Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Brain ; 145(6): 2008-2017, 2022 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-34927199

RESUMO

Diffusely abnormal white matter, characterised by biochemical changes of myelin in the absence of frank demyelination, has been associated with clinical progression in secondary progressive multiple sclerosis. However, little is known about changes of diffusely abnormal white matter over time and their relation to focal white matter lesions. The objectives of this work were: (i) to characterize the longitudinal evolution of focal white matter lesions, diffusely abnormal white matter and diffusely abnormal white matter that transforms into focal white matter lesions; and (ii) to determine whether gadolinium enhancement, known to be associated with the development of new focal white matter lesions, is also related to diffusely abnormal white matter voxels that transform into focal white matter lesions. Our data included 4220 MRI scans of 689 secondary progressive multiple sclerosis participants, followed for 156 weeks, and 2677 scans of 686 relapsing-remitting multiple sclerosis participants, followed for 96 weeks. Focal white matter lesions and diffusely abnormal white matter were segmented using a previously validated, automatic thresholding technique based on normalized T2 intensity values. Using longitudinally registered images, diffusely abnormal white matter voxels at each visit that transformed into focal white matter lesions on the last MRI scan as well as their overlap with gadolinium-enhancing lesion masks were identified. Our results showed that the average yearly rate of conversion of diffusely abnormal white matter to focal white matter lesions was 1.27 cm3 for secondary progressive multiple sclerosis and 0.80 cm3 for relapsing-remitting multiple sclerosis. Focal white matter lesions in secondary progressive multiple sclerosis participants significantly increased (t = 3.9; P = 0.0001) while diffusely abnormal white matter significantly decreased (t = -4.3 P < 0.0001) and the ratio of focal white matter lesions to diffusely abnormal white matter increased (t = 12.7; P < 0.00001). Relapsing-remitting multiple sclerosis participants also showed an increase in the focal white matter lesions to diffusely abnormal white matter ratio (t = 6.9; P < 0.00001) but without a significant change of the individual volumes. Gadolinium enhancement was associated with 7.3% and 18.7% of focal new T2 lesion formation in the infrequent scans of the relapsing-remitting multiple sclerosis and secondary progressive multiple sclerosis cohorts, respectively. In comparison, only 0.1% and 0.0% of diffusely abnormal white matter to focal white matter lesions voxels overlapped with gadolinium enhancement. We conclude that diffusely abnormal white matter transforms into focal white matter lesions over time in both relapsing-remitting multiple sclerosis and secondary progressive multiple sclerosis. Diffusely abnormal white matter appears to represent a form of pre-lesional pathology that contributes to T2 lesion volume increase over time, independent of new focal inflammation and gadolinium enhancement.


Assuntos
Esclerose Múltipla Crônica Progressiva , Esclerose Múltipla Recidivante-Remitente , Esclerose Múltipla , Substância Branca , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Meios de Contraste , Gadolínio , Humanos , Inflamação/patologia , Imageamento por Ressonância Magnética/métodos , Esclerose Múltipla/patologia , Esclerose Múltipla Crônica Progressiva/patologia , Esclerose Múltipla Recidivante-Remitente/diagnóstico por imagem , Esclerose Múltipla Recidivante-Remitente/patologia , Substância Branca/diagnóstico por imagem , Substância Branca/patologia
2.
NMR Biomed ; 35(8): e4730, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35297114

RESUMO

Manually segmenting multiple sclerosis (MS) cortical lesions (CLs) is extremely time consuming, and past studies have shown only moderate inter-rater reliability. To accelerate this task, we developed a deep-learning-based framework (CLAIMS: Cortical Lesion AI-Based Assessment in Multiple Sclerosis) for the automated detection and classification of MS CLs with 7 T MRI. Two 7 T datasets, acquired at different sites, were considered. The first consisted of 60 scans that include 0.5 mm isotropic MP2RAGE acquired four times (MP2RAGE×4), 0.7 mm MP2RAGE, 0.5 mm T2 *-weighted GRE, and 0.5 mm T2 *-weighted EPI. The second dataset consisted of 20 scans including only 0.75 × 0.75 × 0.9 mm3 MP2RAGE. CLAIMS was first evaluated using sixfold cross-validation with single and multi-contrast 0.5 mm MRI input. Second, the performance of the model was tested on 0.7 mm MP2RAGE images after training with either 0.5 mm MP2RAGE×4, 0.7 mm MP2RAGE, or alternating the two. Third, its generalizability was evaluated on the second external dataset and compared with a state-of-the-art technique based on partial volume estimation and topological constraints (MSLAST). CLAIMS trained only with MP2RAGE×4 achieved results comparable to those of the multi-contrast model, reaching a CL true positive rate of 74% with a false positive rate of 30%. Detection rate was excellent for leukocortical and subpial lesions (83%, and 70%, respectively), whereas it reached 53% for intracortical lesions. The correlation between disability measures and CL count was similar for manual and CLAIMS lesion counts. Applying a domain-scanner adaptation approach and testing CLAIMS on the second dataset, the performance was superior to MSLAST when considering a minimum lesion volume of 6 µL (lesion-wise detection rate of 71% versus 48%). The proposed framework outperforms previous state-of-the-art methods for automated CL detection across scanners and protocols. In the future, CLAIMS may be useful to support clinical decisions at 7 T MRI, especially in the field of diagnosis and differential diagnosis of MS patients.


Assuntos
Aprendizado Profundo , Esclerose Múltipla , Humanos , Imageamento por Ressonância Magnética/métodos , Esclerose Múltipla/diagnóstico por imagem , Esclerose Múltipla/patologia , Reprodutibilidade dos Testes
3.
Mult Scler ; 28(9): 1351-1363, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35142571

RESUMO

BACKGROUND: Dramatic improvements in visualization of cortical (especially subpial) multiple sclerosis (MS) lesions allow assessment of impact on clinical course. OBJECTIVE: Characterize cortical lesions by 7 tesla (T) T2*-/T1-weighted magnetic resonance imaging (MRI); determine relationship with other MS pathology and contribution to disability. METHODS: Sixty-four adults with MS (45 relapsing-remitting/19 progressive) underwent 3 T brain/spine MRI, 7 T brain MRI, and clinical testing. RESULTS: Cortical lesions were found in 94% (progressive: median 56/range 2-203; relapsing-remitting: 15/0-168; p = 0.004). Lesion distribution across 50 cortical regions was nonuniform (p = 0.006), with highest lesion burden in supplementary motor cortex and highest prevalence in superior frontal gyrus. Leukocortical and white matter lesion volumes were strongly correlated (r = 0.58, p < 0.0001), while subpial and white matter lesion volumes were moderately correlated (r = 0.30, p = 0.002). Leukocortical (p = 0.02) but not subpial lesions (p = 0.40) were correlated with paramagnetic rim lesions; both were correlated with spinal cord lesions (p = 0.01). Cortical lesion volumes (total and subtypes) were correlated with expanded disability status scale, 25-foot timed walk, nine-hole peg test, and symbol digit modality test scores. CONCLUSION: Cortical lesions are highly prevalent and are associated with disability and progressive disease. Subpial lesion burden is not strongly correlated with white matter lesions, suggesting differences in inflammation and repair mechanisms.


Assuntos
Pessoas com Deficiência , Esclerose Múltipla , Substância Branca , Adulto , Encéfalo/patologia , Humanos , Imageamento por Ressonância Magnética/métodos , Esclerose Múltipla/patologia , Substância Branca/patologia
4.
Mult Scler ; 27(2): 208-219, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32202199

RESUMO

BACKGROUND: Diffusely abnormal white matter (DAWM) regions are observed in magnetic resonance images of secondary progressive multiple sclerosis (SPMS) patients. However, their role in clinical progression is still not established. OBJECTIVES: To characterize the longitudinal volumetric and intensity evolution of DAWM and focal white matter lesions (FWML) and assess their associations with clinical outcomes and progression in SPMS. METHODS: Data include 589 SPMS participants followed up for 3 years (3951 time points). FWML and DAWM were automatically segmented. Screening DAWM volumes that transformed into FWML at the last visit (DAWM-to-FWML) and normalized T1-weighted intensities (indicating severity of damage) in those voxels were calculated. RESULTS: FWML volume increased and DAWM volume decreased with an increase in disease duration (p < 0.001). The Expanded Disability Status Scale (EDSS) was positively associated with FWML volumes (p = 0.002), but not with DAWM. DAWM-to-FWML volume was higher in patients who progressed (2.75 cm3 vs. 1.70 cm3; p < 0.0001). Normalized T1-weighted intensity of DAWM-to-FWML was negatively associated with progression (p < 0.00001). CONCLUSION: DAWM transformed into FWML over time, and this transformation was associated with clinical progression. DAWM-to-FWML voxels had greater normalized T1-weighted intensity decrease over time, in keeping with relatively greater tissue damage. Evaluation of DAWM in progressive multiple sclerosis provides a useful measure for therapies aiming to protect this at-risk tissue with the potential to slow progression.


Assuntos
Esclerose Múltipla Crônica Progressiva , Esclerose Múltipla , Substância Branca , Encéfalo/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética , Esclerose Múltipla Crônica Progressiva/diagnóstico por imagem , Substância Branca/diagnóstico por imagem
5.
Brain ; 143(7): 2089-2105, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32572488

RESUMO

Despite important efforts to solve the clinico-radiological paradox, correlation between lesion load and physical disability in patients with multiple sclerosis remains modest. One hypothesis could be that lesion location in corticospinal tracts plays a key role in explaining motor impairment. In this study, we describe the distribution of lesions along the corticospinal tracts from the cortex to the cervical spinal cord in patients with various disease phenotypes and disability status. We also assess the link between lesion load and location within corticospinal tracts, and disability at baseline and 2-year follow-up. We retrospectively included 290 patients (22 clinically isolated syndrome, 198 relapsing remitting, 39 secondary progressive, 31 primary progressive multiple sclerosis) from eight sites. Lesions were segmented on both brain (T2-FLAIR or T2-weighted) and cervical (axial T2- or T2*-weighted) MRI scans. Data were processed using an automated and publicly available pipeline. Brain, brainstem and spinal cord portions of the corticospinal tracts were identified using probabilistic atlases to measure the lesion volume fraction. Lesion frequency maps were produced for each phenotype and disability scores assessed with Expanded Disability Status Scale score and pyramidal functional system score. Results show that lesions were not homogeneously distributed along the corticospinal tracts, with the highest lesion frequency in the corona radiata and between C2 and C4 vertebral levels. The lesion volume fraction in the corticospinal tracts was higher in secondary and primary progressive patients (mean = 3.6 ± 2.7% and 2.9 ± 2.4%), compared to relapsing-remitting patients (1.6 ± 2.1%, both P < 0.0001). Voxel-wise analyses confirmed that lesion frequency was higher in progressive compared to relapsing-remitting patients, with significant bilateral clusters in the spinal cord corticospinal tracts (P < 0.01). The baseline Expanded Disability Status Scale score was associated with lesion volume fraction within the brain (r = 0.31, P < 0.0001), brainstem (r = 0.45, P < 0.0001) and spinal cord (r = 0.57, P < 0.0001) corticospinal tracts. The spinal cord corticospinal tracts lesion volume fraction remained the strongest factor in the multiple linear regression model, independently from cord atrophy. Baseline spinal cord corticospinal tracts lesion volume fraction was also associated with disability progression at 2-year follow-up (P = 0.003). Our results suggest a cumulative effect of lesions within the corticospinal tracts along the brain, brainstem and spinal cord portions to explain physical disability in multiple sclerosis patients, with a predominant impact of intramedullary lesions.


Assuntos
Encéfalo/patologia , Esclerose Múltipla/patologia , Tratos Piramidais/patologia , Adulto , Medula Cervical/patologia , Avaliação da Deficiência , Progressão da Doença , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos
6.
Neuroimage ; 213: 116690, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32119987

RESUMO

BACKGROUND: Previous histopathology and MRI studies have addressed the differences between focal white matter lesions (FWML) and diffusely abnormal white matter (DAWM) in multiple sclerosis (MS). These two categories of white matter T2-weighted (T2w) hyperintensity show different degrees of demyelination, axonal loss and immune cell density on histopathology, potentially offering distinct correlations with symptoms. OBJECTIVES: 1) To automate the separation of FWML and DAWM using T2w MRI intensity thresholds and to investigate their differences in magnetization transfer ratios (MTR), which are sensitive to myelin content; 2) to correlate MTR values in FWML and DAWM with normalized signal intensity values on fluid attenuated inversion recovery (FLAIR), T2w, and T1-weighted (T1w) contrasts, as well as with the ratio of T2w/T1w normalized values, in order to determine whether these normalized intensities can be used when MTR is not available. METHODS: We used three MRI datasets: datasets 1 and 2 had 20 MS participants each, scanned with similar 3T MRI protocols in 2 centers, including: 3D T1w (MP2RAGE), 3D FLAIR, 2D T2w, and 3D magnetization-transfer (MT) contrasts. Dataset 3 consisted of 67 scans of participants enrolled in a multisite study and had T1w and T2w contrasts. We used the first dataset to develop an automated technique to separate FWML from DAWM and the second and third to validate the automation of the technique. We applied the automatic thresholds to all datasets to assess the overlap of the manual and the automated masks using Dice kappa. We also assessed differences in mean MTR values between NAWM, DAWM and FWML, using manually and automatically derived masks in datasets 1 and 2. Finally, we used the mean intensity of manually-traced areas of NAWM on T2w images as the normalization factor for each MRI contrast, and compared these with the normalized-intensity values obtained using automated NAWM (A-NAWM) masks as the normalization factor. ANOVA assessed the MTR differences across tissue types. Paired t-test or Wilcoxon signed-ranked test assessed FWML and DAWM differences between manual and automatically derived volumes. Pearson correlations assessed the relationship between MTR and normalized intensity values in the manual and automatically derived masks. RESULTS: The mean Dice-kappa values for dataset 1 were: 0.79 for DAWM masks and 0.90 for FWML masks. In dataset 2, mean Dice-kappa values were: 0.78 for DAWM and 0.87 for FWML. In dataset 3, mean Dice-kappa values were 0.72 for DAWM, and 0.87 for FWML. Manual and automated DAWM and FWML volumes were not significantly different in all datasets. MTR values were significantly lower in manually and automatically derived FWML compared with DAWM in both datasets (dataset 1 manual: F â€‹= â€‹111,08, p â€‹< â€‹0.0001; automated: F â€‹= â€‹153.90, p â€‹< â€‹0.0001; dataset 2 manual: F â€‹= â€‹31.25, p â€‹< â€‹0.0001; automated: F â€‹= â€‹74.04, p â€‹< â€‹0.0001). In both datasets, manually derived FWML and DAWM MTR values showed significant correlations with normalized T1w (r â€‹= â€‹0.77 to 0.94) intensities. CONCLUSIONS: The separation of FWML and DAWM on MRI scans of MS patients using automated intensity thresholds on T2w images is feasible. MTR values are significantly lower in FWML than DAWM, and DAWM values are significantly lower than NAWM, reflecting potentially greater demyelination within focal lesions. T1w normalized intensity values exhibit a significant correlation with MTR values in both tissues of interest and could be used as a proxy to assess demyelination when MTR or other myelin-sensitive images are not available.


Assuntos
Encéfalo/diagnóstico por imagem , Interpretação de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Esclerose Múltipla/diagnóstico por imagem , Substância Branca/diagnóstico por imagem , Adulto , Automação , Encéfalo/patologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Esclerose Múltipla/patologia , Substância Branca/patologia
7.
Neuroimage ; 214: 116737, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32171923

RESUMO

BACKGROUND: Brain volume loss measured from magnetic resonance imaging (MRI) is a marker of neurodegeneration and predictor of disability progression in MS, and is commonly used to assess drug efficacy at the group level in clinical trials. Whether measures of brain volume loss could be useful to help guide management of individual patients depends on the relative magnitude of the changes over a given interval to physiological and technical sources of variability. GOAL: To understand the relative contributions of neurodegeneration vs. physiological and technical sources of variability to measurements of brain volume loss in individuals. MATERIAL AND METHODS: Multiple T1-weighted 3D MPRAGE images were acquired from a healthy volunteer and MS patient over varying time intervals: 7 times on the first day (before breakfast at 7:30AM and then every 2 â€‹h for 12 â€‹h), each day for the next 6 working days, and 6 times over the remainder of the year, on 2 â€‹Siemens MRI scanners: 1.5T Sonata (S1) and 3.0T TIM Trio (S2). Scan-reposition-rescan data were acquired on S2 for daily, monthly and 1-year visits. Percent brain volume change (PBVC) was measured from baseline to each follow-up scan using FSL/SIENA. We estimated the effect of physiologic fluctuations on brain volume using linear regression of the PBVC values over hourly and daily intervals. The magnitude of the physiological effect was estimated by comparing the root-mean-square error (RMSE) of the regression of all the data points relative to the regression line, for the hourly scans vs the daily scans. Variance due to technical sources was assessed as the RMSE of the regression over time using the intracranial volume as a reference. RESULTS: The RMSE of PBVC over 12 â€‹h, for both scanners combined, ("Hours", 0.15%), was similar to the day-to-day variation over 1 week ("Days", 0.14%), and both were smaller than the RMS error over the year (0.21%). All of these variations, however, were smaller than the scan-reposition-rescan RMSE (0.32%). The variability of PBVC for the individual scanners followed the same trend. The standard error of the mean (SEM) for PBVC was 0.26 for S1, and 0.22 for S2. From these values, we computed the minimum detectable change (MDC) to be 0.7% on S1 and 0.6% on S2. The location of the brain along the z-axis of the magnet inversely correlated with brain volume change for hourly and daily brain volume fluctuations (p â€‹< â€‹0.01). CONCLUSION: Consistent diurnal brain volume fluctuations attributable to physiological shifts were not detectable in this small study. Technical sources of variation dominate measured changes in brain volume in individuals until the volume loss exceeds around 0.6-0.7%. Reliable interpretation of measured brain volume changes as pathological (greater than normal aging) in individuals over 1 year requires changes in excess of about 1.1% (depending on the scanner). Reliable brain atrophy detection in an individual may be feasible if the rate of brain volume loss is large, or if the measurement interval is sufficiently long.


Assuntos
Encéfalo/patologia , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Esclerose Múltipla/patologia , Neuroimagem/métodos , Adulto , Atrofia/diagnóstico por imagem , Atrofia/patologia , Encéfalo/diagnóstico por imagem , Voluntários Saudáveis , Humanos , Masculino , Esclerose Múltipla/diagnóstico por imagem
8.
Brain ; 142(3): 633-646, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30715195

RESUMO

Spinal cord lesions detected on MRI hold important diagnostic and prognostic value for multiple sclerosis. Previous attempts to correlate lesion burden with clinical status have had limited success, however, suggesting that lesion location may be a contributor. Our aim was to explore the spatial distribution of multiple sclerosis lesions in the cervical spinal cord, with respect to clinical status. We included 642 suspected or confirmed multiple sclerosis patients (31 clinically isolated syndrome, and 416 relapsing-remitting, 84 secondary progressive, and 73 primary progressive multiple sclerosis) from 13 clinical sites. Cervical spine lesions were manually delineated on T2- and T2*-weighted axial and sagittal MRI scans acquired at 3 or 7 T. With an automatic publicly-available analysis pipeline we produced voxelwise lesion frequency maps to identify predilection sites in various patient groups characterized by clinical subtype, Expanded Disability Status Scale score and disease duration. We also measured absolute and normalized lesion volumes in several regions of interest using an atlas-based approach, and evaluated differences within and between groups. The lateral funiculi were more frequently affected by lesions in progressive subtypes than in relapsing in voxelwise analysis (P < 0.001), which was further confirmed by absolute and normalized lesion volumes (P < 0.01). The central cord area was more often affected by lesions in primary progressive than relapse-remitting patients (P < 0.001). Between white and grey matter, the absolute lesion volume in the white matter was greater than in the grey matter in all phenotypes (P < 0.001); however when normalizing by each region, normalized lesion volumes were comparable between white and grey matter in primary progressive patients. Lesions appearing in the lateral funiculi and central cord area were significantly correlated with Expanded Disability Status Scale score (P < 0.001). High lesion frequencies were observed in patients with a more aggressive disease course, rather than long disease duration. Lesions located in the lateral funiculi and central cord area of the cervical spine may influence clinical status in multiple sclerosis. This work shows the added value of cervical spine lesions, and provides an avenue for evaluating the distribution of spinal cord lesions in various patient groups.


Assuntos
Medula Cervical/patologia , Esclerose Múltipla/diagnóstico por imagem , Esclerose Múltipla/patologia , Adulto , Encéfalo/patologia , Medula Cervical/diagnóstico por imagem , Medula Cervical/metabolismo , Avaliação da Deficiência , Progressão da Doença , Feminino , Substância Cinzenta/patologia , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Pessoa de Meia-Idade , Esclerose Múltipla Crônica Progressiva/patologia , Esclerose Múltipla Recidivante-Remitente/patologia , Análise Espacial , Medula Espinal/patologia , Doenças da Medula Espinal , Substância Branca/patologia
9.
Neuroimage ; 184: 901-915, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30300751

RESUMO

The spinal cord is frequently affected by atrophy and/or lesions in multiple sclerosis (MS) patients. Segmentation of the spinal cord and lesions from MRI data provides measures of damage, which are key criteria for the diagnosis, prognosis, and longitudinal monitoring in MS. Automating this operation eliminates inter-rater variability and increases the efficiency of large-throughput analysis pipelines. Robust and reliable segmentation across multi-site spinal cord data is challenging because of the large variability related to acquisition parameters and image artifacts. In particular, a precise delineation of lesions is hindered by a broad heterogeneity of lesion contrast, size, location, and shape. The goal of this study was to develop a fully-automatic framework - robust to variability in both image parameters and clinical condition - for segmentation of the spinal cord and intramedullary MS lesions from conventional MRI data of MS and non-MS cases. Scans of 1042 subjects (459 healthy controls, 471 MS patients, and 112 with other spinal pathologies) were included in this multi-site study (n = 30). Data spanned three contrasts (T1-, T2-, and T2∗-weighted) for a total of 1943 vol and featured large heterogeneity in terms of resolution, orientation, coverage, and clinical conditions. The proposed cord and lesion automatic segmentation approach is based on a sequence of two Convolutional Neural Networks (CNNs). To deal with the very small proportion of spinal cord and/or lesion voxels compared to the rest of the volume, a first CNN with 2D dilated convolutions detects the spinal cord centerline, followed by a second CNN with 3D convolutions that segments the spinal cord and/or lesions. CNNs were trained independently with the Dice loss. When compared against manual segmentation, our CNN-based approach showed a median Dice of 95% vs. 88% for PropSeg (p ≤ 0.05), a state-of-the-art spinal cord segmentation method. Regarding lesion segmentation on MS data, our framework provided a Dice of 60%, a relative volume difference of -15%, and a lesion-wise detection sensitivity and precision of 83% and 77%, respectively. In this study, we introduce a robust method to segment the spinal cord and intramedullary MS lesions on a variety of MRI contrasts. The proposed framework is open-source and readily available in the Spinal Cord Toolbox.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Esclerose Múltipla/diagnóstico por imagem , Esclerose Múltipla/patologia , Redes Neurais de Computação , Medula Espinal/patologia , Humanos , Imageamento por Ressonância Magnética/métodos , Variações Dependentes do Observador , Reconhecimento Automatizado de Padrão , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
10.
Mult Scler ; 25(8): 1113-1123, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-29909771

RESUMO

BACKGROUND: Studies including patients with well-established multiple sclerosis (MS) have shown a significant and disability-related reduction in the cervical spinal cord (SC) magnetisation transfer ratio (MTR). OBJECTIVES: The objectives are to (1) assess whether MTR reduction is already measurable in the SC of patients with early relapsing-remitting multiple sclerosis (RRMS) and (2) describe its spatial distribution. METHODS: We included 60 patients with RRMS <12 months and 34 age-matched controls at five centres. Axial T2*w, sagittal T2w, sagittal phase-sensitive inversion recovery (PSIR), 3DT1w, and axial magnetisation transfer (MT) images were acquired from C1 to C7. Lesions were manually labelled and mean MTR values computed both for the whole SC and for normal-appearing SC in different regions of interest. RESULTS: Mean whole SC MTR was significantly lower in patients than controls (33.7 vs 34.9 pu, p = 0.00005), even after excluding lesions (33.9 pu, p = 0.0003). We observed a greater mean reduction in MTR for vertebral levels displaying the highest lesion loads (C2-C4). In the axial plane, we observed a greater mean MTR reduction at the SC periphery and barycentre. CONCLUSION: Cervical SC tissue damage measured using MTR is not restricted to macroscopic lesions in patients with early RRMS and is not homogeneously distributed.


Assuntos
Medula Cervical/patologia , Imageamento por Ressonância Magnética/métodos , Esclerose Múltipla Recidivante-Remitente/patologia , Adulto , Medula Cervical/diagnóstico por imagem , Feminino , Humanos , Masculino , Esclerose Múltipla Recidivante-Remitente/diagnóstico por imagem , Neuroimagem
11.
Mult Scler ; 25(7): 980-986, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-29852831

RESUMO

OBJECTIVE: To determine the frequency of cortical lesions (CLs) in patients with pediatric-onset multiple sclerosis (POMS) using multi-contrast magnetic resonance imaging (MRI), and the relationship between frontal CL load and upper limb dexterity assessed with the Nine-Hole Peg Test (9-HPT). METHODS: Participants completed the 9-HPT and were imaged on a 3T MRI scanner to collect T1-weighted three-dimensional (3D) magnetization prepared rapid gradient echo (MPRAGE), proton density-weighted, T2-weighted and fluid-attenuated inversion recovery (FLAIR) images. CLs were manually segmented using all MRI contrasts. RESULTS: We enrolled 24 participants with POMS (mean (standard deviation) age at first symptom: 13.3 (±2.7) years; mean age at scan: 18.8 (±3) years; mean disease duration of 5 (±3.2) years). A total of 391 CLs (mean, 16.3 ± 27.2; median, 7) were identified in 19 of 24 POMS patients (79%). The total number of CLs was positively associated with white matter lesion volume ( p = 0.04) but not with thalamic volume, age at the time of the scan, or disease duration. The number of frontal CLs was associated with slower performance on the 9-HPT ( p = 0.05). CONCLUSION: Multi-contrast 3T MRI led to a high rate of CL detection, demonstrating that cortical pathology occurs even in pediatric-onset disease. Frontal lobe CL count was associated with reduced manual dexterity, indicating that these CLs are clinically relevant.


Assuntos
Córtex Cerebral/patologia , Mãos/fisiopatologia , Destreza Motora/fisiologia , Neuroimagem/métodos , Substância Branca/patologia , Substância Branca/fisiopatologia , Adolescente , Córtex Cerebral/diagnóstico por imagem , Criança , Feminino , Lobo Frontal/diagnóstico por imagem , Lobo Frontal/patologia , Humanos , Imageamento por Ressonância Magnética , Masculino , Substância Branca/diagnóstico por imagem
12.
Hum Brain Mapp ; 39(3): 1093-1107, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29181872

RESUMO

INTRODUCTION: Fluid-attenuated Inversion Recovery (FLAIR) and dual T2w and proton density (PD) magnetic resonance images (MRIs) are considered to be the optimum sequences for detecting white matter hyperintensities (WMHs) in aging and Alzheimer's disease populations. However, many existing large multisite studies forgo their acquisition in favor of other MRI sequences due to economic and time constraints. METHODS: In this article, we have investigated whether FLAIR and T2w/PD sequences are necessary to detect WMHs in Alzheimer's and aging studies, compared to using only T1w images. Using a previously validated automated tool based on a Random Forests classifier, WMHs were segmented for the baseline visits of subjects from ADC, ADNI1, and ADNI2/GO studies with and without T2w/PD and FLAIR information. The obtained WMH loads (WMHLs) in different lobes were then correlated with manually segmented WMHLs, each other, age, cognitive, and clinical measures to assess the strength of the correlations with and without using T2w/PD and FLAIR information. RESULTS: The WMHLs obtained from T1w-Only segmentations correlated with the manual WMHLs (ADNI1: r = .743, p < .001, ADNI2/GO: r = .904, p < .001), segmentations obtained from T1w + T2w + PD for ADNI1 (r = .888, p < .001) and T1w + FLAIR for ADNI2/GO (r = .969, p < .001), age (ADNI1: r = .391, p < .001, ADNI2/GO: r = .466, p < .001), and ADAS13 (ADNI1: r = .227, p < .001, ADNI2/GO: r = .190, p < 0.001), and NPI (ADNI1: r = .290, p < .001, ADNI2/GO: r = 0.144, p < .001), controlling for age. CONCLUSION: Our results suggest that while T2w/PD and FLAIR provide more accurate estimates of the true WMHLs, T1w-Only segmentations can still provide estimates that hold strong correlations with the actual WMHLs, age, and performance on various cognitive/clinical scales, giving added value to datasets where T2w/PD or FLAIR are not available.


Assuntos
Envelhecimento , Encéfalo/diagnóstico por imagem , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética , Substância Branca/diagnóstico por imagem , Idoso , Envelhecimento/patologia , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/patologia , Encéfalo/patologia , Conjuntos de Dados como Assunto , Feminino , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Tamanho do Órgão , Reconhecimento Automatizado de Padrão , Substância Branca/patologia
13.
Neuroimage ; 157: 233-249, 2017 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-28602597

RESUMO

INTRODUCTION: White matter hyperintensities (WMHs) are areas of abnormal signal on magnetic resonance images (MRIs) that characterize various types of histopathological lesions. The load and location of WMHs are important clinical measures that may indicate the presence of small vessel disease in aging and Alzheimer's disease (AD) patients. Manually segmenting WMHs is time consuming and prone to inter-rater and intra-rater variabilities. Automated tools that can accurately and robustly detect these lesions can be used to measure the vascular burden in individuals with AD or the elderly population in general. Many WMH segmentation techniques use a classifier in combination with a set of intensity and location features to segment WMHs, however, the optimal choice of classifier is unknown. METHODS: We compare 10 different linear and nonlinear classification techniques to identify WMHs from MRI data. Each classifier is trained and optimized based on a set of features obtained from co-registered MR images containing spatial location and intensity information. We further assess the performance of the classifiers using different combinations of MRI contrast information. The performances of the different classifiers were compared on three heterogeneous multi-site datasets, including images acquired with different scanners and different scan-parameters. These included data from the ADC study from University of California Davis, the NACC database and the ADNI study. The classifiers (naïve Bayes, logistic regression, decision trees, random forests, support vector machines, k-nearest neighbors, bagging, and boosting) were evaluated using a variety of voxel-wise and volumetric similarity measures such as Dice Kappa similarity index (SI), Intra-Class Correlation (ICC), and sensitivity as well as computational burden and processing times. These investigations enable meaningful comparisons between the performances of different classifiers to determine the most suitable classifiers for segmentation of WMHs. In the spirit of open-source science, we also make available a fully automated tool for segmentation of WMHs with pre-trained classifiers for all these techniques. RESULTS: Random Forests yielded the best performance among all classifiers with mean Dice Kappa (SI) of 0.66±0.17 and ICC=0.99 for the ADC dataset (using T1w, T2w, PD, and FLAIR scans), SI=0.72±0.10, ICC=0.93 for the NACC dataset (using T1w and FLAIR scans), SI=0.66±0.23, ICC=0.94 for ADNI1 dataset (using T1w, T2w, and PD scans) and SI=0.72±0.19, ICC=0.96 for ADNI2/GO dataset (using T1w and FLAIR scans). Not using the T2w/PD information did not change the performance of the Random Forest classifier (SI=0.66±0.17, ICC=0.99). However, not using FLAIR information in the ADC dataset significantly decreased the Dice Kappa, but the volumetric correlation did not drastically change (SI=0.47±0.21, ICC=0.95). CONCLUSION: Our investigations showed that with appropriate features, most off-the-shelf classifiers are able to accurately detect WMHs in presence of FLAIR scan information, while Random Forests had the best performance across all datasets. However, we observed that the performances of most linear classifiers and some nonlinear classifiers drastically decline in absence of FLAIR information, with Random Forest still retaining the best performance.


Assuntos
Envelhecimento/patologia , Doença de Alzheimer/diagnóstico por imagem , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Substância Branca/diagnóstico por imagem , Idoso , Idoso de 80 Anos ou mais , Conjuntos de Dados como Assunto , Feminino , Humanos , Processamento de Imagem Assistida por Computador/normas , Imageamento por Ressonância Magnética/normas , Masculino
14.
Front Neuroanat ; 18: 1372953, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38659652

RESUMO

Background: Brain banks provide small tissue samples to researchers, while gross anatomy laboratories could provide larger samples, including complete brains to neuroscientists. However, they are preserved with solutions appropriate for gross-dissection, different from the classic neutral-buffered formalin (NBF) used in brain banks. Our previous work in mice showed that two gross-anatomy laboratory solutions, a saturated-salt-solution (SSS) and an alcohol-formaldehyde-solution (AFS), preserve antigenicity of the main cellular markers (neurons, astrocytes, microglia, and myelin). Our goal is now to compare the quality of histology and antigenicity preservation of human brains fixed with NBF by immersion (practice of brain banks) vs. those fixed with a SSS and an AFS by whole body perfusion, practice of gross-anatomy laboratories. Methods: We used a convenience sample of 42 brains (31 males, 11 females; 25-90 years old) fixed with NBF (N = 12), SSS (N = 13), and AFS (N = 17). One cm3 tissue blocks were cut, cryoprotected, frozen and sliced into 40 µm sections. The four cell populations were labeled using immunohistochemistry (Neurons = neuronal-nuclei = NeuN, astrocytes = glial-fibrillary-acidic-protein = GFAP, microglia = ionized-calcium-binding-adaptor-molecule1 = Iba1 and oligodendrocytes = myelin-proteolipid-protein = PLP). We qualitatively assessed antigenicity and cell distribution, and compared the ease of manipulation of the sections, the microscopic tissue quality, and the quality of common histochemical stains (e.g., Cresyl violet, Luxol fast blue, etc.) across solutions. Results: Sections of SSS-fixed brains were more difficult to manipulate and showed poorer tissue quality than those from brains fixed with the other solutions. The four antigens were preserved, and cell labeling was more often homogeneous in AFS-fixed specimens. NeuN and GFAP were not always present in NBF and SSS samples. Some antigens were heterogeneously distributed in some specimens, independently of the fixative, but an antigen retrieval protocol successfully recovered them. Finally, the histochemical stains were of sufficient quality regardless of the fixative, although neurons were more often paler in SSS-fixed specimens. Conclusion: Antigenicity was preserved in human brains fixed with solutions used in human gross-anatomy (albeit the poorer quality of SSS-fixed specimens). For some specific variables, histology quality was superior in AFS-fixed brains. Furthermore, we show the feasibility of frequently used histochemical stains. These results are promising for neuroscientists interested in using brain specimens from anatomy laboratories.

15.
Brain Commun ; 6(3): fcae158, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38818331

RESUMO

Cortical lesions are common in multiple sclerosis and are associated with disability and progressive disease. We asked whether cortical lesions continue to form in people with stable white matter lesions and whether the association of cortical lesions with worsening disability relates to pre-existing or new cortical lesions. Fifty adults with multiple sclerosis and no new white matter lesions in the year prior to enrolment (33 relapsing-remitting and 17 progressive) and a comparison group of nine adults who had formed at least one new white matter lesion in the year prior to enrolment (active relapsing-remitting) were evaluated annually with 7 tesla (T) brain MRI and 3T brain and spine MRI for 2 years, with clinical assessments for 3 years. Cortical lesions and paramagnetic rim lesions were identified on 7T images. Seven total cortical lesions formed in 3/30 individuals in the stable relapsing-remitting group (median 0, range 0-5), four total cortical lesions formed in 4/17 individuals in the progressive group (median 0, range 0-1), and 16 cortical lesions formed in 5/9 individuals in the active relapsing-remitting group (median 1, range 0-10, stable relapsing-remitting versus progressive versus active relapsing-remitting P = 0.006). New cortical lesions were not associated with greater change in any individual disability measure or in a composite measure of disability worsening (worsening Expanded Disability Status Scale or 9-hole peg test or 25-foot timed walk). Individuals with at least three paramagnetic rim lesions had a greater increase in cortical lesion volume over time (median 16 µl, range -61 to 215 versus median 1 µl, range -24 to 184, P = 0.007), but change in lesion volume was not associated with disability change. Baseline cortical lesion volume was higher in people with worsening disability (median 1010 µl, range 13-9888 versus median 267 µl, range 0-3539, P = 0.001, adjusted for age and sex) and in individuals with relapsing-remitting multiple sclerosis who subsequently transitioned to secondary progressive multiple sclerosis (median 2183 µl, range 270-9888 versus median 321 µl, range 0-6392 in those who remained relapsing-remitting, P = 0.01, adjusted for age and sex). Baseline white matter lesion volume was not associated with worsening disability or transition from relapsing-remitting to secondary progressive multiple sclerosis. Cortical lesion formation is rare in people with stable white matter lesions, even in those with worsening disability. Cortical but not white matter lesion burden predicts disability worsening, suggesting that disability progression is related to long-term effects of cortical lesions that form early in the disease, rather than to ongoing cortical lesion formation.

16.
Neurology ; 101(8): e815-e824, 2023 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-37407262

RESUMO

BACKGROUND AND OBJECTIVES: White matter hyperintensities (WMH) are pathologic brain changes that are associated with increased age and cognitive decline. However, the association of WMH burden with amyloid positivity and conversion to dementia in people with mild cognitive impairment (MCI) is unclear. The aim of this study was to expand on this research by examining whether change in WMH burden over time differs in amyloid-negative (Aß-) and amyloid-positive (Aß+) people with MCI who either remain stable or convert to dementia. To examine this question, we compared regional WMH burden in 4 groups: Aß+ progressor, Aß- progressor, Aß+ stable, and Aß- stable. METHODS: Participants with MCI from the Alzheimer Disease Neuroimaging Initiative were included if they had APOE ɛ4 status and if amyloid measures were available to determine amyloid status (i.e., Aß+, or Aß-). Participants with a baseline diagnosis of MCI and who had APOE ɛ4 information and amyloid measures were included. An average of 5.7 follow-up time points per participant were included, with a total of 5,054 follow-up time points with a maximum follow-up duration of 13 years. Differences in total and regional WMH burden were examined using linear mixed-effects models. RESULTS: A total of 820 participants (55-90 years of age) were included in the study (Aß+ progressor, n = 239; Aß- progressor, n = 22; Aß+ stable, n = 343; Aß- stable, n = 216). People who were Aß- stable exhibited reduced baseline WMH compared with Aß+ progressors and people who were Aß+ stable at all regions of interest (ß belongs to 0.20-0.33, CI belongs to 0.03-0.49, p < 0.02), except deep WMH. When examining longitudinal results, compared with people who were Aß- stable, all groups had steeper accumulation in WMH burden with Aß+ progressors (ß belongs to -0.03 to 0.06, CI belongs to -0.05 to 0.09, p < 0.01) having the largest increase (i.e., largest increase in WMH accumulation over time). DISCUSSION: These results indicate that WMH accumulation contributes to conversion to dementia in older adults with MCI who are Aß+ and Aß-.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Substância Branca , Humanos , Idoso , Substância Branca/patologia , Peptídeos beta-Amiloides/metabolismo , Disfunção Cognitiva/psicologia , Doença de Alzheimer/patologia , Apolipoproteínas E , Imageamento por Ressonância Magnética
17.
Geroscience ; 45(1): 1-16, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36229760

RESUMO

White matter hyperintensities (WMHs) are pathological changes that occur with increased age and are associated with cognitive decline. Most WMH research has not examined regional differences and focuses on a whole-brain approach. This study examined regional WMHs between normal controls (NCs), people with mild cognitive impairment (MCI), and Alzheimer's disease (AD). We also examined whether WMHs were associated with cognitive decline. Participants from the Alzheimer's Disease Neuroimaging Initiative were included if they had at least one WMH measurement and cognitive scores examining global cognition, executive functioning, and memory. Only amyloid-positive MCI and AD participants were included. A total of 1573 participants with 7381 timepoints over a maximum period of 13 years were included. Linear mixed-effects models examined group differences in WMH burden and associations between WMH burden and cognition. People with MCI and AD had increased total and regional WMHs compared to NCs. An association between WMHs and cognition was observed for global cognition, executive functioning, and memory in NCs in all regions. A steeper decline (stronger association between WMH and cognition) was observed in MCI compared to NCs for all cognitive domains in all regions. A steeper decline was observed in AD compared to NCs for global cognition in only the temporal region. A strong association is observed between all cognitive domains of interest and WMH burden in healthy aging and MCI, while those with AD only had a few associations between WMH and global cognition. These findings suggest that the WMH burden is associated with changes in cognition in healthy aging and early cognitive decline.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Substância Branca , Humanos , Doença de Alzheimer/complicações , Imageamento por Ressonância Magnética/métodos , Disfunção Cognitiva/patologia , Cognição
18.
medRxiv ; 2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-37886541

RESUMO

Background and objectives: Cortical lesions (CL) are common in multiple sclerosis (MS) and associate with disability and progressive disease. We asked whether CL continue to form in people with stable white matter lesions (WML) and whether the association of CL with worsening disability relates to pre-existing or new CL. Methods: A cohort of adults with MS were evaluated annually with 7 tesla (T) brain magnetic resonance imaging (MRI) and 3T brain and spine MRI for 2 years, and clinical assessments for 3 years. CL were identified on 7T images at each timepoint. WML and brain tissue segmentation were performed using 3T images at baseline and year 2. Results: 59 adults with MS had ≥1 7T follow-up visit (mean follow-up time 2±0.5 years). 9 had "active" relapsing-remitting MS (RRMS), defined as new WML in the year prior to enrollment. Of the remaining 50, 33 had "stable" RRMS, 14 secondary progressive MS (SPMS), and 3 primary progressive MS. 16 total new CL formed in the active RRMS group (median 1, range 0-10), 7 in the stable RRMS group (median 0, range 0-5), and 4 in the progressive MS group (median 0, range 0-1) (p=0.006, stable RR vs PMS p=0.88). New CL were not associated with greater change in any individual disability measure or in a composite measure of disability worsening (worsening Expanded Disability Status Scale or 9-hole peg test or 25-foot timed walk). Baseline CL volume was higher in people with worsening disability (median 1010µl, range 13-9888 vs median 267µl, range 0-3539, p=0.001, adjusted for age and sex) and in individuals with RRMS who subsequently transitioned to SPMS (median 2183µl, range 270-9888 vs median 321µl, range 0-6392 in those who remained RRMS, p=0.01, adjusted for age and sex). Baseline WML volume was not associated with worsening disability or transition from RRMS to SPMS. Discussion: CL formation is rare in people with stable WML, even in those with worsening disability. CL but not WML burden predicts future worsening of disability, suggesting that the relationship between CL and disability progression is related to long-term effects of lesions that form in the earlier stages of disease, rather than to ongoing lesion formation.

19.
Front Neuroanat ; 16: 957358, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36312297

RESUMO

Background: Histology remains the gold-standard to assess human brain biology, so ex vivo studies using tissue from brain banks are standard practice in neuroscientific research. However, a larger number of specimens could be obtained from gross anatomy laboratories. These specimens are fixed with solutions appropriate for dissections, but whether they also preserve brain tissue antigenicity is unclear. Therefore, we perfused mice brains with solutions used for human body preservation to assess and compare the tissue quality and antigenicity of the main cell populations. Materials and methods: Twenty-eight C57BL/6J mice were perfused with 4% formaldehyde (FAS, N = 9), salt-saturated solution (SSS, N = 9), and alcohol solution (AS, N = 10). The brains were cut into 40 µm sections for antigenicity analysis and were assessed by immunohistochemistry of four antigens: neuronal nuclei (NeuN), glial fibrillary acidic protein (GFAP astrocytes), ionized calcium-binding adaptor molecule 1 (Iba1-microglia), and myelin proteolipid protein (PLP). We compared the fixatives according to multiple variables: perfusion quality, ease of manipulation, tissue quality, immunohistochemistry quality, and antigenicity preservation. Results: The perfusion quality was better using FAS and worse using AS. The manipulation was very poor in SSS brains. FAS- and AS-fixed brains showed higher tissue and immunohistochemistry quality than the SSS brains. All antigens were readily observed in every specimen, regardless of the fixative solution. Conclusion: Solutions designed to preserve specimens for human gross anatomy dissections also preserve tissue antigenicity in different brain cells. This offers opportunities for the use of human brains fixed in gross anatomy laboratories to assess normal or pathological conditions.

20.
Front Neuroimaging ; 1: 940849, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-37555147

RESUMO

Introduction: Cerebral microbleeds are small perivascular hemorrhages that can occur in both gray and white matter brain regions. Microbleeds are a marker of cerebrovascular pathology and are associated with an increased risk of cognitive decline and dementia. Microbleeds can be identified and manually segmented by expert radiologists and neurologists, usually from susceptibility-contrast MRI. The latter is hard to harmonize across scanners, while manual segmentation is laborious, time-consuming, and subject to interrater and intrarater variability. Automated techniques so far have shown high accuracy at a neighborhood ("patch") level at the expense of a high number of false positive voxel-wise lesions. We aimed to develop an automated, more precise microbleed segmentation tool that can use standardizable MRI contrasts. Methods: We first trained a ResNet50 network on another MRI segmentation task (cerebrospinal fluid vs. background segmentation) using T1-weighted, T2-weighted, and T2* MRIs. We then used transfer learning to train the network for the detection of microbleeds with the same contrasts. As a final step, we employed a combination of morphological operators and rules at the local lesion level to remove false positives. Manual segmentation of microbleeds from 78 participants was used to train and validate the system. We assessed the impact of patch size, freezing weights of the initial layers, mini-batch size, learning rate, and data augmentation on the performance of the Microbleed ResNet50 network. Results: The proposed method achieved high performance, with a patch-level sensitivity, specificity, and accuracy of 99.57, 99.16, and 99.93%, respectively. At a per lesion level, sensitivity, precision, and Dice similarity index values were 89.1, 20.1, and 0.28% for cortical GM; 100, 100, and 1.0% for deep GM; and 91.1, 44.3, and 0.58% for WM, respectively. Discussion: The proposed microbleed segmentation method is more suitable for the automated detection of microbleeds with high sensitivity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA