Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Anal Chem ; 96(21): 8441-8449, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38757174

RESUMO

Confocal micro-X-ray fluorescence (micro-XRF) spectroscopy facilitates three-dimensional (3D) elemental imaging of heterogeneous samples in the micrometer range. Laboratory setups using X-ray tube excitation render the method accessible for diverse research fields but interpretation of results and quantification remain challenging. The attenuation of X-rays in composites depends on the photon energy as well as on the composition and density of the material. For confocal micro-XRF, attenuation severely impacts elemental distribution information, as the signal from deeper layers is distorted by superficial layers. Absorption correction and quantification of fluorescence measurements in heterogeneous composite samples have so far not been reported. Here, an absorption correction approach for confocal micro-XRF combining density information from microcomputed tomography (micro-CT) data with laboratory X-ray absorption spectroscopy (XAS) and synchrotron transmission measurements is presented. The energy dependency of the probing volume is considered during the correction. The methodology is demonstrated on a model composite sample consisting of a bovine tooth with a clinically used restoration material.

2.
Anal Chem ; 95(13): 5627-5634, 2023 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-36961956

RESUMO

As an important raw material for the confectionery industry, the cocoa bean (Theobroma cacao L.) has to meet certain legal requirements in terms of food safety and maximum contaminant levels in order to enter the cocoa market. Understanding the enrichment and distribution of essential minerals but also toxic metals is of utmost importance for improving the nutritional quality of this economically important raw food material. We present three X-ray fluorescence (XRF) techniques for elemental bio-imaging of intact cocoa beans and one additional XRF technique for quantitative analysis of cocoa pellets. The interrelation of all the methods presented gives a detailed picture of the content and 3D-resolved distribution of elements in complete cocoa beans for the first time.


Assuntos
Cacau , Fluorescência , Raios X , Fermentação
3.
Opt Express ; 29(9): 13518, 2021 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-33985083

RESUMO

We provide corrections for our previous publication [Opt. Express27, 36524 (2019)10.1364/OE.27.036524].

4.
Int J Mol Sci ; 22(24)2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34948258

RESUMO

The extension of the pump-probe approach known from UV/VIS spectroscopy to very short wavelengths together with advanced simulation techniques allows a detailed analysis of excited-state dynamics in organic molecules or biomolecular structures on a nanosecond to femtosecond time level. Optical pump soft X-ray probe spectroscopy is a relatively new approach to detect and characterize optically dark states in organic molecules, exciton dynamics or transient ligand-to-metal charge transfer states. In this paper, we describe two experimental setups for transient soft X-ray absorption spectroscopy based on an LPP emitting picosecond and sub-nanosecond soft X-ray pulses in the photon energy range between 50 and 1500 eV. We apply these setups for near-edge X-ray absorption fine structure (NEXAFS) investigations of thin films of a metal-free porphyrin, an aggregate forming carbocyanine and a nickel oxide molecule. NEXAFS investigations have been carried out at the carbon, nitrogen and oxygen K-edge as well as on the Ni L-edge. From time-resolved NEXAFS carbon, K-edge measurements of the metal-free porphyrin first insights into a long-lived trap state are gained. Our findings are discussed and compared with density functional theory calculations.


Assuntos
Compostos Orgânicos/química , Espectroscopia por Absorção de Raios X/métodos , Teoria da Densidade Funcional , Elétrons , Estrutura Molecular , Porfirinas/química , Teoria Quântica , Quinolinas/química , Raios X
5.
Anal Chem ; 92(23): 15611-15615, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33206514

RESUMO

We demonstrate visible pump soft X-ray probe near-edge X-ray absorption fine structure (NEXAFS) spectroscopy measurements at the carbon K edge on thin molecular films in the laboratory. This opens new opportunities through the use of laboratory equipment for chemical speciation. We investigate the metal-free porphyrin derivative tetra(tert-butyl)porphyrazine as an ideal model system to elucidate electronic properties of tetrapyrroles like chlorophyll or heme. In contrast to measurements in gas or liquid state, the investigation of thin films is of high interest in the field of optoelectronic and photovoltaic devices though challenging due to the low damage thresholds of the samples upon excitation. With a careful pre-characterization using optical techniques, successful measurements were performed using a NEXAFS spectrometer based on a laser-produced plasma source and reflection zone plates with a resolving power of 1000 and a time resolution of 0.5 ns. In combination with density functional theory calculations, first insights into a long-lived excitonic state are gained and discussed.

6.
Physiol Plant ; 168(4): 934-947, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31605394

RESUMO

The uptake of inorganic nutrients by rootless parasitic plants, which depend on host connections for all nutrient supplies, is largely uncharted. Using X-ray fluorescence spectroscopy (XRF), we analyzed the element composition of macro- and micronutrients at infection sites of the parasitic angiosperm Cuscuta reflexa growing on hosts of the genus Pelargonium. Imaging methods combining XRF with 2-D or 3-D (confocal) microscopy show that most of the measured elements are present at similar concentrations in the parasite compared to the host. However, calcium and strontium levels drop pronouncedly at the host/parasite interface, and manganese appears to accumulate in the host tissue surrounding the interface. Chlorine is present in the haustorium at similar levels as in the host tissue but is decreased in the stem of the parasite. Thus, our observations indicate a restricted uptake of calcium, strontium, manganese and chlorine by the parasite. Xylem-mobile dyes, which can probe for xylem connectivity between host and parasite, provided evidence for an interspecies xylem flow, which in theory would be expected to carry all of the elements indiscriminately. We thus conclude that inorganic nutrient uptake by the parasite Cuscuta is regulated by specific selective barriers whose existence has evaded detection until now.


Assuntos
Cuscuta/metabolismo , Pelargonium , Doenças das Plantas , Minerais
7.
Opt Express ; 27(25): 36524-36537, 2019 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-31873429

RESUMO

We present a laboratory setup for near edge X-ray absorption spectroscopy (NEXAFS) in the soft X-ray regime between 284 eV to 1303 eV with a resolving power of up to 1370. Based on a laser-produced plasma source, a pair of identical reflection zone plates and an X-ray CCD camera, the setup is intended for optical pump X-ray probe NEXAFS measurements with a detectable change in absorption of the excited sample down to 10-4 and 500 ps time resolution. Because of the high stability of the source the statistical error only depends on the detector response and the number of photons detected and can reach the detector noise limit after a couple of thousands single shots. Thus, structure-function relationship investigations of bio-molecules are rendered feasible in the laboratory.

8.
Anal Chem ; 89(10): 5453-5460, 2017 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-28406610

RESUMO

We present a novel absorption correction approach for elemental distribution images obtained with a laboratory confocal micro X-ray fluorescence spectrometer. The procedure is suited especially for biological samples, as a constant dark matrix with a varying minor or trace element distribution is assumed. The constant absorption in the sample is extracted from depth dependent measurements. By using the concept of an effective excitation energy, depth-dependent, and element-specific excitation energy values are calculated. For each voxel of a full 3D measurement, a correction is performed taking into account the actual number of voxels in the excitation and detection path. As proof of concept, the embryonic region of pearl millet seeds is investigated. Data are measured from the top and bottom side, resulting in a good agreement after the application of the absorption correction procedure. The distribution of elemental micronutrients is compared in seeds of two pearl millet genotypes. The corrected images illustrate different localization patterns of the micronutrient elements in pearl millet seed tissues.

9.
Anal Chem ; 86(19): 9774-80, 2014 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-25162502

RESUMO

Depth profiling with confocal micro-X-ray fluorescence spectroscopy (confocal micro-XRF) is a nondestructive analytical method for obtaining elemental depth profiles in the micrometer region. Up until now, the quantitative reconstruction of thicknesses and elemental concentration of stratified samples has been only possible with monochromatic, thus, synchrotron radiation. In this work, we present a new calibration and reconstruction procedure, which renders quantification in the laboratory feasible. The proposed model uses the approximation of an effective spot size of the optic in the excitation channel and relies on the calibration of the transmission of this lens beforehand. Calibration issues are discussed and validation measurements on thick multielement reference material and a stratified system are presented.

10.
Anal Chem ; 86(14): 6924-30, 2014 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-24905420

RESUMO

The decorated black- and red-figured Athenian vases (sixth and fifth century BC) and the plain black-glazed ware represent a milestone in our material culture due to their aesthetic and technological value; the Attic black glaze is of particular interest since it is a highly resistant potash-alumino-silicate glass, colored by magnetite nanocrystals (<200 nm). This study presents a new methodological approach for correlating the iron oxidation state in the black glaze layer with the manufacturing process by means of conventional and confocal X-ray absorption near edge spectroscopy (XANES). The enhanced surface sensitivity of confocal XANES is combined with conventional XANES resulting in higher counting rates to reliably evaluate the iron oxidation state (Fe(3+)/ΣFe) of the surface layer. A detailed description of the new evaluation procedure is presented. The three-stage firing process was retraced by correlating selected attic black-glazed (BG) specimens from different periods (Archaic, Classical, Hellenistic) with laboratory reproductions. The modern BG specimens serving as reference samples were produced by following the three-stage firing process (i.e., under oxidizing-reducing-oxidizing (ORO) conditions) at different top temperatures, using clay suspensions of different particle size produced with treatment of raw illitic clays from Attica.

11.
PLoS One ; 19(6): e0304614, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38870218

RESUMO

Humanity is often fascinated by structures and materials developed by Nature. While structural materials such as wood have been widely studied, the structural and mechanical properties of fungi are still largely unknown. One of the structurally interesting fungi is the polypore Fomes fomentarius. The present study deals with the investigation of the light but robust fruiting body of F. fomentarius. The four segments of the fruiting body (crust, trama, hymenium, and mycelial core) were examined. The comprehensive analysis included structural, chemical, and mechanical characterization with particular attention to cell wall composition, such as chitin/chitosan and glucan content, degree of deacetylation, and distribution of trace elements. The hymenium exhibited the best mechanical properties even though having the highest porosity. Our results suggest that this outstanding strength is due to the high proportion of skeletal hyphae and the highest chitin/chitosan content in the cell wall, next to its honeycomb structure. In addition, an increased calcium content was found in the hymenium and crust, and the presence of calcium oxalate crystals was confirmed by SEM-EDX. Interestingly, layers with different densities as well as layers of varying calcium and potassium depletion were found in the crust. Our results show the importance of considering the different structural and compositional characteristics of the segments when developing fungal-inspired materials and products. Moreover, the porous yet robust structure of hymenium is a promising blueprint for the development of advanced smart materials.


Assuntos
Carpóforos , Carpóforos/química , Quitina/química , Quitina/metabolismo , Parede Celular/química , Coriolaceae/metabolismo , Coriolaceae/química , Quitosana/química , Força Compressiva , Glucanos/química , Glucanos/metabolismo , Porosidade
12.
Acta Biomater ; 179: 164-179, 2024 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-38513725

RESUMO

Failure-resistant designs are particularly crucial for bones subjected to rapid loading, as is the case for the ambush-hunting northern pike (Esox lucius). These fish have slim and low-density osteocyte-lacking bones. As part of the swallowing mechanism, the cleithrum bone opens and closes the jaw. The cleithrum needs sufficient strength and damage tolerance, to withstand years of repetitive rapid gape-and-suck cycles of feeding. The thin wing-shaped bone comprises anisotropic layers of mineralized collagen fibers that exhibit periodic variations in mineral density on the mm and micrometer length scales. Wavy collagen fibrils interconnect these layers yielding a highly anisotropic structure. Hydrated cleithra exhibit Young's moduli spanning 3-9 GPa where the yield stress of ∼40 MPa increases markedly to exceed ∼180 MPa upon drying. This 5x observation of increased strength corresponds to a change to brittle fracture patterns. It matches the emergence of compressive residual strains of ∼0.15% within the mineral crystals due to forces from shrinking collagen layers. Compressive stresses on the nanoscale, combined with the layered anisotropic microstructure on the mm length scale, jointly confer structural stability in the slender and lightweight bones. By employing a range of X-ray, electron and optical imaging and mechanical characterization techniques, we reveal the structure and properties that make the cleithra impressively damage resistant composites. STATEMENT OF SIGNIFICANCE: By combining structural and mechanical characterization techniques spanning the mm to the sub-nanometer length scales, this work provides insights into the structural organization and properties of a resilient bone found in pike fish. Our observations show how the anosteocytic bone within the pectoral gridle of these fish, lacking any biological (remodeling) repair mechanisms, is adapted to sustain natural repeated loading cycles of abrupt jaw-gaping and swallowing. We find residual strains within the mineral apatite nanocrystals that contribute to forming a remarkably resilient composite material. Such information gleaned from bony structures that are different from the usual bones of mammals showcases how nature incorporates smart features that induce damage tolerance in bone material, an adaptation acquired through natural evolutionary processes.


Assuntos
Esocidae , Animais , Esocidae/fisiologia , Osso e Ossos/fisiologia , Estresse Mecânico , Nanopartículas/química , Força Compressiva , Evolução Biológica , Módulo de Elasticidade , Colágeno/química
13.
J Phys Chem Lett ; 15(18): 4976-4982, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38691639

RESUMO

Photoassisted catalysis using Ni complexes is an emerging field for cross-coupling reactions in organic synthesis. However, the mechanism by which light enables and enhances the reactivity of these complexes often remains elusive. Although optical techniques have been widely used to study the ground and excited states of photocatalysts, they lack the specificity to interrogate the electronic and structural changes at specific atoms. Herein, we report metal-specific studies using transient Ni L- and K-edge X-ray absorption spectroscopy of a prototypical Ni photocatalyst, (dtbbpy)Ni(o-tol)Cl (dtb = 4,4'-di-tert-butyl, bpy = bipyridine, o-tol = ortho-tolyl), in solution. We unambiguously confirm via direct experimental evidence that the long-lived (∼5 ns) excited state is a tetrahedral metal-centered triplet state. These results demonstrate the power of ultrafast X-ray spectroscopies to unambiguously elucidate the nature of excited states in important transition-metal-based photocatalytic systems.

14.
Anal Chem ; 85(7): 3682-9, 2013 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-23445459

RESUMO

A new approach for the nondestructive reconstruction of stratified systems with constant elemental composition but with varying chemical compounds has been developed. The procedure is based on depth scans with a confocal X-ray fluorescence setup at certain energies near absorption edges. These so-called marker energies, where XAFS signals of the involved chemical compounds differ significantly, can also be used to uncover the chemical composition and its topology. A prominent field of application is homogeneous material that is degraded due to chemical reactions like oxidation or reduction. A procedure for the semiquantitative reconstruction of stratified material by means of depth scans at marker energies is elaborated and validated and a three-dimensional mapping is presented.

15.
Anal Chem ; 84(4): 1907-14, 2012 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-22303902

RESUMO

A new approach for chemical speciation in stratified systems using 3D Micro-XAFS spectroscopy is developed by combining 3D Micro X-ray Fluorescence Spectroscopy (3D Micro-XRF) and conventional X-ray Absorption Fine Structure Spectroscopy (XAFS). A prominent field of application is stratified materials within which depth-resolved chemical speciation is required. Measurements are collected in fluorescence mode which in general lead to distorted spectra due to absorption effects. Developing a reliable reconstruction algorithm for obtaining undistorted spectra for superficial and in-depth layers is proposed and validated. The developed algorithm calculates the attenuation coefficients of the analyte for the successive layers facilitating a new spectroscopic tool for three-dimensionally resolved nondestructive chemical speciation.

16.
Anal Bioanal Chem ; 402(4): 1493-503, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21805315

RESUMO

In this study, we address the question of the provenance and origin of the Dead Sea Scrolls manuscripts. A characteristic low ratio of chlorine to bromine, corresponding to that of the Dead Sea water, may serve as an indicator for local production. For this aim we developed a non-destructive procedure to determine the Cl/Br ratio in the parchment of these manuscripts. Micro-X-ray fluorescence (µ-XRF) measurements of a large number of parchment and leather fragments from the Dead Sea Scrolls were analyzed with a routine we developed based on fundamental parameter quantification. This routine takes into account the absorption of the collagen matrix and the influence of the different sample thicknesses. To calculate the representative Cl/Br ratio for each fragment, we investigated the lateral homogeneity and determined the total mass deposition using the intensity of the inelastically scattered, characteristic tube radiation. The distribution of the Cl/Br ratios thus obtained from the µ-XRF measurements make it possible to distinguish fragments whose origin lies within the Dead Sea region from those produced in other locations.

17.
Nanomaterials (Basel) ; 12(21)2022 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-36364540

RESUMO

Scan-free grazing-emission X-ray fluorescence spectroscopy (GEXRF) is an established technique for the investigation of the elemental depth-profiles of various samples. Recently it has been applied to investigating structured nanosamples in the tender X-ray range. However, lighter elements such as oxygen, nitrogen or carbon cannot be efficiently investigated in this energy range, because of the ineffective excitation. Moreover, common CCD detectors are not able to discriminate between fluorescence lines below 1 keV. Oxygen and nitrogen are important components of insulation and passivation layers, for example, in silicon oxide or silicon nitride. In this work, scan-free GEXRF is applied in proof-of-concept measurements for the investigation of lateral ordered 2D nanostructures in the soft X-ray range. The sample investigated is a Si3N4 lamellar grating, which represents 2D periodic nanostructures as used in the semiconductor industry. The emerging two-dimensional fluorescence patterns are recorded with a CMOS detector. To this end, energy-dispersive spectra are obtained via single-photon event evaluation. In this way, spatial and therefore angular information is obtained, while discrimination between different photon energies is enabled. The results are compared to calculations of the sample model performed by a Maxwell solver based on the finite-elements method. A first measurement is carried out at the UE56-2 PGM-2 beamline at the BESSY II synchrotron radiation facility to demonstrate the feasibility of the method in the soft X-ray range. Furthermore, a laser-produced plasma source (LPP) is utilized to investigate the feasibility of this technique in the laboratory. The results from the BESSY II measurements are in good agreement with the simulations and prove the applicability of scan-free GEXRF in the soft X-ray range for quality control and process engineering of 2D nanostructures. The LPP results illustrate the chances and challenges concerning a transfer of the methodology to the laboratory.

18.
Anal Chem ; 83(16): 6308-15, 2011 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-21711051

RESUMO

A combination of 3D micro X-ray fluorescence spectroscopy (3D micro-XRF) and micro-XRF was utilized for the investigation of a small collection of highly heterogeneous, partly degraded Dead Sea Scroll parchment samples from known excavation sites. The quantitative combination of the two techniques proves to be suitable for the identification of reliable marker elements which may be used for classification and provenance studies. With 3D micro-XRF, the three-dimensional nature, i.e. the depth-resolved elemental composition as well as density variations, of the samples was investigated and bromine could be identified as a suitable marker element. It is shown through a comparison of quantitative and semiquantitative values for the bromine content derived using both techniques that, for elements which are homogeneously distributed in the sample matrix, quantification with micro-XRF using a one-layer model is feasible. Thus, the possibility for routine provenance studies using portable micro-XRF instrumentation on a vast amount of samples, even on site, is obtained through this work.

19.
Rev Sci Instrum ; 92(2): 023102, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33648064

RESUMO

In laboratory based x-ray absorption fine structure (XAFS) spectroscopy, the slow readout speed of conventional CCD cameras can prolong the measuring times by multiple orders of magnitude. Using pulsed sources, e.g., laser-based x-ray sources, the pulse repetition rate often exceeds the frame rate of the CCD camera. We report the use of a scientific CMOS (sCMOS) camera for XAFS spectroscopy with a laser-produced plasma source facilitating measurements at 100 Hz. With this technological improvement, a new class of experiments becomes possible, starting from the time consuming analysis of samples with small absorption to pump-probe investigations. Furthermore, laboratory quick soft x-ray absorption fine structure (QXAFS) measurements with 10 ms time resolution are rendered feasible. We present the characterization of the sCMOS camera concerning noise characteristics and a comparison to conventional CCD camera performance. The feasibility of time resolved QXAFS measurements is shown by analyzing the statistical uncertainty of single shot spectra. Finally, XAFS spectroscopy on a complex sandwich structure with minute amounts of NiO exemplifies the additional merits of fast detectors.

20.
Science ; 374(6564): 206-211, 2021 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-34618575

RESUMO

To anchor in seashore habitats, mussels fabricate adhesive byssus fibers that are mechanically reinforced by protein-metal coordination mediated by 3,4-dihydroxyphenylalanine (DOPA). The mechanism by which metal ions are integrated during byssus formation remains unknown. In this study, we investigated the byssus formation process in the blue mussel, Mytilus edulis, combining traditional and advanced methods to identify how and when metals are incorporated. Mussels store iron and vanadium ions in intracellular metal storage particles (MSPs) complexed with previously unknown catechol-based biomolecules. During adhesive formation, stockpiled secretory vesicles containing concentrated fluid proteins are mixed with MSPs within a microfluidic-like network of interconnected channels where they coalesce, forming protein-metal bonds within the nascent byssus. These findings advance our understanding of metal use in biological materials with implications for next-generation metallopolymers and adhesives.


Assuntos
Adesivos/metabolismo , Di-Hidroxifenilalanina/metabolismo , Ferro/metabolismo , Mytilus edulis/metabolismo , Vesículas Secretórias/metabolismo , Vanádio/metabolismo , Adesivos/química , Animais , Transporte Biológico , Microfluídica , Proteínas/química , Proteínas/metabolismo , Análise Espectral Raman
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA