Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
Br J Sports Med ; 48(22): 1640-6, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24552666

RESUMO

BACKGROUND: Genetic variants within genes involved in fibrillogenesis have previously been implicated in anterior cruciate ligament (ACL) injury susceptibility. Proteoglycans also have important functions in fibrillogenesis and maintaining the structural integrity of ligaments. Genes encoding proteoglycans are plausible candidates to be investigated for associations with ACL injury susceptibility; polymorphisms within genes encoding the proteoglycans aggrecan (ACAN), biglycan (BGN), decorin (DCN), fibromodulin (FMOD) and lumican (LUM) were examined. METHODS: A case-control genetic association study was conducted. 227 participants with surgically diagnosed ACL ruptures (ACL group) and 234 controls without any history of ACL injury were genotyped for 10 polymorphisms in 5 proteoglycan genes. Inferred haplotypes were constructed for specific regions. RESULTS: The G allele of ACAN rs1516797 was significantly under-represented in the controls (p=0.024; OR=0.72; 95% CI 0.55 to 0.96) compared with the ACL group. For DCN rs516115, the GG genotype was significantly over-represented in female controls (p=0.015; OR=9.231; 95%CI 1.16 to 73.01) compared with the ACL group and the AA genotype was significantly under-represented in controls (p=0.013; OR=0.33; 95% CI 0.14 to 0.78) compared with the female non-contact ACL injury subgroup. Haplotype analyses implicated regions overlapping ACAN (rs2351491 C>T-rs1042631 T>C-rs1516797 T>G), BGN (rs1126499 C>T-rs1042103 G>A) and LUM-DCN (rs2268578 T>C-rs13312816 A>T-rs516115 A>G) in ACL injury susceptibility. CONCLUSIONS: These independent associations and haplotype analyses suggest that regions within ACAN, BGN, DCN and a region spanning LUM-DCN are associated with ACL injury susceptibility. Taking into account the functions of these genes, it is reasonable to propose that genetic sequence variability within the genes encoding proteoglycans may potentially modulate the ligament fibril properties.


Assuntos
Agrecanas/genética , Lesões do Ligamento Cruzado Anterior , Biglicano/genética , Proteoglicanas de Sulfatos de Condroitina/genética , Decorina/genética , Proteínas da Matriz Extracelular/genética , Sulfato de Queratano/genética , Proteoglicanas/genética , Adulto , Estudos de Casos e Controles , Feminino , Colágenos Fibrilares/genética , Fibromodulina , Predisposição Genética para Doença/genética , Genótipo , Haplótipos , Humanos , Lumicana , Masculino , Polimorfismo de Nucleotídeo Único/genética , Fatores de Risco , Ruptura/genética
2.
J Sci Med Sport ; 21(1): 22-28, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28927971

RESUMO

OBJECTIVES: Variants within genes that encode proteins regulating fibrillogenesis such as BGN (rs1126499 C>T, rs1042103 C>T), COL5A1 (rs12722 C>T) and DCN (rs516115 C>T) have been associated with susceptibility to anterior cruciate ligament (ACL) ruptures. A miRNA mediated transcript instability was proposed for the COL5A1 association. The study aims were: (i) to investigate the association of inferred allele combinations across the COL5A1 3'-UTR, BGN and DCN genes with susceptibility to ACL rupture; and (ii) to use an in silico approach to identify miRNA binding sites common to these risk associated allele combinations. DESIGN: Case-control association study METHODS: Allele combinations were generated from the genotype data of the BGN (rs1126499, rs1042103), COL5A1 (rs12722) and DCN (rs516115) loci for 227 participants with surgically diagnosed ACL ruptures and 234 asymptomatic controls. Statistical analyses between the CON and ACL groups as well as sex-specific interactions were investigated. Significance was accepted at p<0.05. miRNA binding sites within these genes were identified using DIANA tools. RESULTS: Several sex-specific inferred allele combinations were associated with altered susceptibility and miRNA (miR-22, miR-27b, miR-140, miR-199a, miR-199b, miR-299, miR-338 and miR-484) recognition motifs were identified in range of these susceptibility loci. CONCLUSIONS: In conclusion, this study has implicated inferred allele combinations across BGN (rs1126499, rs1042103), COL5A1 (rs12722) and DCN (rs516115) as well as eight miRNA recognition sequences in susceptibility to ACL rupture. The biological significance of these genomic signatures needs to be explored to understand their effect on the ligaments functional capacity.


Assuntos
Lesões do Ligamento Cruzado Anterior/genética , Matriz Extracelular/genética , Predisposição Genética para Doença , MicroRNAs/genética , Adolescente , Adulto , Alelos , Biglicano/genética , Estudos de Casos e Controles , Colágeno Tipo V/genética , Decorina/genética , Estudos de Associação Genética , Genótipo , Humanos , Masculino , Fatores Sexuais , Adulto Jovem
3.
J Sci Med Sport ; 20(2): 152-158, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27720349

RESUMO

OBJECTIVES: The extracellular matrix (ECM) of ligaments continuously undergoes remodelling in order to maintain tissue homeostasis. Several key mediators of ECM remodelling were chosen for investigation in the present study. It is thought that polymorphisms within genes encoding signalling molecules may contribute to inter-individual variation in the responses to mechanical loading, potentially altering risk of injury. DESIGN: A genetic association study was conducted on 232 asymptomatic controls (CON) and 234 participants with surgically diagnosed anterior cruciate ligament (ACL) ruptures; of which 135 participants reported a non-contact mechanism of injury (NON subgroup). METHODS: All participants were genotyped for ten variants in eight genes encoding ECM remodelling proteins. Haplotypes and allele combinations were also inferred. RESULTS: The CASP8 rs3834129 ins allele was significantly over-represented in the male CON group compared to the male NON subgroup (p=0.047, OR: 1.46, 95% CI: 1.01-2.12). In female participants, the IL1B rs16944 TT genotype was significantly under-represented in the CON group compared to the NON subgroup (p=0.039, OR: 3.06, 95% CI: 1.09-8.64). Haplotype analysis revealed an under-representation of the CASP8 rs3834129-rs1045485 del-G haplotype in the CON group compared to both the ACL group (p=0.042; haplo.score:2.03) and the NON subgroup (p=0.037; haplo.score:2.09). Furthermore, following a pathway-based approach, genetic variants involved in the cell signalling cascade were associated with ACL injury risk. CONCLUSIONS: The novel independent associations and allele combinations observed implicate the apoptosis and cell signalling cascades as potential contributors to ACL injury susceptibility. Furthermore, these genetic variants may potentially modulate ECM remodelling in response to loading and ultimately contribute to ligament capacity.


Assuntos
Lesões do Ligamento Cruzado Anterior , Ligamento Cruzado Anterior/fisiopatologia , Matriz Extracelular/genética , Polimorfismo de Nucleotídeo Único , Estudos de Casos e Controles , Feminino , Frequência do Gene , Estudos de Associação Genética , Predisposição Genética para Doença , Genótipo , Humanos , Ligamentos , Masculino , Fatores de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA