Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 22(1)2021 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-33466458

RESUMO

The thyroid gland is both a thyroid hormone (TH) generating as well as a TH responsive organ. It is hence crucial that cathepsin-mediated proteolytic cleavage of the precursor thyroglobulin is regulated and integrated with the subsequent export of TH into the blood circulation, which is enabled by TH transporters such as monocarboxylate transporters Mct8 and Mct10. Previously, we showed that cathepsin K-deficient mice exhibit the phenomenon of functional compensation through cathepsin L upregulation, which is independent of the canonical hypothalamus-pituitary-thyroid axis, thus, due to auto-regulation. Since these animals also feature enhanced Mct8 expression, we aimed to understand if TH transporters are part of the thyroid auto-regulatory mechanisms. Therefore, we analyzed phenotypic differences in thyroid function arising from combined cathepsin K and TH transporter deficiencies, i.e., in Ctsk-/-/Mct10-/-, Ctsk-/-/Mct8-/y, and Ctsk-/-/Mct8-/y/Mct10-/-. Despite the impaired TH export, thyroglobulin degradation was enhanced in the mice lacking Mct8, particularly in the triple-deficient genotype, due to increased cathepsin amounts and enhanced cysteine peptidase activities, leading to ongoing thyroglobulin proteolysis for TH liberation, eventually causing self-thyrotoxic thyroid states. The increased cathepsin amounts were a consequence of autophagy-mediated lysosomal biogenesis that is possibly triggered due to the stress accompanying intrathyroidal TH accumulation, in particular in the Ctsk-/-/Mct8-/y/Mct10-/- animals. Collectively, our data points to the notion that the absence of cathepsin K and Mct8 leads to excessive thyroglobulin degradation and TH liberation in a non-classical pathway of thyroid auto-regulation.


Assuntos
Autofagia/fisiologia , Catepsina K/metabolismo , Transportadores de Ácidos Monocarboxílicos/metabolismo , Simportadores/metabolismo , Tireoglobulina/metabolismo , Glândula Tireoide/metabolismo , Hormônios Tireóideos/metabolismo , Animais , Transporte Biológico , Catepsina L/metabolismo , Hipotálamo/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Hipófise/metabolismo
2.
Sci Rep ; 11(1): 18425, 2021 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-34531446

RESUMO

The release of potentially toxic metals, such as copper (Cu), into the water column is of concern during polymetallic nodule mining. The bioavailability and thus toxicity of Cu is strongly influenced by its speciation which is dominated by organic ligand (L) complexation in seawater, with L-complexes being considered less bioavailable than free Cu2+. The presence of CuL-complexes in deep-sea sediments has, however, not been systematically studied in the context of deep-sea mining. We thus analyzed the Cu-binding L concentration ([L]) in deep-sea pore waters of two polymetallic nodule provinces in the Pacific Ocean, the Peru Basin and the Clarion-Clipperton-Zone, using competitive ligand equilibration-adsorptive stripping voltammetry. The pore-water dissolved Cu concentration ([dCu]) ranged from 3 to 96 nM, generally exceeding bottom water concentrations (4-44 nM). Based on fitting results from ProMCC and Excel, Cu was predominantly complexed by L (3-313 nM) in bottom waters and undisturbed pore waters. We conclude that processes like deep-sea mining are unlikely to cause a release of toxic Cu2+ concentrations ([Cu2+]) to the seawater as > 99% Cu was organically complexed in pore waters and the [Cu2+] was < 6 pM for 8 of 9 samples. Moreover, the excess of L found especially in shallow pore waters implied that even with a Cu release through mining activities, Cu2+ likely remains beneath toxic thresholds.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA