos Cardíacos/metabolismo , Ratos , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Peixe-Zebra/embriologia
5.
Cell Mol Life Sci ; 80(11): 317, 2023 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-37801106

RESUMO

Hox genes orchestrate the segmental specification of the muscular circulatory system in invertebrates but it has not proven straightforward to decipher segmental parallels in the vertebrate heart. Recently, patients with HOXB gene cluster deletion were found to exhibit abnormalities including atrioventricular canal defects. Using CRISPR, we established a mutant with the orthologous hoxbb cluster deletion in zebrafish. The mutant exhibited heart failure and atrioventricular regurgitation at 5 days. Analyzing the four genes in the hoxbb cluster, isolated deletion of hoxb1b-/- recapitulated the cardiac abnormalities, supporting hoxb1b as the causal gene. Both in situ and in vitro data indicated that hoxb1b regulates gata5 to inhibit hand2 expression and ultimately is required to pattern the vertebrate atrioventricular boundary. Together, these data reveal a role for segmental specification in vertebrate cardiac development and highlight the utility of CRISPR techniques for efficiently exploring the function of large structural genomic lesions.


Assuntos
Proteínas de Peixe-Zebra , Peixe-Zebra , Animais , Humanos , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo , Coração , Fatores de Transcrição/metabolismo , Regulação da Expressão Gênica no Desenvolvimento
6.
Circulation ; 146(10): 755-769, 2022 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-35916132

RESUMO

BACKGROUND: Novel targeted treatments increase the need for prompt hypertrophic cardiomyopathy (HCM) detection. However, its low prevalence (0.5%) and resemblance to common diseases present challenges that may benefit from automated machine learning-based approaches. We aimed to develop machine learning models to detect HCM and to differentiate it from other cardiac conditions using ECGs and echocardiograms, with robust generalizability across multiple cohorts. METHODS: Single-institution HCM ECG models were trained and validated on external data. Multi-institution models for ECG and echocardiogram were trained on data from 3 academic medical centers in the United States and Japan using a federated learning approach, which enables training on distributed data without data sharing. Models were validated on held-out test sets for each institution and from a fourth academic medical center and were further evaluated for discrimination of HCM from aortic stenosis, hypertension, and cardiac amyloidosis. Last, automated detection was compared with manual interpretation by 3 cardiologists on a data set with a realistic HCM prevalence. RESULTS: We identified 74 376 ECGs for 56 129 patients and 8392 echocardiograms for 6825 patients at the 4 academic medical centers. Although ECG models trained on data from each institution displayed excellent discrimination of HCM on internal test data (C statistics, 0.88-0.93), the generalizability was limited, most notably for a model trained in Japan and tested in the United States (C statistic, 0.79-0.82). When trained in a federated manner, discrimination of HCM was excellent across all institutions (C statistics, 0.90-0.96 and 0.90-0.96 for ECG and echocardiogram model, respectively), including for phenotypic subgroups. The models further discriminated HCM from hypertension, aortic stenosis, and cardiac amyloidosis (C statistics, 0.84, 0.83, and 0.88, respectively, for ECG and 0.93, 0.94, 0.85, respectively, for echocardiogram). Analysis of electrocardiography-echocardiography paired data from 11 823 patients from an external institution indicated a higher sensitivity of automated HCM detection at a given positive predictive value compared with cardiologists (0.98 versus 0.81 at a positive predictive value of 0.01 for ECG and 0.78 versus 0.59 at a positive predictive value of 0.24 for echocardiogram). CONCLUSIONS: Federated learning improved the generalizability of models that use ECGs and echocardiograms to detect and differentiate HCM from other causes of hypertrophy compared with training within a single institution.


Assuntos
Amiloidose , Cardiomiopatia Hipertrófica , Hipertensão , Cardiomiopatia Hipertrófica/diagnóstico por imagem , Cardiomiopatia Hipertrófica/epidemiologia , Ecocardiografia , Eletrocardiografia , Humanos
8.
Circulation ; 144(2): 159-169, 2021 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-33876947

RESUMO

While we continue to wrestle with the immense challenge of implementing equitable access to established evidence-based treatments, substantial gaps remain in our pharmacotherapy armament for common forms of cardiovascular disease including coronary and peripheral arterial disease, heart failure, hypertension, and arrhythmia. We need to continue to invest in the development of new approaches for the discovery, rigorous assessment, and implementation of new therapies. Currently, the time and cost to progress from lead compound/product identification to the clinic, and the success rate in getting there reduces the incentive for industry to invest, despite the enormous burden of disease and potential size of market. There are tremendous opportunities with improved phenotyping of patients currently batched together in syndromic "buckets." Use of advanced imaging and molecular markers may allow stratification of patients in a manner more aligned to biological mechanisms that can, in turn, be targeted by specific approaches developed using high-throughput molecular technologies. Unbiased "omic" approaches enhance the possibility of discovering completely new mechanisms in such groups. Furthermore, advances in drug discovery platforms, and models to study efficacy and toxicity more relevant to the human disease, are valuable. Re-imagining the relationships among discovery, translation, evaluation, and implementation will help reverse the trend away from investment in the cardiovascular space, establishing innovative platforms and approaches across the full spectrum of therapeutic development.


Assuntos
Doenças Cardiovasculares/tratamento farmacológico , Descoberta de Drogas/métodos , Humanos
9.
Am Heart J ; 243: 15-27, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34481756

RESUMO

BACKGROUND: Implementation of guideline-directed cholesterol management remains low despite definitive evidence establishing such measures reduce cardiovascular (CV) events, especially in high atherosclerotic CV disease (ASCVD) risk patients. Modern electronic resources now exist that may help improve health care delivery. While electronic medical records (EMR) allow for population health screening, the potential for coupling EMR screening to remotely delivered algorithmic population-based management has been less studied as a way of overcoming barriers to optimal cholesterol management. METHODS: In an academically affiliated healthcare system, using EMR screening, we sought to identify 1,000 high ASCVD risk patients not meeting guideline-directed low-density lipoprotein-cholesterol (LDL-C) goals within specific system-affiliated primary care practices. Contacted patients received cholesterol education and were offered a remote, guideline-directed, algorithmic cholesterol management program executed by trained but non-licensed "navigators" under professional supervision. Navigators used telephone, proprietary software and internet resources to facilitate algorithm-driven, guideline-based medication initiation/titration, and laboratory testing until patients achieved LDL-C goals or exited the program. As a clinical effectiveness program for cholesterol guideline implementation, comparison was made to those contacted patients who declined program-based medication management, and received education only, along with their usual care. RESULTS: 1021 patients falling into guideline-defined high ASCVD risk groups warranting statin therapy (ASCVD, type 2 diabetes, LDL ≥ 190 mg/dL, calculated 10-year ASCVD risk ≥7.5%) and not achieving guideline-defined target LDL-C levels and/or therapy were identified and contacted. Among the 698 such patients who opted for program medication management, significant LDL-C reductions occurred in the total cohort (mean -65.4 mg/dL, 45% decrease), and each high ASCVD risk subgroup: ASCVD (-57.2 mg/dL, -48.0%); diabetes mellitus (-53.1 mg/dL, -40.0%); severe hypercholesterolemia (-76.3 mg/dL, -45.7%); elevated ASCVD 10-year risk (-62.8 mg/dL, -41.1%) (P<0.001 for all), without any significant complications. Among 20% of participants with reported statin intolerance, average LDL-C decreased from baseline 143 mg/dL to 85 mg/dL using mainly statins and ezetimibe, with limited PCSK9 inhibitor use. In comparison, eligible high ASCVD risk patients who were contacted but opted for education only, a 17% LDL-C decrease occurred over a similar timeframe, with 80% remaining with an LDL-C over 100 mg/dL. CONCLUSIONS: A remote, algorithm-driven, navigator-executed cholesterol management program successfully identified high ASCVD risk undertreated patients using EMR screening and was associated with significantly improved guideline-directed LDL-C control, supporting this approach as a novel strategy for improving health care access and delivery.


Assuntos
Diabetes Mellitus Tipo 2 , Inibidores de Hidroximetilglutaril-CoA Redutases , Gestão da Saúde da População , Colesterol , LDL-Colesterol , Diabetes Mellitus Tipo 2/tratamento farmacológico , Humanos , Inibidores de Hidroximetilglutaril-CoA Redutases/uso terapêutico , Pró-Proteína Convertase 9
10.
Chem Res Toxicol ; 35(11): 1983-1996, 2022 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-36201358

RESUMO

The development of rapidly acting cyanide countermeasures using intramuscular injection (IM) represents an unmet medical need to mitigate toxicant exposures in mass casualty settings. Previous work established that cisplatin and other platinum(II) or platinum(IV)-based agents effectively mitigate cyanide toxicity in zebrafish. Cyanide's in vivo reaction with platinum-containing materials was proposed to reduce the risk of acute toxicities. However, cyanide antidote activity depended on a formulation of platinum-chloride salts with dimethyl sulfoxide (DMSO) followed by dilution in phosphate-buffered saline (PBS). A working hypothesis to explain the DMSO requirement is that the formation of platinum-sulfoxide complexes activates the cyanide scavenging properties of platinum. Preparations of isolated NaPtCl5-DMSO and Na (NH3)2PtCl-DMSO complexes in the absence of excess DMSO provided agents with enhanced reactivity toward cyanide in vitro and fully recapitulated in vivo cyanide rescue in zebrafish and mouse models. The enhancement of the cyanide scavenging effects of the DMSO ligand could be attributed to the activation of platinum(IV) and (II) with a sulfur ligand. Unfortunately, the efficacy of DMSO complexes was not robust when administered IM. Alternative Pt(II) materials containing sulfide and amine ligands in bidentate complexes show enhanced reactivity toward cyanide addition. The cyanide addition products yielded tetracyanoplatinate(II), translating to a stoichiometry of 1:4 Pt to each cyanide scavenger. These new agents demonstrate a robust and enhanced potency over the DMSO-containing complexes using IM administration in mouse and rabbit models of cyanide toxicity. Using the zebrafish model with these Pt(II) complexes, no acute cardiotoxicity was detected, and dose levels required to reach lethality exceeded 100 times the effective dose. Data are presented to support a general chemical design approach that can expand a new lead candidate series for developing next-generation cyanide countermeasures.


Assuntos
Antineoplásicos , Platina , Camundongos , Coelhos , Animais , Platina/química , Peixe-Zebra , Cianetos , Dimetil Sulfóxido , Ligantes , Sulfetos , Antineoplásicos/farmacologia
11.
Circ Res ; 126(9): 1146-1158, 2020 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-32324496

RESUMO

The term phenotype is so commonly used that we often assume that we each mean the same thing. The general definition, the set of observable characteristics of an individual resulting from the interaction of their genotype with the environment, is often left to the eye of the beholder. Whether applied to the multiple levels of biological phenomena or the intact human being, our ability to characterize, classify, and analyze phenotype has been limited by measurement deficits, computing limitations, and a culture that avoids the generalizable. With the advent of modern technology, there is the potential for a revolution in phenotyping, which incorporates old and new in structured ways to dramatically advance basic understanding of biology and behavior and to lead to major improvements in clinical care and public health. This revolution in how we think about phenotypes will require a radical change in the scale at which biomedicine operates with significant changes in the unit of action, which will have far-reaching implications for how care, translation, and discovery are implemented.


Assuntos
Aterosclerose/diagnóstico , Genômica , Biologia de Sistemas , Terminologia como Assunto , Animais , Aterosclerose/genética , Aterosclerose/metabolismo , Aterosclerose/terapia , Biomarcadores/metabolismo , Predisposição Genética para Doença , Humanos , Fenótipo , Valor Preditivo dos Testes , Transcriptoma
12.
Arterioscler Thromb Vasc Biol ; 41(2): 564-584, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33327749

RESUMO

Membrane phospholipid metabolism forms lysophospholipids, which possess unique biochemical and biophysical properties that influence membrane structure and dynamics. However, lysophospholipids also function as ligands for G-protein-coupled receptors that influence embryonic development, postnatal physiology, and disease. The 2 most well-studied species-lysophosphatidic acid and S1P (sphingosine 1-phosphate)-are particularly relevant to vascular development, physiology, and cardiovascular diseases. This review summarizes the role of lysophosphatidic acid and S1P in vascular developmental processes, endothelial cell biology, and their roles in cardiovascular disease processes. In addition, we also point out the apparent connections between lysophospholipid biology and the Wnt (int/wingless family) pathway, an evolutionarily conserved fundamental developmental signaling system. The discovery that components of the lysophospholipid signaling system are key genetic determinants of cardiovascular disease has warranted current and future research in this field. As pharmacological approaches to modulate lysophospholipid signaling have entered the clinical sphere, new findings in this field promise to influence novel therapeutic strategies in cardiovascular diseases.


Assuntos
Doenças Cardiovasculares/metabolismo , Sistema Cardiovascular/metabolismo , Lisofosfolipídeos/metabolismo , Receptores de Lisofosfolipídeos/metabolismo , Animais , Doenças Cardiovasculares/patologia , Doenças Cardiovasculares/fisiopatologia , Sistema Cardiovascular/patologia , Sistema Cardiovascular/fisiopatologia , Células Endoteliais/metabolismo , Humanos , Ligantes , Morfogênese , Receptores de Ácidos Lisofosfatídicos/metabolismo , Esfingosina/análogos & derivados , Esfingosina/metabolismo , Receptores de Esfingosina-1-Fosfato/metabolismo , Via de Sinalização Wnt
13.
Eur Heart J ; 42(15): 1464-1475, 2021 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-33847746

RESUMO

Whilst we continue to wrestle with the immense challenge of implementing equitable access to established evidence-based treatments, substantial gaps remain in our pharmacotherapy armament for common forms of cardiovascular disease including coronary and peripheral arterial disease, heart failure, hypertension, and arrhythmia. We need to continue to invest in the development of new approaches for the discovery, rigorous assessment, and implementation of new therapies. Currently, the time and cost to progress from lead compound/product identification to the clinic, and the success rate in getting there reduces the incentive for industry to invest, despite the enormous burden of disease and potential size of market. There are tremendous opportunities with improved phenotyping of patients currently batched together in syndromic 'buckets'. Use of advanced imaging and molecular markers may allow stratification of patients in a manner more aligned to biological mechanisms that can, in turn, be targeted by specific approaches developed using high-throughput molecular technologies. Unbiased 'omic' approaches enhance the possibility of discovering completely new mechanisms in such groups. Furthermore, advances in drug discovery platforms, and models to study efficacy and toxicity more relevant to the human disease, are valuable. Re-imagining the relationships among discovery, translation, evaluation, and implementation will help reverse the trend away from investment in the cardiovascular space, establishing innovative platforms and approaches across the full spectrum of therapeutic development.


Assuntos
Doenças Cardiovasculares , Preparações Farmacêuticas , Biomarcadores , Doenças Cardiovasculares/tratamento farmacológico , Doenças Cardiovasculares/prevenção & controle , Descoberta de Drogas , Humanos
14.
J Biol Chem ; 295(52): 18148-18159, 2020 12 25.
Artigo em Inglês | MEDLINE | ID: mdl-33093176

RESUMO

The QT interval is a recording of cardiac electrical activity. Previous genome-wide association studies identified genetic variants that modify the QT interval upstream of LITAF (lipopolysaccharide-induced tumor necrosis factor-α factor), a protein encoding a regulator of endosomal trafficking. However, it was not clear how LITAF might impact cardiac excitation. We investigated the effect of LITAF on the voltage-gated sodium channel Nav1.5, which is critical for cardiac depolarization. We show that overexpressed LITAF resulted in a significant increase in the density of Nav1.5-generated voltage-gated sodium current INa and Nav1.5 surface protein levels in rabbit cardiomyocytes and in HEK cells stably expressing Nav1.5. Proximity ligation assays showed co-localization of endogenous LITAF and Nav1.5 in cardiomyocytes, whereas co-immunoprecipitations confirmed they are in the same complex when overexpressed in HEK cells. In vitro data suggest that LITAF interacts with the ubiquitin ligase NEDD4-2, a regulator of Nav1.5. LITAF overexpression down-regulated NEDD4-2 in cardiomyocytes and HEK cells. In HEK cells, LITAF increased ubiquitination and proteasomal degradation of co-expressed NEDD4-2 and significantly blunted the negative effect of NEDD4-2 on INa We conclude that LITAF controls cardiac excitability by promoting degradation of NEDD4-2, which is essential for removal of surface Nav1.5. LITAF-knockout zebrafish showed increased variation in and a nonsignificant 15% prolongation of action potential duration. Computer simulations using a rabbit-cardiomyocyte model demonstrated that changes in Ca2+ and Na+ homeostasis are responsible for the surprisingly modest action potential duration shortening. These computational data thus corroborate findings from several genome-wide association studies that associated LITAF with QT interval variation.


Assuntos
Endossomos/metabolismo , Miócitos Cardíacos/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.5/metabolismo , Ubiquitina-Proteína Ligases Nedd4/metabolismo , Proteínas Nucleares/metabolismo , Fatores de Transcrição/metabolismo , Ubiquitina/metabolismo , Potenciais de Ação , Animais , Estudo de Associação Genômica Ampla , Humanos , Miócitos Cardíacos/citologia , Canal de Sódio Disparado por Voltagem NAV1.5/genética , Ubiquitina-Proteína Ligases Nedd4/genética , Proteínas Nucleares/genética , Ligação Proteica , Transporte Proteico , Coelhos , Fatores de Transcrição/genética , Ubiquitinação , Peixe-Zebra
15.
Circulation ; 141(4): 301-312, 2020 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-31735076

RESUMO

BACKGROUND: Atrial fibrillation (AF) is the most common clinical arrhythmia and is associated with heart failure, stroke, and increased mortality. The myocardial substrate for AF is poorly understood because of limited access to primary human tissue and mechanistic questions around existing in vitro or in vivo models. METHODS: Using an MYH6:mCherry knock-in reporter line, we developed a protocol to generate and highly purify human pluripotent stem cell-derived cardiomyocytes displaying physiological and molecular characteristics of atrial cells. We modeled human MYL4 mutants, one of the few definitive genetic causes of AF. To explore non-cell-autonomous components of AF substrate, we also created a zebrafish Myl4 knockout model, which exhibited molecular, cellular, and physiologic abnormalities that parallel those in humans bearing the cognate mutations. RESULTS: There was evidence of increased retinoic acid signaling in both human embryonic stem cells and zebrafish mutant models, as well as abnormal expression and localization of cytoskeletal proteins, and loss of intracellular nicotinamide adenine dinucleotide and nicotinamide adenine dinucleotide + hydrogen. To identify potentially druggable proximate mechanisms, we performed a chemical suppressor screen integrating multiple human cellular and zebrafish in vivo endpoints. This screen identified Cx43 (connexin 43) hemichannel blockade as a robust suppressor of the abnormal phenotypes in both models of MYL4 (myosin light chain 4)-related atrial cardiomyopathy. Immunofluorescence and coimmunoprecipitation studies revealed an interaction between MYL4 and Cx43 with altered localization of Cx43 hemichannels to the lateral membrane in MYL4 mutants, as well as in atrial biopsies from unselected forms of human AF. The membrane fraction from MYL4-/- human embryonic stem cell derived atrial cells demonstrated increased phospho-Cx43, which was further accentuated by retinoic acid treatment and by the presence of risk alleles at the Pitx2 locus. PKC (protein kinase C) was induced by retinoic acid, and PKC inhibition also rescued the abnormal phenotypes in the atrial cardiomyopathy models. CONCLUSIONS: These data establish a mechanistic link between the transcriptional, metabolic and electrical pathways previously implicated in AF substrate and suggest novel avenues for the prevention or therapy of this common arrhythmia.


Assuntos
Fibrilação Atrial , Mutação , Miócitos Cardíacos , Cadeias Leves de Miosina , Animais , Animais Geneticamente Modificados/genética , Animais Geneticamente Modificados/metabolismo , Fibrilação Atrial/genética , Fibrilação Atrial/metabolismo , Fibrilação Atrial/patologia , Linhagem Celular , Conexina 43/genética , Conexina 43/metabolismo , Técnicas de Inativação de Genes , Átrios do Coração/metabolismo , Átrios do Coração/patologia , Células-Tronco Embrionárias Humanas/metabolismo , Células-Tronco Embrionárias Humanas/patologia , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/patologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Cadeias Leves de Miosina/genética , Cadeias Leves de Miosina/metabolismo , Peixe-Zebra , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
16.
Development ; 145(3)2018 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-29361575

RESUMO

NKX2-5 is the most commonly mutated gene associated with human congenital heart defects (CHDs), with a predilection for cardiac pole abnormalities. This homeodomain transcription factor is a central regulator of cardiac development and is expressed in both the first and second heart fields (FHF and SHF). We have previously revealed essential functions of nkx2.5 and nkx2.7, two Nkx2-5 homologs expressed in zebrafish cardiomyocytes, in maintaining ventricular identity. However, the differential roles of these genes in the specific subpopulations of the anterior (aSHF) and posterior (pSHF) SHFs have yet to be fully defined. Here, we show that Nkx genes regulate aSHF and pSHF progenitors through independent mechanisms. We demonstrate that Nkx genes restrict proliferation of aSHF progenitors in the outflow tract, delimit the number of pSHF progenitors at the venous pole and pattern the sinoatrial node acting through Isl1 repression. Moreover, optical mapping highlights the requirement for Nkx gene dose in establishing electrophysiological chamber identity and in integrating the physiological connectivity of FHF and SHF cardiomyocytes. Ultimately, our results may shed light on the discrete errors responsible for NKX2-5-dependent human CHDs of the cardiac outflow and inflow tracts.


Assuntos
Coração/embriologia , Proteína Homeobox Nkx-2.5/genética , Proteínas de Homeodomínio/genética , Proteínas com Homeodomínio LIM/genética , Mioblastos Cardíacos/citologia , Mioblastos Cardíacos/metabolismo , Fatores de Transcrição/genética , Proteínas de Peixe-Zebra/genética , Animais , Animais Geneticamente Modificados , Padronização Corporal/genética , Diferenciação Celular , Proliferação de Células , Regulação da Expressão Gênica no Desenvolvimento , Cardiopatias Congênitas/embriologia , Cardiopatias Congênitas/genética , Humanos , Mutação
17.
J Biol Chem ; 294(1): 351-360, 2019 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-30401747

RESUMO

The QT interval is an important diagnostic feature on surface electrocardiograms because it reflects the duration of the ventricular action potential. A previous genome-wide association study has reported a significant linkage between a single-nucleotide polymorphism ∼11.7 kb downstream of the gene encoding the RING finger ubiquitin ligase rififylin (RFFL) and variability in the QT interval. This, along with results in animal studies, suggests that RFFL may have effects on cardiac repolarization. Here, we sought to determine the role of RFFL in cardiac electrophysiology. Adult rabbit cardiomyocytes with adenovirus-expressed RFFL exhibited reduced rapid delayed rectifier current (IKr). Neonatal rabbit cardiomyocytes transduced with RFFL-expressing adenovirus exhibited reduced total expression of the potassium channel ether-a-go-go-related gene (rbERG). Using transfections of 293A cells and Western blotting experiments, we observed that RFFL and the core-glycosylated form of the human ether-a-go-go-related gene (hERG) potassium channel interact. Furthermore, RFFL overexpression led to increased polyubiquitination and proteasomal degradation of hERG protein and to an almost complete disappearance of IKr, which depended on the intact RING domain of RFFL. Blocking the ER-associated degradation (ERAD) pathway with a dominant-negative form of the ERAD core component, valosin-containing protein (VCP), in 293A cells partially abolished RFFL-mediated hERG degradation. We further substantiated the link between RFFL and ERAD by showing an interaction between RFFL and VCP in vitro We conclude that RFFL is an important regulator of voltage-gated hERG potassium channel activity and therefore cardiac repolarization and that this ubiquitination-mediated regulation requires parts of the ERAD pathway.


Assuntos
Canal de Potássio ERG1/metabolismo , Degradação Associada com o Retículo Endoplasmático , Miócitos Cardíacos/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Animais , Canal de Potássio ERG1/genética , Células HEK293 , Humanos , Transporte Proteico , Coelhos , Ubiquitina-Proteína Ligases/genética
18.
Chembiochem ; 21(13): 1905-1910, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32003101

RESUMO

Doxorubicin is a highly effective chemotherapy agent used to treat many common malignancies. However, its use is limited by cardiotoxicity, and cumulative doses exponentially increase the risk of heart failure. To identify novel heart failure treatment targets, a zebrafish model of doxorubicin-induced cardiomyopathy was previously established for small-molecule screening. Using this model, several small molecules that prevent doxorubicin-induced cardiotoxicity both in zebrafish and in mouse models have previously been identified. In this study, exploration of doxorubicin cardiotoxicity is expanded by screening 2271 small molecules from a proprietary, target-annotated tool compound collection. It is found that 120 small molecules can prevent doxorubicin-induced cardiotoxicity, including 7 highly effective compounds. Of these, all seven exhibited inhibitory activity towards cytochrome P450 family 1 (CYP1). These results are consistent with previous findings, in which visnagin, a CYP1 inhibitor, also prevents doxorubicin-induced cardiotoxicity. Importantly, genetic mutation of cyp1a protected zebrafish against doxorubicin-induced cardiotoxicity phenotypes. Together, these results provide strong evidence that CYP1 is an important contributor to doxorubicin-induced cardiotoxicity and highlight the CYP1 pathway as a candidate therapeutic target for clinical cardioprotection.


Assuntos
Cardiomiopatias/prevenção & controle , Família 1 do Citocromo P450/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Animais , Animais Geneticamente Modificados , Cardiomiopatias/induzido quimicamente , Cardiomiopatias/patologia , Família 1 do Citocromo P450/antagonistas & inibidores , Família 1 do Citocromo P450/genética , Modelos Animais de Doenças , Doxorrubicina/toxicidade , Insuficiência Cardíaca , Mutagênese , Fenótipo , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/metabolismo , Bibliotecas de Moléculas Pequenas/uso terapêutico , Relação Estrutura-Atividade , Peixe-Zebra , Proteínas de Peixe-Zebra/antagonistas & inibidores , Proteínas de Peixe-Zebra/genética
19.
Circ Res ; 122(6): 864-876, 2018 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-29437835

RESUMO

RATIONALE: Current methods assessing clinical risk because of exercise intolerance in patients with cardiopulmonary disease rely on a small subset of traditional variables. Alternative strategies incorporating the spectrum of factors underlying prognosis in at-risk patients may be useful clinically, but are lacking. OBJECTIVE: Use unbiased analyses to identify variables that correspond to clinical risk in patients with exercise intolerance. METHODS AND RESULTS: Data from 738 consecutive patients referred for invasive cardiopulmonary exercise testing at a single center (2011-2015) were analyzed retrospectively (derivation cohort). A correlation network of invasive cardiopulmonary exercise testing parameters was assembled using |r|>0.5. From an exercise network of 39 variables (ie, nodes) and 98 correlations (ie, edges) corresponding to P<9.5e-46 for each correlation, we focused on a subnetwork containing peak volume of oxygen consumption (pVo2) and 9 linked nodes. K-mean clustering based on these 10 variables identified 4 novel patient clusters characterized by significant differences in 44 of 45 exercise measurements (P<0.01). Compared with a probabilistic model, including 23 independent predictors of pVo2 and pVo2 itself, the network model was less redundant and identified clusters that were more distinct. Cluster assignment from the network model was predictive of subsequent clinical events. For example, a 4.3-fold (P<0.0001; 95% CI, 2.2-8.1) and 2.8-fold (P=0.0018; 95% CI, 1.5-5.2) increase in hazard for age- and pVo2-adjusted all-cause 3-year hospitalization, respectively, were observed between the highest versus lowest risk clusters. Using these data, we developed the first risk-stratification calculator for patients with exercise intolerance. When applying the risk calculator to patients in 2 independent invasive cardiopulmonary exercise testing cohorts (Boston and Graz, Austria), we observed a clinical risk profile that paralleled the derivation cohort. CONCLUSIONS: Network analyses were used to identify novel exercise groups and develop a point-of-care risk calculator. These data expand the range of useful clinical variables beyond pVo2 that predict hospitalization in patients with exercise intolerance.


Assuntos
Doenças Cardiovasculares/epidemiologia , Tolerância ao Exercício , Idoso , Teste de Esforço/estatística & dados numéricos , Feminino , Hospitalização/estatística & dados numéricos , Humanos , Masculino , Pessoa de Meia-Idade
20.
Proc Natl Acad Sci U S A ; 114(29): 7689-7694, 2017 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-28679633

RESUMO

Genetic variants that cause haploinsufficiency account for many autosomal dominant (AD) disorders. Gene-based diagnosis classifies variants that alter canonical splice signals as pathogenic, but due to imperfect understanding of RNA splice signals other variants that may create or eliminate splice sites are often clinically classified as variants of unknown significance (VUS). To improve recognition of pathogenic splice-altering variants in AD disorders, we used computational tools to prioritize VUS and developed a cell-based minigene splicing assay to confirm aberrant splicing. Using this two-step procedure we evaluated all rare variants in two AD cardiomyopathy genes, lamin A/C (LMNA) and myosin binding protein C (MYBPC3). We demonstrate that 13 LMNA and 35 MYBPC3 variants identified in cardiomyopathy patients alter RNA splicing, representing a 50% increase in the numbers of established damaging splice variants in these genes. Over half of these variants are annotated as VUS by clinical diagnostic laboratories. Familial analyses of one variant, a synonymous LMNA VUS, demonstrated segregation with cardiomyopathy affection status and altered cardiac LMNA splicing. Application of this strategy should improve diagnostic accuracy and variant classification in other haploinsufficient AD disorders.


Assuntos
Proteínas de Transporte/genética , Lamina Tipo A/genética , Mutação , Splicing de RNA , Adulto , Idoso , Alelos , Cardiomiopatias/genética , Biologia Computacional , Feminino , Variação Genética , Genótipo , Células HEK293 , Haploinsuficiência , Cardiopatias/genética , Transplante de Coração , Humanos , Masculino , Pessoa de Meia-Idade , Mutação de Sentido Incorreto , Marca-Passo Artificial , Linhagem , Sítios de Splice de RNA , Análise de Sequência de DNA , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA