Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Vet Res Commun ; 33(1): 49-56, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18604592

RESUMO

Melatonin (N-acetyl-5-methoxytryptamine), an indole hormone, regulates various biological functions through three different receptor subtypes (Mel-1a, Mel-1b, and Mel-1c). However, the distribution of different melatonin receptor subtypes in chicken reproductive tissues was not known. In the present investigation, the partial sequences of ovarian melatonin receptor subtypes (Mel-1a, Mel-1b, and Mel-1c) were characterized. Further, the expression profile of melatonin receptor subtypes in the granulosa and theca layers of different preovulatory and postovulatory follicles (POF) were studied by semi-quantitative RT-PCR. The expression of all three subtypes of melatonin receptors were observed in the ovary of domestic chicken. Analysis of partial sequences of ovarian melatonin receptors revealed that the melatonin subtypes were identical to the brain receptors. In small white ovary follicles, we observed only the expression of mel-1b receptors, but not mel-1a or mel-1c receptors. In yellow follicles, all the three subtypes of receptors expression were noticed. Interestingly, we observed the expression of mel-1a receptor only in thecal layer, but not in granulosa layer. In contrast, mel-1b and -1c receptors were expressed in both granulosa and thecal layer. During the regression of POF, we observed significant upregulation of melatonin receptors (mel-1a and 1c) expression, that downregulated in the later stages of regression. We assume that the expression of melatonin receptors might have been influenced by the atresia or apoptosis of different follicular layers in POF. Our findings suggest that the differential distribution of melatonin receptor subtypes might have distinct downstream cellular functions in the ovarian tissues.


Assuntos
Galinhas/fisiologia , Perfilação da Expressão Gênica/veterinária , Ovário/metabolismo , Receptores de Melatonina/metabolismo , Animais , Clonagem Molecular , Feminino , Regulação da Expressão Gênica/fisiologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores de Melatonina/genética
2.
Vet Res Commun ; 32(1): 13-9, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17564810

RESUMO

Chicken postovulatory follicle (POF) regression occurs via the process of apoptosis. However, the signals and initiator pathways responsible for regression of the POF are unknown. In the current study, we examined gene expression patterns of various caspases (caspase-1, -2 and -3) involved in apoptosis by semi-quantitative RT-PCR. The percentage of apoptotic cells during POF regression was also quantified by flow cytometry. Expression of caspase-3 mRNA was noted in the largest preovulatory follicle (F1). However, the initiator caspases (caspase-1 and -2) were not expressed in F1. During the regression of the POF, caspase-3 was activated during initial stages, whereas the initiator caspases were upregulated at the later stages (POF4 and POF5). The percentage of apoptotic cells was significantly higher during the regression of the POF. It might be possible that levels of caspase-3 mRNA do not necessarily reflect the cell's potential for facilitating apoptosis, as activation of the caspase-3 by initiator caspases is required for its function. We presume that both caspase-1 and caspase-2 were key initiators in the regression of chicken POF and that the apoptosis-mediated regression of POFs might be similar to mammalian corpus luteum involution.


Assuntos
Apoptose , Caspases/metabolismo , Galinhas/fisiologia , Folículo Ovariano/fisiologia , Ovulação/fisiologia , Animais , Caspases/genética , Feminino , Regulação da Expressão Gênica , RNA Mensageiro/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA