Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Glia ; 72(1): 111-132, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37675659

RESUMO

Chronic environmental stress and traumatic social experiences induce maladaptive behavioral changes and is a risk factor for major depressive disorder (MDD) and various anxiety-related psychiatric disorders. Clinical studies and animal models of chronic stress have reported that symptom severity is correlated with innate immune responses and upregulation of neuroinflammatory cytokine signaling in brain areas implicated in mood regulation (mPFC; medial Prefrontal Cortex). Despite increasing evidence implicating impairments of neuroplasticity and synaptic signaling deficits into the pathophysiology of stress-related mental disorders, how microglia may modulate neuronal homeostasis in response to chronic stress has not been defined. Here, using the repeated social defeat stress (RSDS) mouse model we demonstrate that microglial-induced inflammatory responses are regulating neuronal plasticity associated with psychosocial stress. Specifically, we show that chronic stress induces a rapid activation and proliferation of microglia as well as macrophage infiltration in the mPFC, and these processes are spatially related to neuronal activation. Moreover, we report a significant association of microglial inflammatory responses with susceptibility or resilience to chronic stress. In addition, we find that exposure to chronic stress exacerbates phagocytosis of synaptic elements and deficits in neuronal plasticity. Importantly, by utilizing two different CSF1R inhibitors (the brain penetrant PLX5622 and the non-penetrant PLX73086) we highlight a crucial role for microglia (and secondarily macrophages) in catalyzing the pathological manifestations linked to psychosocial stress in the mPFC and the resulting behavioral deficits usually associated with depression.


Assuntos
Transtorno Depressivo Maior , Microglia , Camundongos , Animais , Humanos , Microglia/patologia , Macrófagos , Neurônios , Estresse Psicológico/complicações , Estresse Psicológico/patologia
2.
Mol Psychiatry ; 27(6): 2833-2848, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35301426

RESUMO

Major depressive disorder (MDD) is a chronic debilitating illness affecting yearly 300 million people worldwide. Oligodendrocyte-lineage cells have emerged as important neuromodulators in synaptic plasticity and crucial components of MDD pathophysiology. Using the repeated social defeat (RSDS) mouse model, we demonstrate that chronic psychosocial stress induces long-lasting losses and transient proliferation of oligodendrocyte-precursor cells (OPCs), aberrant differentiation into oligodendrocytes, and severe hypomyelination in the prefrontal cortex. Exposure to chronic stress results in OPC morphological impairments, excessive oxidative stress, and oligodendroglial apoptosis, implicating integrative-stress responses in depression. Analysis of single-nucleus transcriptomic data from MDD patients revealed oligodendroglial-lineage dysregulation and the presence of immune-oligodendrocytes (Im-OL), a novel population of cells with immune properties and myelination deficits. Im-OL were also identified in mice after RSDS, where oligodendrocyte-lineage cells expressed immune-related markers. Our findings demonstrate cellular and molecular changes in the oligodendroglial lineage in response to chronic stress and associate hypomyelination with Im-OL emergence during depression.


Assuntos
Transtorno Depressivo Maior , Bainha de Mielina , Animais , Diferenciação Celular/fisiologia , Homeostase , Humanos , Camundongos , Bainha de Mielina/fisiologia , Oligodendroglia , Córtex Pré-Frontal
3.
J Neuroinflammation ; 19(1): 225, 2022 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-36096938

RESUMO

BACKGROUND: Early invasion of the central nervous system (CNS) by human immunodeficiency virus (HIV) (Gray et al. in Brain Pathol 6:1-15, 1996; An et al. in Ann Neurol 40:611-6172, 1996), results in neuroinflammation, potentially through extracellular vesicles (EVs) and their micro RNAs (miRNA) cargoes (Sharma et al. in FASEB J 32:5174-5185, 2018; Hu et al. in Cell Death Dis 3:e381, 2012). Although the basal ganglia (BG) is a major target and reservoir of HIV in the CNS (Chaganti et al. in Aids 33:1843-1852, 2019; Mintzopoulos et al. in Magn Reson Med 81:2896-2904, 2019), whether BG produces EVs and the effect of HIV and/or the phytocannabinoid-delta-9-tetrahydrocannabinol (THC) on BG-EVs and HIV neuropathogenesis remain unknown. METHODS: We used the simian immunodeficiency virus (SIV) model of HIV and THC treatment in rhesus macaques (Molina et al. in AIDS Res Hum Retroviruses 27:585-592, 2011) to demonstrate for the first time that BG contains EVs (BG-EVs), and that BG-EVs cargo and function are modulated by SIV and THC. We also used primary astrocytes from the brains of wild type (WT) and CX3CR1+/GFP mice to investigate the significance of BG-EVs in CNS cells. RESULTS: Significant changes in BG-EV-associated miRNA specific to SIV infection and THC treatment were observed. BG-EVs from SIV-infected rhesus macaques (SIV EVs) contained 11 significantly downregulated miRNAs. Remarkably, intervention with THC led to significant upregulation of 37 miRNAs in BG-EVs (SIV-THC EVs). Most of these miRNAs are predicted to regulate pathways related to inflammation/immune regulation, TLR signaling, Neurotrophin TRK receptor signaling, and cell death/response. BG-EVs activated WT and CX3CR1+/GFP astrocytes and altered the expression of CD40, TNFα, MMP-2, and MMP-2 gene products in primary mouse astrocytes in an EV and CX3CR1 dependent manners. CONCLUSIONS: Our findings reveal a role for BG-EVs as a vehicle with potential to disseminate HIV- and THC-induced changes within the CNS.


Assuntos
Vesículas Extracelulares , MicroRNAs , Síndrome de Imunodeficiência Adquirida dos Símios , Vírus da Imunodeficiência Símia , Animais , Gânglios da Base/metabolismo , Gânglios da Base/patologia , Dronabinol/farmacologia , Vesículas Extracelulares/metabolismo , Humanos , Macaca mulatta/genética , Macaca mulatta/metabolismo , Metaloproteinase 2 da Matriz/metabolismo , Camundongos , MicroRNAs/metabolismo , Síndrome de Imunodeficiência Adquirida dos Símios/tratamento farmacológico
4.
Glia ; 69(7): 1767-1781, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33704822

RESUMO

The characterization of the tumor microenvironment (TME) in high grade gliomas (HGG) has generated significant interest in an effort to understand how neoplastic lesions in the central nervous system (CNS) are supported and to devise novel therapeutic targets. The TME of the CNS contains unique and specialized cells, including the resident myeloid cells, microglia. Myeloid involvement in HGG, such as glioblastoma, is associated with poor outcomes. Glioma-associated microglia and infiltrating monocytes/macrophages (GAM) accumulate within the neoplastic lesion where they facilitate tumor growth and drive immunosuppression. However, it has been difficult to differentiate whether microglia and macrophages have similar or distinct roles in pathology, and if the spatial organization of these cells informs outcomes. Here, we characterize the tumor-stroma border and identify peritumoral GAM (PGAM) as a unique subpopulation of GAM. Using data mining and analyses of samples derived from both murine and human sources we show that PGAM exhibit a pro-inflammatory and chemotactic phenotype that is associated with peripheral monocyte recruitment, and decreased overall survival. PGAM act as a unique subset of GAM at the tumor-stroma interface. We define a novel gene signature to identify these cells and suggest that PGAM constitute a cellular target of the TME.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Glioma , Animais , Neoplasias Encefálicas/patologia , Glioblastoma/patologia , Glioma/patologia , Macrófagos/patologia , Camundongos , Microglia/patologia , Microambiente Tumoral
5.
J Sport Health Sci ; 12(3): 369-378, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-34461327

RESUMO

BACKGROUND: Recognizing sport-related concussion (SRC) is challenging and relies heavily on subjective symptom reports. An objective, biological marker could improve recognition and understanding of SRC. There is emerging evidence that salivary micro-ribonucleic acids (miRNAs) may serve as biomarkers of concussion; however, it remains unclear whether concussion-related miRNAs are impacted by exercise. We sought to determine whether 40 miRNAs previously implicated in concussion pathophysiology were affected by participation in a variety of contact and non-contact sports. Our goal was to refine a miRNA-based tool capable of identifying athletes with SRC without the confounding effects of exercise. METHODS: This case-control study harmonized data from concussed and non-concussed athletes recruited across 10 sites. Levels of salivary miRNAs within 455 samples from 314 individuals were measured with RNA sequencing. Within-subjects testing was used to identify and exclude miRNAs that changed with either (a) a single episode of exercise (166 samples from 83 individuals) or (b) season-long participation in contact sports (212 samples from 106 individuals). The miRNAs that were not impacted by exercise were interrogated for SRC diagnostic utility using logistic regression (172 samples from 75 concussed and 97 non-concussed individuals). RESULTS: Two miRNAs (miR-532-5p and miR-182-5p) decreased (adjusted p < 0.05) after a single episode of exercise, and 1 miRNA (miR-4510) increased only after contact sports participation. Twenty-three miRNAs changed at the end of a contact sports season. Two of these miRNAs (miR-26b-3p and miR-29c-3p) were associated (R > 0.50; adjusted p < 0.05) with the number of head impacts sustained in a single football practice. Among the 15 miRNAs not confounded by exercise or season-long contact sports participation, 11 demonstrated a significant difference (adjusted p < 0.05) between concussed and non-concussed participants, and 6 displayed moderate ability (area under curve > 0.70) to identify concussion. A single ratio (miR-27a-5p/miR-30a-3p) displayed the highest accuracy (AUC = 0.810, sensitivity = 82.4%, specificity = 73.3%) for differentiating concussed and non-concussed participants. Accuracy did not differ between participants with SRC and non-SRC (z = 0.5, p = 0.60). CONCLUSION: Salivary miRNA levels may accurately identify SRC when not confounded by exercise. Refinement of this approach in a large cohort of athletes could eventually lead to a non-invasive, sideline adjunct for SRC assessment.


Assuntos
Concussão Encefálica , Futebol Americano , MicroRNAs , Humanos , Saliva , Estudos de Casos e Controles , Concussão Encefálica/diagnóstico , Biomarcadores
6.
Front Neurosci ; 16: 867357, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35615276

RESUMO

Oligodendroglia play a critical role in CNS homeostasis by myelinating neuronal axons in their mature stages. Dysfunction in this lineage occurs when early stage OPCs are not able to differentiate to replace dying Mature Myelinating Oligodendrocytes. Many hypotheses exist as to why de- and hypo-myelinating disorders and diseases occur. In this review, we present data to show that oligodendroglia can adopt components of the immune proteasome under inflammatory conditions. The works reviewed further reflect that these immune-component expressing oligodendroglia can in fact function as antigen presenting cells, phagocytosing foreign entities and presenting them via MHC II to activate CD4+ T cells. Additionally, we hypothesize, based on the limited literature, that the adoption of immune components by oligodendroglia may contribute to their stalled differentiation in the context of these disorders and diseases. The present review will underline: (1) Mechanisms of neuroinflammation in diseases associated with Immune Oligodendroglia; (2) the first associations between the immune proteasome and oligodendroglia and the subtle distinctions between these works; (3) the suggested functionality of these cells as it is described by current literature; and (4) the hypothesized consequences on metabolism. In doing so we aim to shed light on this fairly under-explored cell type in hopes that study of their functionality may lead to further mechanistic understanding of hypo- and de-myelinating neuroinflammatory disorders and diseases.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA