Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Ano de publicação
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Braz Oral Res ; 36: e063, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36507750

RESUMO

Modified formulations of calcium silicate repair materials with additives have been developed to enhance handling, consistency, biocompatibility and bioactivity. Considering the relevance of osteoblastic cell response to mineralized tissue repair, human osteoblastic cells (Saos-2 cells overexpressing BMP-2) were exposed to mineral trioxide aggregate (MTA) (with calcium tungstate - CaWO4), MTA HP Repair, Bio-C Repair and Bio-C Pulpo. Cell viability was assessed by 3-(4,5-dimethylthiazol)-2,5-diphenyltetrazolium bromide (MTT) and neutral red (NR), and cell death, by flow cytometry. Gene expression of bone morphogenetic protein 2 (BMP-2), runt-related transcription factor 2 (RUNX-2), and alkaline phosphatase (ALP) osteogenic markers were evaluated by real-time polymerase chain reaction (RT-qPCR). ALP activity and alizarin red staining (ARS) were used to detect mineralization nodule deposition. Bioactive cements presented no cytotoxic effect, and did not induce apoptosis at the higher dilution (1:12). MTA, Bio-C Repair and Bio-C Pulpo exhibited higher ALP activity than the control group (P < 0.05) after 7 days. MTA, MTA HP and Bio-C Pulpo affected the formation of mineralized nodules (p < 0.05). Exposure to all cement extracts for 1 day increased BMP-2 gene expression. RUNX-2 mRNA was greater in MTA, MTA HP and Bio-C Repair. MTA, MTA HP and Bio-C Pulpo increased the ALP mRNA expression, compared with BMP-2 unexposed cells (P < 0.05). Calcium silicate cements showed osteogenic potential and biocompatibility in Saos-2 cells transfected BMP-2, and increased the mRNA expression of BMP-2, RUNX-2, and ALP osteogenic markers in the BMP-2 transfected system, thereby promoting a cellular response to undertake the mineralized tissue repair.


Assuntos
Proteína Morfogenética Óssea 2 , Materiais Restauradores do Canal Radicular , Humanos , Compostos de Cálcio/farmacologia , Silicatos/farmacologia , Compostos de Alumínio/farmacologia , Óxidos/farmacologia , Resinas Acrílicas , Fosfatase Alcalina , Combinação de Medicamentos , RNA Mensageiro , Células Cultivadas , Materiais Restauradores do Canal Radicular/toxicidade , Teste de Materiais
2.
Braz. oral res. (Online) ; 36: e063, 2022. tab, graf
Artigo em Inglês | LILACS-Express | LILACS, BBO - odontologia (Brasil) | ID: biblio-1374737

RESUMO

Abstract: Modified formulations of calcium silicate repair materials with additives have been developed to enhance handling, consistency, biocompatibility and bioactivity. Considering the relevance of osteoblastic cell response to mineralized tissue repair, human osteoblastic cells (Saos-2 cells overexpressing BMP-2) were exposed to mineral trioxide aggregate (MTA) (with calcium tungstate - CaWO4), MTA HP Repair, Bio-C Repair and Bio-C Pulpo. Cell viability was assessed by 3-(4,5-dimethylthiazol)-2,5-diphenyltetrazolium bromide (MTT) and neutral red (NR), and cell death, by flow cytometry. Gene expression of bone morphogenetic protein 2 (BMP-2), runt-related transcription factor 2 (RUNX-2), and alkaline phosphatase (ALP) osteogenic markers were evaluated by real-time polymerase chain reaction (RT-qPCR). ALP activity and alizarin red staining (ARS) were used to detect mineralization nodule deposition. Bioactive cements presented no cytotoxic effect, and did not induce apoptosis at the higher dilution (1:12). MTA, Bio-C Repair and Bio-C Pulpo exhibited higher ALP activity than the control group (P < 0.05) after 7 days. MTA, MTA HP and Bio-C Pulpo affected the formation of mineralized nodules (p < 0.05). Exposure to all cement extracts for 1 day increased BMP-2 gene expression. RUNX-2 mRNA was greater in MTA, MTA HP and Bio-C Repair. MTA, MTA HP and Bio-C Pulpo increased the ALP mRNA expression, compared with BMP-2 unexposed cells (P < 0.05). Calcium silicate cements showed osteogenic potential and biocompatibility in Saos-2 cells transfected BMP-2, and increased the mRNA expression of BMP-2, RUNX-2, and ALP osteogenic markers in the BMP-2 transfected system, thereby promoting a cellular response to undertake the mineralized tissue repair.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA