Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 190
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Neurol Sci ; 43(9): 5729-5734, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35676560

RESUMO

INTRODUCTION: Gender medicine is a new medical approach aimed at the study of the differences between women and men in terms of prevention, diagnosis, and the outcome of all diseases. Migraines are among these. They represent the most common neurological illness; they are most prevalent in adults between 20 and 50 years of age and are three to four times more frequent in woman than in men. Affecting people in working age, migraines are a problem that strongly impacts the psychophysical health and productivity of workers, regardless of the specific job task they have. METHODS: A narrative review was performed, searching for the most relevant articles describing gender differences in people suffering from migraines, and particularly in workers. RESULTS: Migraine global prevalence is 20.7% in women and 9.7% in men whereas prevalence in Italy is 32.9% for women and only 13.0% for men. This difference is partly explained by hormonal differences, as well as by differences in brain structure, genetic polymorphisms and neuronal pathways. Sex differences may also play a role in the progression from episodic to chronic migraine. In workers, migraines are mostly associated with strenuous physical work in men, whilst migraines triggered by night shifts, lack of sleep, or irregular sleep patterns are more common in women. CONCLUSIONS: To this day, the reasons of sex/gender disparity for migraine are still obscure. However, migraines, chronic migraine in particular, have a negative impact on the lives of all individuals affected by this disease, but particularly in women in which family cares and working activity are often superimposed. Migraine prevention strategies should be planned in workers through the occupational health physician.


Assuntos
Transtornos de Enxaqueca , Adulto , Feminino , Humanos , Itália , Masculino , Transtornos de Enxaqueca/tratamento farmacológico , Transtornos de Enxaqueca/epidemiologia , Prevalência , Fatores Sexuais , Sono
2.
J Cell Physiol ; 234(11): 20453-20468, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-30982981

RESUMO

Cardiac dysfunction is often observed in patients with cancer also representing a serious problem limiting chemotherapeutic intervention and even patient survival. In view of the recently established role of the immune system in the control of cancer growth, the present work has been undertaken to investigate the effects of a panel of the most important inflammatory cytokines on the integrity and function of mitochondria, as well as of the cytoskeleton, two key elements in the functioning of cardiomyocytes. Either mitochondria features or actomyosin cytoskeleton organization of in vitro-cultured cardiomyocytes treated with different inflammatory cytokines were analyzed. In addition, to investigate the interplay between tumor growth and cardiac function in an in vivo system, immunocompetent female mice were inoculated with cancer cells and treated with the chemotherapeutic drug doxorubicin at a dosing schedule able to suppress tumor growth without inducing cardiac alterations. Analyses carried out in cardiomyocytes treated with the inflammatory cytokines, such as tumor necrosis factor α (TNF-α), interferon γ (IFN-γ), interleukin 6 (IL-6), IL-8, and IL-1ß revealed severe phenotypic changes, for example, of contractile cytoskeletal elements, mitochondrial membrane potential, mitochondrial reactive oxygen species production and mitochondria network organization. Accordingly, in immunocompetent mice, the tumor growth was accompanied by increased levels of the inflammatory cytokines TNF-α, IFN-γ, IL-6, and IL-8, either in serum or in the heart tissue, together with a significant reduction of ventricular systolic function. The alterations of mitochondria and of microfilament system of cardiomyocytes, due to the systemic inflammation associated with cancer growth, could be responsible for remote cardiac injury and impairment of systolic function observed in vivo.


Assuntos
Citocinas/farmacologia , Citoesqueleto/efeitos dos fármacos , Inflamação/tratamento farmacológico , Mitocôndrias/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Animais , Células Cultivadas , Feminino , Interferon gama/farmacologia , Interleucina-6/farmacologia , Camundongos Endogâmicos BALB C , Neoplasias/tratamento farmacológico , Espécies Reativas de Oxigênio/metabolismo , Fator de Necrose Tumoral alfa/farmacologia
3.
Cell Physiol Biochem ; 53(1): 186-199, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31278696

RESUMO

BACKGROUND/AIMS: Estrogen could play a key role in the mechanisms underlying sex-related disparity in the incidence of thrombotic events. We investigated whether estrogen receptors (ERs) were expressed in human red blood cells (RBCs), and if they affected cell signaling of erythrocyte constitutive isoform of endothelial NO-synthase (eNOS) and nitric oxide (NO) release. METHODS: RBCs from 29 non-smoker volunteers (15 males and 14 females) aged between 20 and 40 years were analyzed by cytometry and western blot. In particular, content and distribution of ER-α and ER-ß, tyrosine kinases and eNOS phosphorylation and NO release were analyzed. RESULTS: We demonstrated that: i) both ER-α and ER-ß were expressed by RBCs; ii) they were both functionally active; and iii) ERs distribution and function were different in males and females. In particular, ERs modulated eNOS phosphorylation and NO release in RBCs from both sexes, but they induced the phosphorylation of specific tyrosine residues of kinases linked to eNOS activation and NO release in the RBCs from females only. CONCLUSION: Collectively, these data suggest that ERs could play a critical role in RBC intracellular signaling. The possible implication of this signaling in sex-linked risk disparity in human cardiovascular diseases, e.g. in thrombotic events, may not be ruled out.


Assuntos
Receptores de Estrogênio/metabolismo , Transdução de Sinais , Adulto , Dronabinol/farmacologia , Eritrócitos/citologia , Eritrócitos/efeitos dos fármacos , Eritrócitos/metabolismo , Receptor alfa de Estrogênio/antagonistas & inibidores , Receptor alfa de Estrogênio/metabolismo , Receptor beta de Estrogênio/antagonistas & inibidores , Receptor beta de Estrogênio/metabolismo , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Fosforilação/efeitos dos fármacos , Piperidinas/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Pirazóis/farmacologia , Transdução de Sinais/efeitos dos fármacos , Adulto Jovem
4.
J Cell Mol Med ; 22(7): 3308-3314, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29664231

RESUMO

Systemic sclerosis (SSc) is a rare disorder of the connective tissue characterized by fibrosis of the skin, skeletal muscles and visceral organs. Additional manifestations include activation of the immune system and vascular injury. SSc causes disability and death as the result of end-stage organ failure. Two clinical subsets of the SSc are accepted: limited cutaneous SSc (lc-SSc) and diffuse cutaneous SSc (dc-SSc). At present, the aetiology and pathogenesis of SSc remain obscure, and consequently, disease outcome is unpredictable. Numerous studies suggest that reactive oxidizing species (ROS) play an important role in the pathogenesis of scleroderma. Over the years, several reports have supported this hypothesis for both lc-SSc and dc-SSc, although the specific role of oxidative stress in the pathogenesis of vascular injury and fibrosis remains to be clarified. The aim of the present review was to report and comment the recent findings regarding the involvement and role of oxidative stress in SSc pathogenesis. Biomarkers proving the link between ROS and the main pathological features of SSc have been summarized.


Assuntos
Antioxidantes/farmacologia , Estresse Oxidativo/fisiologia , Escleroderma Sistêmico/metabolismo , Escleroderma Sistêmico/patologia , Antioxidantes/metabolismo , Biomarcadores/metabolismo , Humanos , Espécies Reativas de Oxigênio/metabolismo , Escleroderma Sistêmico/tratamento farmacológico
5.
Adv Exp Med Biol ; 1065: 241-256, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30051389

RESUMO

The focus of this chapter is the gender differences in mitochondria in cardiovascular disease. There is broad evidence suggesting that some of the gender differences in cardiovascular outcome may be partially related to differences in mitochondrial biology (Ventura-Clapier R, Moulin M, Piquereau J, Lemaire C, Mericskay M, Veksler V, Garnier A, Clin Sci (Lond) 131(9):803-822, 2017)). Mitochondrial disorders are causally affected by mutations in either nuclear or mitochondrial genes involved in the synthesis of respiratory chain subunits or in their posttranslational control. This can be due to mutations of the mtDNA which are transmitted by the mother or mutations in the nuclear DNA. Because natural selection on mitochondria operates only in females, mutations may have had more deleterious effects in males than in females (Ventura-Clapier R, Moulin M, Piquereau J, Lemaire C, Mericskay M, Veksler V, Garnier A, Clin Sci (Lond) 131(9):803-822, 2017; Camara AK, Lesnefsky EJ, Stowe DF. Antioxid Redox Signal 13(3):279-347, 2010). As mitochondrial mutations can affect all tissues, they are responsible for a large panel of pathologies including neuromuscular disorders, encephalopathies, metabolic disorders, cardiomyopathies, neuropathies, renal dysfunction, etc. Many of these pathologies present sex/gender specificity. Thus, alleviating or preventing mitochondrial dysfunction will contribute to mitigating the severity or progression of the development of diseases. Here, we present evidence for the involvement of mitochondria in the sex specificity of cardiovascular disorders.


Assuntos
Doenças Cardiovasculares/metabolismo , Doenças Cardiovasculares/fisiopatologia , Disparidades nos Níveis de Saúde , Coração/fisiopatologia , Mitocôndrias Cardíacas/metabolismo , Miocárdio/metabolismo , Animais , Doenças Cardiovasculares/epidemiologia , Doenças Cardiovasculares/patologia , Feminino , Humanos , Masculino , Mitocôndrias Cardíacas/patologia , Miocárdio/patologia , Fatores de Risco , Caracteres Sexuais , Fatores Sexuais , Transdução de Sinais
6.
J Cell Mol Med ; 21(4): 632-639, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28063205

RESUMO

Kawasaki disease is a multisystemic vasculitis that can result in coronary artery lesions. It predominantly affects young children and is characterized by prolonged fever, diffuse mucosal inflammation, indurative oedema of the hands and feet, a polymorphous skin rash and non-suppurative lymphadenopathy. Coronary artery involvement is the most important complication of Kawasaki disease and may cause significant coronary stenosis resulting in ischemic heart disease. The introduction of intravenous immunoglobulin decreases the incidence of coronary artery lesions to less than 5%. The etiopathogenesis of this disease remains unclear. Several lines of evidence suggest that an interplay between a microbial infection and a genetic predisposition could take place in the development of the disease. In this review, we summarize the state of the art of pathogenetic mechanisms of Kawasaki disease underscoring the relevance of haematological features as a novel field of investigation.


Assuntos
Síndrome de Linfonodos Mucocutâneos/sangue , Síndrome de Linfonodos Mucocutâneos/etiologia , Biomarcadores/sangue , Humanos , Imunidade , Síndrome de Linfonodos Mucocutâneos/genética , Síndrome de Linfonodos Mucocutâneos/patologia , Prognóstico
7.
Apoptosis ; 22(5): 681-695, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28299505

RESUMO

Once activated, some surface receptors promote membrane movements that open new portals of endocytosis, in part to facilitate the internalization of their activated complexes. The prototypic death receptor Fas (CD95/Apo1) promotes a wave of enhanced endocytosis that induces a transient intermixing of endosomes with mitochondria in cells that require mitochondria to amplify death signaling. This initiates a global alteration in membrane traffic that originates from changes in key membrane lipids occurring in the endoplasmic reticulum (ER). We have focused the current study on specific lipid changes occurring early after Fas ligation. We analyzed the interaction between endosomes and mitochondria in Jurkat T cells by nanospray-Time-of-flight (ToF) Mass Spectrometry. Immediately after Fas ligation, we found a transient wave of lipid changes that drives a subpopulation of early endosomes to merge with mitochondria. The earliest event appears to be a decrease of phosphatidylcholine (PC), linked to a metabolic switch enhancing phosphatidylinositol (PI) and phosphoinositides, which are crucial for the formation of vacuolar membranes and endocytosis. Lipid changes occur independently of caspase activation and appear to be exacerbated by caspase inhibition. Conversely, inhibition or compensation of PC deficiency attenuates endocytosis, endosome-mitochondria mixing and the induction of cell death. Deficiency of receptor interacting protein, RIP, also limits the specific changes in membrane lipids that are induced by Fas activation, with parallel reduction of endocytosis. Thus, Fas activation rapidly changes the interconversion of PC and PI, which then drives enhanced endocytosis, thus likely propagating death signaling from the cell surface to mitochondria and other organelles.


Assuntos
Caspases/metabolismo , Endocitose/genética , Lipídeos de Membrana/metabolismo , Receptor fas/genética , Humanos , Células Jurkat , Espectrometria de Massas , Lipídeos de Membrana/genética , Mitocôndrias/metabolismo , Fosfatidilcolinas/metabolismo , Fosfatidilinositóis/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Receptor fas/metabolismo
9.
Clin Sci (Lond) ; 131(6): 449-469, 2017 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-28265036

RESUMO

The biology of sex differences deals with the study of the disparities between females and males and the related biological mechanisms. Gender medicine focuses on the impact of gender and sex on human physiology, pathophysiology and clinical features of diseases that are common to women and men. The term gender refers to a complex interrelation and integration of sex-as a biological and functional determinant-and psychological and cultural behaviours (due to ethnical, social or religious background). The attention to the impact of gender differences on the pathophysiology and, therefore, on the clinical management of the most common diseases, such as cardiovascular diseases (CVD), neurodegenerative disorders, immune and autoimmune diseases as well as several tumours, is in fact often neglected. Hence, studies covering different fields of investigation and including sex differences in the pathogenesis, in diagnostic and prognostic criteria as well as in response to therapy appear mandatory. However, prerequisites for this development are preclinical studies, including in vitro and in vivo approaches. They represent the first step in the development of a drug or in the comprehension of the pathogenetic mechanisms of diseases, in turn a necessary step for the development of new or more appropriate therapeutic strategies. However, sex differences are still poorly considered and the great majority of preclinical studies do not take into account the relevance of such disparities. In this review, we describe the state of the art of these studies and provide some paradigmatic examples of key fields of investigation, such as oncology, neurology and CVD, where preclinical models should be improved.


Assuntos
Modelos Animais de Doenças , Caracteres Sexuais , Doença de Alzheimer/epidemiologia , Animais , Linhagem Celular , Linhagem Celular Tumoral , Avaliação Pré-Clínica de Medicamentos/métodos , Feminino , Humanos , Leucemia/epidemiologia , Linfoma/epidemiologia , Masculino , Melanoma/epidemiologia , Distribuição por Sexo , Acidente Vascular Cerebral/epidemiologia
10.
J Cell Physiol ; 231(2): 295-302, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26206426

RESUMO

As a general rule, smooth muscle cells (SMC) are able to switch from a contractile phenotype to a less mature synthetic phenotype. This switch is accompanied by a loss of differentiation with decreased expression of contractile markers, increased proliferation as well as the synthesis and the release of several signaling molecules such as pro-inflammatory cytokines, chemotaxis-associated molecules, and growth factors. This SMC phenotypic plasticity has extensively been investigated in vascular diseases, but interest is also emerging in the field of gastroenterology. It has in fact been postulated that altered microenvironmental conditions, including the composition of microbiota, could trigger the remodeling of the enteric SMC, with phenotype changes and consequent alterations of contraction and impairment of gut motility. Several molecular actors participate in this phenotype remodeling. These include extracellular molecules such as cytokines and extracellular matrix proteins, as well as intracellular proteins, for example, transcription factors. Epigenetic control mechanisms and miRNA have also been suggested to participate. In this review key roles and actors of smooth muscle phenotypic switch, mainly in GI tissue, are described and discussed in the light of literature data available so far. J. Cell. Physiol. 231: 295-302, 2016. © 2015 Wiley Periodicals, Inc.


Assuntos
Trato Gastrointestinal/citologia , Trato Gastrointestinal/fisiologia , Miócitos de Músculo Liso/citologia , Miócitos de Músculo Liso/fisiologia , Animais , Diferenciação Celular , Proliferação de Células , Microambiente Celular , Microbioma Gastrointestinal , Motilidade Gastrointestinal , Trato Gastrointestinal/patologia , Homeostase , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Contração Muscular , Miócitos de Músculo Liso/patologia , Fenótipo , Transdução de Sinais
11.
Apoptosis ; 20(5): 645-57, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25697338

RESUMO

Apoptosis and autophagy are two evolutionary conserved processes that exert a critical role in the maintenance of tissue homeostasis. While apoptosis is a tightly regulated cell program implicated in the removal of damaged or unwanted cells, autophagy is a cellular catabolic pathway that is involved in the lysosomal degradation and recycling of proteins and organelles, and is thereby considered an important cytoprotection mechanism. Sphingolipids (SLs), which are ubiquitous membrane lipids in eukaryotes, participate in the generation of various membrane structures, including lipid rafts and caveolae, and contribute to a number of cellular functions such as cell proliferation, apoptosis and, as suggested more recently, autophagy. For instance, SLs are hypothesized to be involved in several intracellular processes, including organelle membrane scrambling, whilst at the plasma membrane lipid rafts, acting as catalytic domains, strongly contribute to the ignition of critical signaling pathways determining cell fate. In particular, by targeting several shared regulators, ceramide, sphingosine-1-phosphate, dihydroceramide, sphingomyelin and gangliosides seem able to differentially regulate the autophagic pathway and/or contribute to the autophagosome formation. This review illustrates recent studies on this matter, particularly lipid rafts, briefly underscoring the possible implication of SLs and their alterations in the autophagy disturbances and in the pathogenesis of some human diseases.


Assuntos
Autofagia , Fagossomos/fisiologia , Esfingolipídeos/fisiologia , Animais , Apoptose , Humanos , Morfogênese , Biogênese de Organelas , Transdução de Sinais
12.
Apoptosis ; 20(12): 1577-86, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26423274

RESUMO

Prostate cancer is among the most commonly diagnosed male diseases and a leading cause of cancer mortality in men. There is emerging evidence that autophagy plays an important role in malignant cell survival and offers protection from the anti-cancer drugs in prostate cancer cells. AMBRA1 and the autophagic protein sequestosome-1 (SQSTM1; p62) expression were evaluated by immunohistochemistry and western blot on tissue samples from both benign and malignant prostatic lesions. The data reported in this pilot study demonstrated an increased expression of AMBRA1 and SQSTM1, which were also associated with an accumulation of LC3II in prostate cancer but not in benign lesion. In the present study we found that: (i) at variance with benign lesion, prostate cancer cells underwent SQSTM1 accumulation, i.e., clearly displayed a defective autophagic process but, also, (ii) prostate cancer accumulated AMBRA1 and (iii) this increase positively correlated with the Gleason score. These results underscore a possible implication of autophagy in prostate cancer phenotype and of AMBRA1 as possible cancer progression biomarker in this malignancy.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Neoplasias da Próstata/metabolismo , Idoso , Antineoplásicos/uso terapêutico , Autofagia/fisiologia , Biomarcadores Tumorais/metabolismo , Sobrevivência Celular/fisiologia , Humanos , Masculino , Pessoa de Meia-Idade , Projetos Piloto , Próstata/metabolismo , Neoplasias da Próstata/tratamento farmacológico , Estudos Retrospectivos , Proteína Sequestossoma-1
13.
J Autoimmun ; 58: 78-89, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25623267

RESUMO

T lymphocytes from patients with Systemic Lupus Erythematosus (SLE) display multiple abnormalities, including increased cell activation, abnormal cell death by apoptosis and impairment of autophagy pathway. In the present study we report the presence of specific antibodies to D4GDI, a small GTPase family inhibitor, in a significant percentage (46%) of SLE patient sera. We also found a significant association between the presence of these autoantibodies and hematologic manifestations occurring in these patients. Investigating the possible implication of anti-D4GDI autoantibodies in SLE pathogenesis or progression, we found that these antibodies were capable of binding D4GDI expressed at the lymphocyte surface and triggering a series of subcellular events, including Rho GTPase activation. These antibodies were also able to induce autophagy in T cells from both healthy donors and SLE patients, but only those negative to these antibodies. We can conclude that anti-D4GDI autoantibodies could be capable of triggering important responses in T cells such as cytoskeleton remodeling and autophagy pathway and that, in SLE patients, the chronic exposure to these specific autoantibodies could lead to the selection of autophagy-resistant T cell clones contributing to the pathogenesis of the disease.


Assuntos
Autoanticorpos/sangue , Lúpus Eritematoso Sistêmico/imunologia , Linfócitos T/metabolismo , Proteínas rho de Ligação ao GTP/metabolismo , Inibidor beta de Dissociação do Nucleotídeo Guanina rho/imunologia , Adulto , Idoso , Autofagia/genética , Citoesqueleto/metabolismo , Progressão da Doença , Feminino , Humanos , Células Jurkat , Masculino , Pessoa de Meia-Idade , Ligação Proteica/genética , RNA Interferente Pequeno/genética , Linfócitos T/imunologia , Adulto Jovem , Inibidor beta de Dissociação do Nucleotídeo Guanina rho/genética
14.
FASEB J ; 28(2): 524-35, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24196588

RESUMO

Autophagy represents a key mechanism of cytoprotection that can be activated by a variety of extracellular and intracellular stresses and allows the cell to sequester cytoplasmic components and damaged organelles, delivering them to lysosomes for degradation and recycling. However, the autophagy process has also been associated with the death of the cell. It has been demonstrated to be constitutive in some instances and inducible in others, and the idea that it could represent a pathogenetic determinant as well as a possible prognostic tool and a therapeutic target in a plethora of human diseases has recently been considered. Among these, cancer represents a major one. In this review, we recapitulate the critical implications of autophagy in the pathogenesis, progression, and treatment of lymphoproliferative disorders. Leukemias and lymphomas, in fact, represent paradigmatic human diseases in which advances have recently been made in this respect.


Assuntos
Autofagia/fisiologia , Transtornos Linfoproliferativos/fisiopatologia , Animais , Doença de Hodgkin/fisiopatologia , Humanos , Linfócitos/fisiologia , Linfoma não Hodgkin/fisiopatologia
15.
FASEB J ; 28(8): 3745-57, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24806198

RESUMO

The mineralocorticoid receptor (MR) controls adipocyte function, but its role in the conversion of white adipose tissue (WAT) into thermogenic fat has not been elucidated. We investigated responses to the MR antagonists spironolactone (spiro; 20 mg/kg/d) and drospirenone (DRSP; 6 mg/kg/d) in C57BL/6 mice fed a high-fat (HF) diet for 90 d. DRSP and spiro curbed HF diet-induced impairment in glucose tolerance, and prevented body weight gain and white fat expansion. Notably, either MR antagonist induced up-regulation of brown adipocyte-specific transcripts and markedly increased protein levels of uncoupling protein 1 (UCP1) in visceral and inguinal fat depots when compared with the HF diet group. Positron emission tomography and magnetic resonance spectroscopy confirmed acquisition of brown fat features in WAT. Interestingly, MR antagonists markedly reduced the autophagic rate both in murine preadipocytes in vitro (10(-5) M) and in WAT depots in vivo, with a concomitant increase in UCP1 protein expression. Moreover, the autophagy repressor bafilomycin A1 (10(-8) M) mimicked the effect of MR antagonists, increasing UCP1 protein expression in primary preadipocytes. Hence, we showed that adipocyte MR regulates brown remodeling of WAT through a modulation of autophagy. These results provide a rationale for the use of MR antagonists to prevent the adverse metabolic consequences of adipocyte dysfunction.


Assuntos
Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/efeitos dos fármacos , Androstenos/farmacologia , Autofagia/efeitos dos fármacos , Transdiferenciação Celular/efeitos dos fármacos , Dieta Hiperlipídica/efeitos adversos , Intolerância à Glucose/prevenção & controle , Antagonistas de Receptores de Mineralocorticoides/farmacologia , Receptores de Mineralocorticoides/fisiologia , Espironolactona/farmacologia , Adipócitos/citologia , Adipócitos/efeitos dos fármacos , Adipogenia/efeitos dos fármacos , Adipogenia/fisiologia , Aldosterona/farmacologia , Androstenos/uso terapêutico , Animais , Composição Corporal/efeitos dos fármacos , Células Cultivadas , Feminino , Perfilação da Expressão Gênica , Intolerância à Glucose/etiologia , Canal Inguinal , Gordura Intra-Abdominal/efeitos dos fármacos , Canais Iônicos/biossíntese , Canais Iônicos/genética , Macrolídeos/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Antagonistas de Receptores de Mineralocorticoides/uso terapêutico , Proteínas Mitocondriais/biossíntese , Proteínas Mitocondriais/genética , Obesidade/tratamento farmacológico , Obesidade/fisiopatologia , Obesidade/prevenção & controle , Receptores de Mineralocorticoides/efeitos dos fármacos , Espironolactona/uso terapêutico , Proteína Desacopladora 1 , Regulação para Cima/efeitos dos fármacos , Aumento de Peso/efeitos dos fármacos
16.
J Cell Physiol ; 229(12): 1990-8, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24777636

RESUMO

Statins, widely used for treatment of hypercholesterolemia, have been demonstrated to exert pleiotropic beneficial effects independently of their cholesterol-lowering action, such as anti-inflammatory activity. A gender disparity has been observed in their cholesterol lowering activity as well as in response to these "off label" effects. Monocytes play a central role in atherosclerotic disease and, more in general, in inflammatory responses, through their chemotactic function and cytokine production. On these bases, in the present work, we examined the effect of statins on homeostasis and migration properties of freshly isolated monocytes from male and female healthy donors. Two prototypic natural and synthetic statins with different polarity, that is, type 1 and type 2 statins, have been considered: simvastatin and atorvastatin. Freshly isolated monocytes from peripheral blood of male and female healthy donors were treated with these drugs in the absence or presence of lipopolysaccharide (LPS) stimulation. Results obtained indicated that the polar statin efficiently inhibited chemotaxis of monocytes more than the apolar statin and that this effect was more significantly induced in cells from females than in cells from males. Dissecting the mechanisms involved, we found that these results could mainly be due to differential effects on: (i) the release of key cytokines, for example, MCP-1 and TNF-α; (ii) the maintenance of the redox homeostasis; (iii) a target activity on microfilament network integrity and function. All in all these results could suggest a reappraisal of "off-label" effects of statins taking into account either their chemical structure, that is, molecular polarity, or the gender issue.


Assuntos
Aterosclerose/tratamento farmacológico , Inflamação/tratamento farmacológico , Monócitos/efeitos dos fármacos , Caracteres Sexuais , Aterosclerose/patologia , Atorvastatina , Movimento Celular/efeitos dos fármacos , Feminino , Voluntários Saudáveis , Ácidos Heptanoicos/administração & dosagem , Humanos , Inflamação/genética , Inflamação/patologia , Lipopolissacarídeos/toxicidade , Masculino , Pirróis/administração & dosagem , Sinvastatina/administração & dosagem , Fator de Necrose Tumoral alfa/metabolismo
17.
Ann Rheum Dis ; 73(10): 1888-97, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23897774

RESUMO

OBJECTIVE: Accumulation of mitochondria underlies T-cell dysfunction in systemic lupus erythematosus (SLE). Mitochondrial turnover involves endosomal traffic regulated by HRES-1/Rab4, a small GTPase that is overexpressed in lupus T cells. Therefore, we investigated whether (1) HRES-1/Rab4 impacts mitochondrial homeostasis and (2) Rab geranylgeranyl transferase inhibitor 3-PEHPC blocks mitochondrial accumulation in T cells, autoimmunity and disease development in lupus-prone mice. METHODS: Mitochondria were evaluated in peripheral blood lymphocytes (PBL) of 38 SLE patients and 21 healthy controls and mouse models by flow cytometry, microscopy and western blot. MRL/lpr mice were treated with 125 µg/kg 3-PEHPC or 1 mg/kg rapamycin for 10 weeks, from 4 weeks of age. Disease was monitored by antinuclear antibody (ANA) production, proteinuria, and renal histology. RESULTS: Overexpression of HRES-1/Rab4 increased the mitochondrial mass of PBL (1.4-fold; p=0.019) and Jurkat cells (2-fold; p=0.000016) and depleted the mitophagy initiator protein Drp1 both in human (-49%; p=0.01) and mouse lymphocytes (-41%; p=0.03). Drp1 protein levels were profoundly diminished in PBL of SLE patients (-86±3%; p=0.012). T cells of 4-week-old MRL/lpr mice exhibited 4.7-fold over-expression of Rab4A (p=0.0002), the murine homologue of HRES-1/Rab4, and depletion of Drp1 that preceded the accumulation of mitochondria, ANA production and nephritis. 3-PEHPC increased Drp1 (p=0.03) and reduced mitochondrial mass in T cells (p=0.02) and diminished ANA production (p=0.021), proteinuria (p=0.00004), and nephritis scores of lupus-prone mice (p<0.001). CONCLUSIONS: These data reveal a pathogenic role for HRES-1/Rab4-mediated Drp1 depletion and identify endocytic control of mitophagy as a treatment target in SLE.


Assuntos
GTP Fosfo-Hidrolases/sangue , Lúpus Eritematoso Sistêmico/sangue , Proteínas Associadas aos Microtúbulos/sangue , Mitocôndrias/metabolismo , Proteínas Mitocondriais/sangue , Proteínas rab4 de Ligação ao GTP/fisiologia , Animais , Autofagia/fisiologia , Estudos de Casos e Controles , Células Cultivadas , Difosfonatos/uso terapêutico , Dinaminas/sangue , Dinaminas/fisiologia , Feminino , GTP Fosfo-Hidrolases/fisiologia , Homeostase/fisiologia , Humanos , Células Jurkat , Lúpus Eritematoso Sistêmico/tratamento farmacológico , Lúpus Eritematoso Sistêmico/imunologia , Lisossomos/metabolismo , Camundongos Endogâmicos MRL lpr , Proteínas Associadas aos Microtúbulos/fisiologia , Proteínas Mitocondriais/fisiologia , Mitofagia/imunologia , Terapia de Alvo Molecular/métodos , Piridinas/uso terapêutico , Linfócitos T/metabolismo
18.
J Pathol ; 229(2): 208-20, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23018629

RESUMO

Fibrotic disorders are multistage progressive processes that often arise from different causes and are commonly associated with chronic inflammation. Excessive deposition of extracellular matrix is the hallmark of many fibrotic diseases. This may be due to an excess of fibroblast recruitment and activation, as well as to their differentiation in myofibroblasts. These events may be triggered by cytokines, chemokines and growth factors released by lymphocytes or macrophages. The excessive production of extracellular matrix is apparently due to alterations of metabolic pathways in activated fibroblasts. It has been suggested that a defective autophagy, an important subcellular pathway with multiple homeostatic roles, also recognized as a key component of both innate and acquired immunity, could play a role. In this review we illustrate recent insights in the field, suggesting the possible implication of the immune system in orchestrating the fibrotic response via the modulation of autophagic pathways.


Assuntos
Autofagia , Fibroblastos/patologia , Animais , Matriz Extracelular/metabolismo , Matriz Extracelular/patologia , Fibroblastos/imunologia , Fibroblastos/metabolismo , Fibrose , Homeostase , Humanos , Transdução de Sinais
19.
Carcinogenesis ; 34(10): 2424-33, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23729654

RESUMO

The oncoprotein E7 from human papillomavirus-16 (HPV-16 E7) plays a pivotal role in HPV postinfective carcinogenesis, and its physical interaction with host cell targets is essential to its activity. We identified a novel cellular partner for the viral oncoprotein: the actin-binding protein gelsolin (GSN), a key regulator of actin filament assembly and disassembly. In fact, biochemical analyses, generation of a 3D molecular interaction model and the use of specific HPV-16 E7 mutants provided clear cut evidence supporting the crucial role of HPV-16 E7 in affecting GSN integrity and function in human immortalized keratinocytes. Accordingly, functional analyses clearly suggested that stable HPV-16 E7 expression induced an imbalance between polymeric and monomeric actin in favor of the former. These events also lead to changes of cell cycle (increased S phase), to the inhibition of apoptosis and to the increase of cell survival. These results provide support to the hypotheses generated from the 3D molecular interaction model and encourage the design of small molecules hindering HPV-induced host cell reprogramming by specifically targeting HPV-16 E7-expressing cells.


Assuntos
Apoptose , Gelsolina/metabolismo , Proteínas E7 de Papillomavirus/metabolismo , Actinas/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Caspase 3/metabolismo , Linhagem Celular Tumoral , Gelsolina/química , Humanos , Simulação de Acoplamento Molecular , Mutação , Proteínas E7 de Papillomavirus/química , Proteínas E7 de Papillomavirus/genética , Ligação Proteica , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Mapeamento de Interação de Proteínas
20.
FASEB J ; 26(4): 1400-12, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22247332

RESUMO

Autophagy is a lysosome-mediated catabolic process that allows cells to degrade unwanted cytoplasmic constituents and to recycle nutrients. Autophagy is also involved in innate and adaptive immune responses, playing a key role in interactions against microbes, in antigen processing for major histocompatibility complex (MHC) presentation, and in lymphocyte development, survival, and proliferation. Over recent years, perturbations in autophagy have been implicated in a number of diseases, including autoimmunity. Systemic lupus erythematosus (SLE) is a multifactorial disease characterized by autoimmune responses against self-antigens generated by dying cells. Genome-wide association studies have linked several single-nucleotide polymorphisms (SNPs) in the autophagy-related gene Atg5 to SLE susceptibility. Loss of Atg5-dependent effects, including clearance of dying cells and cell antigen presentation, might contribute to the autoimmunity and inflammation associated with SLE. Moreover, activation of the mammalian target of rapamycin (mTOR), a key player in the autophagy regulation, has recently been demonstrated in SLE, confirming an altered autophagy pathway in this disease. In the present review, we summarize the autophagy mechanisms, their molecular regulation, and their relevance in immunity and autoimmunity. The potential of targeting autophagy pathway in SLE, by developing innovative therapeutic approaches, has finally been discussed.


Assuntos
Imunidade Adaptativa , Autoimunidade/imunologia , Autofagia/imunologia , Imunidade Inata , Lúpus Eritematoso Sistêmico/imunologia , Humanos , Lúpus Eritematoso Sistêmico/fisiopatologia , Linfócitos/imunologia , Fagócitos/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA