Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 118(44)2021 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-34702738

RESUMO

Here, we expressed two neutralizing monoclonal antibodies (Abs) against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2; H4 and B38) in three formats: IgG1, IgA1 monomers (m), and IgA1 dimers (d) in glycoengineered Nicotiana benthamiana plants. All six Ab variants assembled properly and exhibited a largely homogeneous glycosylation profile. Despite modest variation in antigen binding between Ab formats, SARS-CoV-2 neutralization (NT) potency significantly increased in the following manner: IgG1 < IgA1-m < IgA1-d, with an up to 240-fold NT increase of dimers compared to corresponding monomers. Our results underscore that both IgA's structural features and multivalency positively impact NT potency. In addition, they emphasize the versatile use of plants for the rapid expression of complex human proteins.


Assuntos
Anticorpos Monoclonais/química , COVID-19/virologia , Imunoglobulina A/química , Imunoglobulina G/química , SARS-CoV-2/imunologia , Animais , Anticorpos Neutralizantes/imunologia , Chlorocebus aethiops , Ensaio de Imunoadsorção Enzimática , Humanos , Testes de Neutralização , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/imunologia , Células Vero
2.
Glycoconj J ; 40(1): 97-108, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36269466

RESUMO

Studying the interaction between the hemibiotrophic bacterium Pseudomonas syringae pv. tomato DC3000 and Arabidopsis thaliana has shed light onto the various forms of mechanisms plants use to defend themselves against pathogen attack. While a lot of emphasis has been put on investigating changes in protein expression in infected plants, only little information is available on the effect infection plays on the plants N-glycan composition. To close this gap in knowledge, total N-glycans were enriched from P. syringae DC3000-infected and mock treated Arabidopsis seedlings and analyzed via MALDI-TOF-MS. Additionally, fluorescently labelled N-glycans were quantified via HPLC-FLD. N-glycans from infected plants were overall less processed and displayed increased amounts of oligomannosidic N-glycans. As multiple peaks for certain oligomannosidic glycoforms were detected upon separation via liquid chromatography, a porous graphitic carbon (PGC)-analysis was conducted to separate individual N-glycan isomers. Indeed, multiple different N-glycan isomers with masses of two N-acetylhexosamine residues plus 8, 9 or 10 hexoses were detected in the infected plants which were absent in the mock controls. Treatment with jack bean α-mannosidase resulted in incomplete removal of hexoses from these N-glycans, indicating the presence of glucose residues. This hints at the accumulation of misfolded glycoproteins in the infected plants, likely because of endoplasmic reticulum (ER) stress. In addition, poly-hexose structures susceptible to α-amylase treatment were found in the DC3000-infected plants, indicating alterations in starch metabolism due to the infection process.


Assuntos
Arabidopsis , Arabidopsis/metabolismo , Arabidopsis/microbiologia , Pseudomonas syringae/metabolismo , Polissacarídeos/metabolismo , Glicoproteínas/metabolismo , Processamento de Proteína Pós-Traducional
3.
Int J Mol Sci ; 24(13)2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37446069

RESUMO

CD19 is an essential protein in personalized CD19-targeting chimeric antigen receptor (CAR)-T cell-based cancer immunotherapies and CAR-T cell functionality evaluation. However, the recombinant expression of this "difficult to-express" (DTE) protein is challenging, and therefore, commercial access to the protein is limited. We have previously described the successful stable expression of our soluble CD19-AD2 fusion protein of the CD19 extracellular part fused with human serum albumin domain 2 (AD2) in CHO-K1 cells. The function, stability, and secretion rate of DTE proteins can be improved by culture conditions, such as reduced temperature and a shorter residence time. Moreover, glycosylation, as one of the most important post-translational modifications, represents a critical quality attribute potentially affecting CAR-T cell effector function and thus impacting therapy's success. In this study, we increased the production rate of CD19-AD2 by 3.5-fold through applying hypothermic culture conditions. We efficiently improved the purification of our his-tagged CD19-AD2 fusion protein via a Ni-NTA-based affinity column using a stepwise increase in the imidazole concentration. The binding affinity to commercially available anti-CD19 antibodies was evaluated via Bio-Layer Interferometry (BLI). Furthermore, we revealed glycosylation patterns via Electrospray Ionization Mass Spectrometry (ESI-MS), and five highly sialylated and multi-antennary N-glycosylation sites were identified. In summary, we optimized the CD19-AD2 production and purification process and were the first to characterize five highly complex N-glycosylation sites.


Assuntos
Neoplasias , Linfócitos T , Cricetinae , Animais , Humanos , Glicosilação , Cricetulus , Proteínas Recombinantes/genética , Imunoterapia Adotiva/métodos
4.
Glycobiology ; 32(5): 404-413, 2022 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-35088086

RESUMO

Elevated plasma and tissues histamine concentrations can cause severe symptoms in mast cell activation syndrome, mastocytosis or anaphylaxis. Endogenous and recombinant human diamine oxidase (rhDAO) can rapidly and completely degrade histamine, and administration of rhDAO represents a promising new treatment approach for diseases with excess histamine release from activated mast cells. We recently generated heparin-binding motif mutants of rhDAO with considerably increased in vivo half-lives in rodents compared with the rapidly cleared wildtype protein. Herein, we characterize the role of an evolutionary recently added glycosylation site asparagine 168 in the in vivo clearance and the influence of an unusually solvent accessible free cysteine 123 on the oligomerization of diamine oxidase (DAO). Mutation of the unpaired cysteine 123 strongly reduced oligomerization without influence on enzymatic DAO activity and in vivo clearance. Recombinant hDAO produced in ExpiCHO-S™ cells showed a 15-fold reduction in the percentage of glycans with terminal sialic acid at Asn168 compared with Chinese hamster ovary (CHO)-K1 cells. Capping with sialic acid was also strongly reduced at the other glycosylation sites. The high abundance of terminal mannose and N-acetylglucosamine residues in the four glycans expressed in ExpiCHO-S™ cells compared with CHO-K1 cells resulted in rapid in vivo clearance. Mutation of Asn168 or sialidase treatment also significantly increased clearance. Intact N-glycans at Asn168 seem to protect DAO from rapid clearance in rodents. Full processing of all glycoforms is critical for preserving the improved in vivo half-life characteristics of the rhDAO heparin-binding motif mutants.


Assuntos
Amina Oxidase (contendo Cobre) , Amina Oxidase (contendo Cobre)/química , Amina Oxidase (contendo Cobre)/metabolismo , Animais , Células CHO , Cricetinae , Cricetulus , Cisteína , Glicosilação , Heparina , Histamina/metabolismo , Humanos , Ácido N-Acetilneuramínico , Polissacarídeos/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
5.
Anal Chem ; 93(45): 15175-15182, 2021 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-34723506

RESUMO

The importance of protein glycosylation in the biomedical field requires methods that not only quantitate structures by their monosaccharide composition, but also resolve and identify the many isomers expressed by mammalian cells. The art of unambiguous identification of isomeric structures in complex mixtures, however, did not yet catch up with the fast pace of advance of high-throughput glycomics. Here, we present a strategy for deducing structures with the help of a deci-minute accurate retention time library for porous graphitic carbon chromatography with mass spectrometric detection. We implemented the concept for the fundamental N-glycan type consisting of five hexoses, four N-acetylhexosamines and one fucose residue. Nearly all of the 40 biosynthetized isomers occupied unique elution positions. This result demonstrates the unique isomer selectivity of porous graphitic carbon. With the help of a rather tightly spaced grid of isotope-labeled internal N-glycan, standard retention times were transposed to a standard chromatogram. Application of this approach to animal and human brain N-glycans immediately identified the majority of structures as being of the bisected type. Most notably, it exposed hybrid-type glycans with galactosylated and even Lewis X containing bisected N-acetylglucosamine, which have not yet been discovered in a natural source. Thus, the time grid approach implemented herein facilitated discovery of the still missing pieces of the N-glycome in our most noble organ and suggests itself─in conjunction with collision induced dissociation─as a starting point for the overdue development of isomer-specific deep structural glycomics.


Assuntos
Glicômica , Polissacarídeos , Animais , Encéfalo , Fucose , Glicosilação , Humanos
6.
FEMS Yeast Res ; 21(2)2021 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-33599728

RESUMO

Methylotrophic yeasts are considered to use alcohol oxidases to assimilate methanol, different to bacteria which employ alcohol dehydrogenases with better energy conservation. The yeast Komagataella phaffii carries two genes coding for alcohol oxidase, AOX1 and AOX2. The deletion of the AOX1 leads to the MutS phenotype and the deletion of AOX1 and AOX2 to the Mut- phenotype. The Mut- phenotype is commonly regarded as unable to utilize methanol. In contrast to the literature, we found that the Mut- strain can consume methanol. This ability was based on the promiscuous activity of alcohol dehydrogenase Adh2, an enzyme ubiquitously found in yeast and normally responsible for ethanol consumption and production. Using 13C labeled methanol as substrate we could show that to the largest part methanol is dissimilated to CO2 and a small part is incorporated into metabolites, the biomass, and the secreted recombinant protein. Overexpression of the ADH2 gene in K. phaffii Mut- increased both the specific methanol uptake rate and recombinant protein production, even though the strain was still unable to grow. These findings imply that thermodynamic and kinetic constraints of the dehydrogenase reaction facilitated the evolution towards alcohol oxidase-based methanol metabolism in yeast.


Assuntos
Álcool Desidrogenase/metabolismo , Oxirredutases do Álcool/metabolismo , Regulação Fúngica da Expressão Gênica , Metanol/metabolismo , Saccharomycetales/genética , Saccharomycetales/metabolismo , Álcool Desidrogenase/análise , Álcool Desidrogenase/genética , Proteínas Fúngicas/genética , Regiões Promotoras Genéticas , Proteínas Recombinantes , Saccharomycetales/enzimologia
7.
J Biol Chem ; 294(38): 13995-14008, 2019 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-31362986

RESUMO

Human immunoglobulin A (IgA) is the most prevalent antibody class at mucosal sites with an important role in mucosal defense. Little is known about the impact of N-glycan modifications of IgA1 and IgA2 on binding to the Fcα receptor (FcαRI), which is also heavily glycosylated at its extracellular domain. Here, we transiently expressed human epidermal growth factor receptor 2 (HER2)-binding monomeric IgA1, IgA2m(1), and IgA2m(2) variants in Nicotiana benthamiana ΔXT/FT plants lacking the enzymes responsible for generating nonhuman N-glycan structures. By coinfiltrating IgA with the respective glycan-modifying enzymes, we generated IgA carrying distinct homogenous N-glycans. We demonstrate that distinctly different N-glycan profiles did not influence antigen binding or the overall structure and integrity of the IgA antibodies but did affect their thermal stability. Using size-exclusion chromatography, differential scanning and isothermal titration calorimetry, surface plasmon resonance spectroscopy, and molecular modeling, we probed distinct IgA1 and IgA2 glycoforms for binding to four different FcαRI glycoforms and investigated the thermodynamics and kinetics of complex formation. Our results suggest that different N-glycans on the receptor significantly contribute to binding affinities for its cognate ligand. We also noted that full-length IgA and FcαRI form a mixture of 1:1 and 1:2 complexes tending toward a 1:1 stoichiometry due to different IgA tailpiece conformations that make it less likely that both binding sites are simultaneously occupied. In conclusion, N-glycans of human IgA do not affect its structure and integrity but its thermal stability, and FcαRI N-glycans significantly modulate binding affinity to IgA.


Assuntos
Imunoglobulina A/metabolismo , Polissacarídeos/química , Receptores Fc/metabolismo , Sítios de Ligação , Glicosilação , Células HEK293 , Humanos , Imunoglobulina A/química , Cinética , Simulação de Dinâmica Molecular , Estabilidade Proteica , Estrutura Quaternária de Proteína , Receptores Fc/química , Receptores Fc/genética , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Termodinâmica , Nicotiana/metabolismo
8.
J Biol Chem ; 293(3): 1070-1087, 2018 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-29187599

RESUMO

N-Glycosylation plays a fundamental role in many biological processes. Human diamine oxidase (hDAO), required for histamine catabolism, has multiple N-glycosylation sites, but their roles, for example in DAO secretion, are unclear. We recently reported that the N-glycosylation sites Asn-168, Asn-538, and Asn-745 in recombinant hDAO (rhDAO) carry complex-type glycans, whereas Asn-110 carries only mammalian-atypical oligomannosidic glycans. Here, we show that Asn-110 in native hDAO from amniotic fluid and Caco-2 cells, DAO from porcine kidneys, and rhDAO produced in two different HEK293 cell lines is also consistently occupied by oligomannosidic glycans. Glycans at Asn-168 were predominantly sialylated with bi- to tetra-antennary branches, and Asn-538 and Asn-745 had similar complex-type glycans with some tissue- and cell line-specific variations. The related copper-containing amine oxidase human vascular adhesion protein-1 also exclusively displayed high-mannose glycosylation at Asn-137. X-ray structures revealed that the residues adjacent to Asn-110 and Asn-137 form a highly conserved hydrophobic cleft interacting with the core trisaccharide. Asn-110 replacement with Gln completely abrogated rhDAO secretion and caused retention in the endoplasmic reticulum. Mutations of Asn-168, Asn-538, and Asn-745 reduced rhDAO secretion by 13, 71, and 32%, respectively. Asn-538/745 double and Asn-168/538/745 triple substitutions reduced rhDAO secretion by 85 and 94%. Because of their locations in the DAO structure, Asn-538 and Asn-745 glycosylations might be important for efficient DAO dimer formation. These functional results are reflected in the high evolutionary conservation of all four glycosylation sites. Human DAO is abundant only in the gastrointestinal tract, kidney, and placenta, and glycosylation seems essential for reaching high enzyme expression levels in these tissues.


Assuntos
Amina Oxidase (contendo Cobre)/metabolismo , Oligossacarídeos/química , Oligossacarídeos/metabolismo , Polissacarídeos/química , Polissacarídeos/metabolismo , Células CACO-2 , Cristalografia por Raios X , Glicosilação , Células HEK293 , Humanos , Dobramento de Proteína
9.
Appl Environ Microbiol ; 85(13)2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31028028

RESUMO

Pyranose 2-oxidase (POx) has long been accredited a physiological role in lignin degradation, but evidence to provide insights into the biochemical mechanisms and interactions is insufficient. There are ample data in the literature on the oxidase and dehydrogenase activities of POx, yet the biological relevance of this duality could not be established conclusively. Here we present a comprehensive biochemical and phylogenetic characterization of a novel pyranose 2-oxidase from the actinomycetous bacterium Kitasatospora aureofaciens (KaPOx) as well as a possible biomolecular synergism of this enzyme with peroxidases using phenolic model substrates in vitro A phylogenetic analysis of both fungal and bacterial putative POx-encoding sequences revealed their close evolutionary relationship and supports a late horizontal gene transfer of ancestral POx sequences. We successfully expressed and characterized a novel bacterial POx gene from K. aureofaciens, one of the putative POx genes closely related to well-known fungal POx genes. Its biochemical characteristics comply with most of the classical hallmarks of known fungal pyranose 2-oxidases, i.e., reactivity with a range of different monosaccharides as electron donors as well as activity with oxygen, various quinones, and complexed metal ions as electron acceptors. Thus, KaPOx shows the pronounced duality of oxidase and dehydrogenase similar to that of fungal POx. We further performed efficient redox cycling of aromatic lignin model compounds between KaPOx and manganese peroxidase (MnP). In addition, we found a Mn(III) reduction activity in KaPOx, which, in combination with its ability to provide H2O2, implies this and potentially other POx as complementary enzymatic tools for oxidative lignin degradation by specialized peroxidases.IMPORTANCE Establishment of a mechanistic synergism between pyranose oxidase and (manganese) peroxidases represents a vital step in the course of elucidating microbial lignin degradation. Here, the comprehensive characterization of a bacterial pyranose 2-oxidase from Kitasatospora aureofaciens is of particular interest for several reasons. First, the phylogenetic analysis of putative pyranose oxidase genes reveals a widespread occurrence of highly similar enzymes in bacteria. Still, there is only a single report on a bacterial pyranose oxidase, stressing the need of closing this gap in the scientific literature. In addition, the relatively small K. aureofaciens proteome supposedly supplies a limited set of enzymatic functions to realize lignocellulosic biomass degradation. Both enzyme and organism therefore present a viable model to study the mechanisms of bacterial lignin decomposition, elucidate physiologically relevant interactions with specialized peroxidases, and potentially realize biotechnological applications.


Assuntos
Proteínas de Bactérias/genética , Desidrogenases de Carboidrato/genética , Peroxidases/genética , Streptomycetaceae/genética , Proteínas de Bactérias/metabolismo , Desidrogenases de Carboidrato/metabolismo , Oxirredução , Oxirredutases/metabolismo , Peroxidases/metabolismo , Streptomycetaceae/enzimologia , Streptomycetaceae/metabolismo
10.
Ecotoxicol Environ Saf ; 181: 481-490, 2019 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-31228824

RESUMO

Peroxidases and catalases are well-known antioxidant enzymes produced in almost all living organisms for the elimination of reactive oxygen species (ROS) and thus they prevent the occurrence of oxidative stress. In our study we focused on two soil fungi of the family Chaetomiaceae (mesophilic Chaetomium cochliodes and its thermophilic counterpart C. thermophilum var. dissitum) in order to explore the presence of peroxidase and catalase genes, formation of their native transcripts and protective effect of corresponding translation products in a case study. Predicted genes of our interest were confirmed by genomic PCR and their inducible transcripts by RT-PCR. We were able to quantify the expression levels of newly discovered fungal heme peroxidases and catalases with the reverse-transcription quantitative real-time PCR method. We compared obtained quantitative levels of mRNA production with the level of corresponding extracellular protein occurrence as detected with monitoring their specific peroxidase and catalase activities directly in the cultivation media at optimal growth temperatures. The presence of secretory Catalase 2 from C. thermophilum var. dissitum was detected and identified with mass spectrometry approach directly in the growth medium. This unique catalase is phylogenetically closely related with a previously described catalase-phenol oxidase thus representing an effective and versatile antioxidant in the environment of the fungal mycelia also involved in the catabolism of recalcitrant phenolic substances.


Assuntos
Ascomicetos/metabolismo , Catalase/metabolismo , Espaço Extracelular/enzimologia , Estresse Oxidativo , Peroxidases/metabolismo , Antioxidantes/metabolismo , Ascomicetos/classificação , Ascomicetos/enzimologia , Ascomicetos/genética , Catalase/genética , Meios de Cultura/metabolismo , Espaço Extracelular/metabolismo , Oxirredução , Peroxidases/genética , Filogenia , Temperatura
11.
Plant J ; 91(4): 613-630, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28482115

RESUMO

Fasciclin-like arabinogalactan proteins (FLAs) are involved in numerous important functions in plants but the relevance of their complex structure to physiological function and cellular fate is unresolved. Using a fully functional fluorescent version of Arabidopsis thaliana FLA4 we show that this protein is localized at the plasma membrane as well as in endosomes and soluble in the apoplast. FLA4 is likely to be GPI-anchored, is highly N-glycosylated and carries two O-glycan epitopes previously associated with arabinogalactan proteins. The activity of FLA4 was resistant against deletion of the amino-proximal fasciclin 1 domain and was unaffected by removal of the GPI-modification signal, a highly conserved N-glycan or the deletion of predicted O-glycosylation sites. Nonetheless these structural changes dramatically decreased endoplasmic reticulum (ER)-exit and plasma membrane localization of FLA4, with N-glycosylation acting at the level of ER-exit and O-glycosylation influencing post-secretory fate. We show that FLA4 acts predominantly by molecular interactions involving its carboxy-proximal fasciclin 1 domain and that its amino-proximal fasciclin 1 domain is required for stabilization of plasma membrane localization. FLA4 functions as a soluble glycoprotein via its carboxy-proximal Fas1 domain and its normal cellular trafficking depends on N- and O-glycosylation.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Moléculas de Adesão Celular/metabolismo , Arabidopsis/citologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Moléculas de Adesão Celular/genética , Retículo Endoplasmático/metabolismo , Glicoproteínas/genética , Glicoproteínas/metabolismo , Glicosilação , Proteínas Luminescentes , Mucoproteínas/genética , Mucoproteínas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/citologia , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Polissacarídeos/metabolismo , Domínios Proteicos , Transporte Proteico , Proteínas Recombinantes de Fusão
12.
Biol Chem ; 399(10): 1223-1235, 2018 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-29924726

RESUMO

The genome of the model plant Arabidopsis thaliana encodes three paralogues of the papain-like cysteine proteinase cathepsin B (AtCathB1, AtCathB2 and AtCathB3), whose individual functions are still largely unknown. Here we show that a mutated splice site causes severe truncations of the AtCathB1 polypeptide, rendering it catalytically incompetent. By contrast, AtCathB2 and AtCathB3 are effective proteases which display comparable hydrolytic properties and share most of their substrate specificities. Site-directed mutagenesis experiments demonstrated that a single amino acid substitution (Gly336→Glu) is sufficient to confer AtCathB2 with the capacity to tolerate arginine in its specificity-determining S2 subsite, which is otherwise a hallmark of AtCathB3-mediated cleavages. A degradomics approach utilizing proteome-derived peptide libraries revealed that both enzymes are capable of acting as endopeptidases and exopeptidases, releasing dipeptides from the C-termini of substrates. Mutation of the carboxydipeptidase determinant His207 also affected the activity of AtCathB2 towards non-exopeptidase substrates, highlighting mechanistic differences between plant and human cathepsin B. This was also noted in molecular modeling studies which indicate that the occluding loop defining the dual enzymatic character of cathepsin B does not obstruct the active-site cleft of AtCathB2 to the same extent as in its mammalian orthologues.


Assuntos
Arabidopsis/enzimologia , Carboxipeptidases/metabolismo , Catepsina B/metabolismo , Endopeptidases/metabolismo , Animais , Carboxipeptidases/química , Carboxipeptidases/genética , Catepsina B/química , Catepsina B/genética , Clonagem Molecular , Endopeptidases/química , Endopeptidases/genética , Modelos Moleculares , Mutagênese Sítio-Dirigida , Folhas de Planta/enzimologia , Reação em Cadeia da Polimerase em Tempo Real , Spodoptera/citologia , Spodoptera/genética
14.
Plant Biotechnol J ; 16(10): 1700-1709, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29479800

RESUMO

N-glycosylation is critical for recombinant glycoprotein production as it influences the heterogeneity of products and affects their biological function. In most eukaryotes, the oligosaccharyltransferase is the central-protein complex facilitating the N-glycosylation of proteins in the lumen of the endoplasmic reticulum (ER). Not all potential N-glycosylation sites are recognized in vivo and the site occupancy can vary in different expression systems, resulting in underglycosylation of recombinant glycoproteins. To overcome this limitation in plants, we expressed LmSTT3D, a single-subunit oligosaccharyltransferase from the protozoan Leishmania major transiently in Nicotiana benthamiana, a well-established production platform for recombinant proteins. A fluorescent protein-tagged LmSTT3D variant was predominately found in the ER and co-located with plant oligosaccharyltransferase subunits. Co-expression of LmSTT3D with immunoglobulins and other recombinant human glycoproteins resulted in a substantially increased N-glycosylation site occupancy on all N-glycosylation sites except those that were already more than 90% occupied. Our results show that the heterologous expression of LmSTT3D is a versatile tool to increase N-glycosylation efficiency in plants.


Assuntos
Glicosilação , Hexosiltransferases/genética , Leishmania major/genética , Proteínas de Membrana/genética , Nicotiana/metabolismo , Proteínas Recombinantes/metabolismo , Retículo Endoplasmático/metabolismo , Hexosiltransferases/metabolismo , Proteínas de Membrana/metabolismo , Plantas Geneticamente Modificadas
15.
Arch Biochem Biophys ; 640: 27-36, 2018 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-29331688

RESUMO

Coproheme decarboxylases (ChdCs) are enzymes responsible for the catalysis of the terminal step in the coproporphyrin-dependent heme biosynthesis pathway. Phylogenetic analyses confirm that the gene encoding for ChdCs is widespread throughout the bacterial world. It is found in monoderm bacteria (Firmicutes, Actinobacteria), diderm bacteria (e. g. Nitrospirae) and also in Archaea. In order to test phylogenetic prediction ChdC representatives from all clades were expressed and examined for their coproheme decarboxylase activity. Based on available biochemical data and phylogenetic analyses a sequence motif (-Y-P-M/F-X-K/R-) is defined for ChdCs. We show for the first time that in diderm bacteria an active coproheme decarboxylase is present and that the archaeal ChdC homolog from Sulfolobus solfataricus is inactive and its physiological role remains elusive. This shows the limitation of phylogenetic prediction of an enzymatic activity, since the identified sequence motif is equally conserved across all previously defined clades.


Assuntos
Carboxiliases/química , Carboxiliases/classificação , Coproporfirinas/química , Sequência de Aminoácidos , Carboxiliases/genética , Catálise , Filogenia , Sulfolobus solfataricus/enzimologia
16.
Proc Natl Acad Sci U S A ; 112(41): 12675-80, 2015 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-26417081

RESUMO

Broadly neutralizing anti-HIV-1 monoclonal antibodies, such as PG9, and its derivative RSH hold great promise in AIDS therapy and prevention. An important feature related to the exceptional efficacy of PG9 and RSH is the presence of sulfated tyrosine residues in their antigen-binding regions. To maximize antibody functionalities, we have now produced glycan-optimized, fucose-free versions of PG9 and RSH in Nicotiana benthamiana. Both antibodies were efficiently sulfated in planta on coexpression of an engineered human tyrosylprotein sulfotransferase, resulting in antigen-binding and virus neutralization activities equivalent to PG9 synthesized by mammalian cells ((CHO)PG9). Based on the controlled production of both sulfated and nonsulfated variants in plants, we could unequivocally prove that tyrosine sulfation is critical for the potency of PG9 and RSH. Moreover, the fucose-free antibodies generated in N. benthamiana are capable of inducing antibody-dependent cellular cytotoxicity, an activity not observed for (CHO)PG9. Thus, tailoring of the antigen-binding site combined with glycan modulation and sulfoengineering yielded plant-produced anti-HIV-1 antibodies with effector functions superior to PG9 made in CHO cells.


Assuntos
Anticorpos Monoclonais , Anticorpos Anti-HIV , HIV-1 , Engenharia Metabólica/métodos , Nicotiana , Animais , Anticorpos Monoclonais/biossíntese , Anticorpos Monoclonais/genética , Células CHO , Cricetinae , Cricetulus , Glicosilação , Anticorpos Anti-HIV/biossíntese , Humanos , Polissacarídeos/biossíntese , Polissacarídeos/genética , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Nicotiana/genética , Nicotiana/metabolismo
17.
Biochemistry ; 56(34): 4525-4538, 2017 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-28762722

RESUMO

The existence of covalent heme to protein bonds is the most striking structural feature of mammalian peroxidases, including myeloperoxidase and lactoperoxidase (LPO). These autocatalytic posttranslational modifications (PTMs) were shown to strongly influence the biophysical and biochemical properties of these oxidoreductases. Recently, we reported the occurrence of stable LPO-like counterparts with two heme to protein ester linkages in bacteria. This study focuses on the model wild-type peroxidase from the cyanobacterium Lyngbya sp. PCC 8106 (LspPOX) and the mutants D109A, E238A, and D109A/E238A that could be recombinantly produced as apoproteins in Escherichia coli, fully reconstituted to the respective heme b proteins, and posttranslationally modified by hydrogen peroxide. This for the first time allows not only a direct comparison of the catalytic properties of the heme b and PTM forms but also a study of the impact of D109 and E238 on PTM and catalysis, including Compound I formation and the two-electron reduction of Compound I by bromide, iodide, and thiocyanate. It is demonstrated that both heme to protein ester bonds can form independently and that elimination of E238, in contrast to exchange of D109, does not cause significant structural rearrangements or changes in the catalytic properties neither in heme b nor in the PTM form. The obtained findings are discussed with respect to published structural and functional data of human peroxidases.


Assuntos
Proteínas de Bactérias/metabolismo , Cianobactérias/enzimologia , Heme/metabolismo , Peroxidase/metabolismo , Processamento de Proteína Pós-Traducional/fisiologia , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Catálise , Heme/química , Heme/genética , Ligantes , Peroxidase/química , Peroxidase/genética
18.
J Proteome Res ; 16(7): 2560-2570, 2017 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-28516782

RESUMO

The full potential of recombinant Immunoglobulin A as therapeutic antibody is not fully explored, owing to the fact that structure-function relationships of these extensively glycosylated proteins are not well understood. Here monomeric IgA1, IgA2m(1), and IgA2m(2) variants of the anti-HER2 antibody (IgG1) trastuzumab were expressed in glyco-engineered Nicotiana benthamiana plants and in human HEK293-6E cells. All three IgA isotypes were purified and subjected to biophysical and biochemical characterization. While no differences in assembly, antigen binding, and glycosylation occupancy were observed, both systems vary tremendously in terms of glycan structures and heterogeneity of glycosylation. Mass-spectrometric analysis of site-specific glycosylation revealed that plant-produced IgAs carry mainly complex-type biantennary N-glycans. HEK293-6E-produced IgAs, on the contrary, showed very heterogeneous N-glycans with high levels of sialylation, core-fucose, and the presence of branched structures. The site-specific analysis revealed major differences between the individual N-glycosylation sites of each IgA subtype. Moreover, the proline-rich hinge region from HEK293-6E cell-derived IgA1 was occupied with mucin-type O-glycans, whereas IgA1 from N. benthamiana displayed numerous plant-specific modifications. Interestingly, a shift in unfolding of the CH2 domain of plant-produced IgA toward lower temperatures can be observed with differential scanning calorimetry, suggesting that distinct glycoforms affect the thermal stability of IgAs.


Assuntos
Imunoglobulina A/metabolismo , Isotipos de Imunoglobulinas/metabolismo , Polissacarídeos/química , Receptor ErbB-2/metabolismo , Trastuzumab/metabolismo , Especificidade de Anticorpos , Sequência de Carboidratos , Expressão Gênica , Glicosilação , Células HEK293 , Humanos , Imunoglobulina A/química , Imunoglobulina A/classificação , Imunoglobulina A/genética , Isotipos de Imunoglobulinas/química , Isotipos de Imunoglobulinas/classificação , Isotipos de Imunoglobulinas/genética , Mucinas/química , Mucinas/metabolismo , Polissacarídeos/metabolismo , Ligação Proteica , Receptor ErbB-2/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/classificação , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidade da Espécie , Nicotiana/genética , Nicotiana/metabolismo , Trastuzumab/química
19.
Glycobiology ; 27(6): 555-567, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28334934

RESUMO

The occurrence of nonulosonic acids in bacteria is wide-spread and linked to pathogenicity. However, the knowledge of cognate nonulosonic acid transferases is scarce. In the periodontopathogen Tannerella forsythia, several proposed virulence factors carry strain-specifically either a pseudaminic or a legionaminic acid derivative as terminal sugar on an otherwise structurally identical, protein-bound oligosaccharide. This study aims to shed light on the transfer of either nonulosonic acid derivative on a proximal N-acetylmannosaminuronic acid residue within the O-glycan structure, exemplified with the bacterium's abundant S-layer glycoproteins. Bioinformatic analyses provided the candidate genes Tanf_01245 (strain ATCC 43037) and TFUB4_00887 (strain UB4), encoding a putative pseudaminic and a legionaminic acid derivative transferase, respectively. These transferases have identical C-termini and contain motifs typical of glycosyltransferases (DXD) and bacterial sialyltransferases (D/E-D/E-G and HP). They share homology to type B glycosyltransferases and TagB, an enzyme catalyzing glycerol transfer to an N-acetylmannosamine residue in teichoic acid biosynthesis. Analysis of a cellular pool of nucleotide-activated sugars confirmed the presence of the CMP-activated nonulosonic acid derivatives, which are most likely serving as substrates for the corresponding transferase. Single gene knock-out mutants targeted at either transferase were analyzed for S-layer O-glycan composition by ESI-MS, confirming the loss of the nonulosonic acid derivative. Cross-complementation of the mutants with the nonnative nonulosonic acid transferase was not successful indicating high stringency of the enzymes. This study identified plausible candidates for a pseudaminic and a legionaminic acid derivative transferase; these may serve as valuable tools for engineering of novel sialoglycoconjugates.


Assuntos
Proteínas de Bactérias/metabolismo , Ácidos Siálicos/metabolismo , Sialiltransferases/metabolismo , Tannerella forsythia/enzimologia , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Glicosilação , Mutação , Homologia de Sequência de Aminoácidos , Ácidos Siálicos/química , Sialiltransferases/química , Sialiltransferases/genética
20.
Glycobiology ; 27(4): 342-357, 2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-27986835

RESUMO

Tannerella forsythia is an anaerobic, Gram-negative periodontal pathogen. A unique O-linked oligosaccharide decorates the bacterium's cell surface proteins and was shown to modulate the host immune response. In our study, we investigated the biosynthesis of the nonulosonic acid (NulO) present at the terminal position of this glycan. A bioinformatic analysis of T. forsythia genomes revealed a gene locus for the synthesis of pseudaminic acid (Pse) in the type strain ATCC 43037 while strains FDC 92A2 and UB4 possess a locus for the synthesis of legionaminic acid (Leg) instead. In contrast to the NulO in ATCC 43037, which has been previously identified as a Pse derivative (5-N-acetimidoyl-7-N-glyceroyl-3,5,7,9-tetradeoxy-l-glycero-l-manno-NulO), glycan analysis of strain UB4 performed in this study indicated a 350-Da, possibly N-glycolyl Leg (3,5,7,9-tetradeoxy-d-glycero-d-galacto-NulO) derivative with unknown C5,7 N-acyl moieties. We have expressed, purified and characterized enzymes of both NulO pathways to confirm these genes' functions. Using capillary electrophoresis (CE), CE-mass spectrometry and NMR spectroscopy, our studies revealed that Pse biosynthesis in ATCC 43037 essentially follows the UDP-sugar route described in Helicobacter pylori, while the pathway in strain FDC 92A2 corresponds to Leg biosynthesis in Campylobacter jejuni involving GDP-sugar intermediates. To demonstrate that the NulO biosynthesis enzymes are functional in vivo, we created knockout mutants resulting in glycans lacking the respective NulO. Compared to the wild-type strains, the mutants exhibited significantly reduced biofilm formation on mucin-coated surfaces, suggestive of their involvement in host-pathogen interactions or host survival. This study contributes to understanding possible biological roles of bacterial NulOs.


Assuntos
Vias Biossintéticas/genética , Proteínas de Membrana/genética , Tannerella forsythia/genética , Genoma Bacteriano/genética , Glicosilação , Interações Hospedeiro-Patógeno/genética , Espectroscopia de Ressonância Magnética , Espectrometria de Massas , Oligossacarídeos/genética , Oligossacarídeos/metabolismo , Ácidos Siálicos/biossíntese , Açúcares Ácidos/metabolismo , Tannerella forsythia/enzimologia , Tannerella forsythia/patogenicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA